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The notion of a BE-semigroup is introduced, and related properties are investigated. The concept
of left (resp., right) deductive systems of a BE-semigroup is also introduced.

1. Introduction

Hu and Li, Iséki and Tanaka, respectively, introduced two classes of abstract algebras: BCK-
algebras and BCI-algebras [1–3]. It is known that the class of BCK-algebras is a proper
subclass of the class of BCI-algebras. In [1, 4] Hu and Li introduced a wide class of abstract
algebras: BCH-algebras. They have shown that the class of BCI-algebras is a proper subclass
of the class of BCH-algebras. We refer to [5] for general information on BCK-algebras.
Neggers and Kim [6] introduced the notion of a d-algebra which is a generalization of BCK-
algebras, and also they introduced the notion of a B-algebra [7, 8], that is, (I) x ∗ x = 0, (II)
x ∗ 0 = x, (III) (x ∗ y) ∗ z = x ∗ (z ∗ (0 ∗ y)), for any x, y, z ∈ X, which is equivalent to the idea
of groups. Moreover, Jun et al. [9] introduced a new notion, called an BH- algebra, which is
another generalization of BCH/BCI/BCK-algebras, that is, (I), (II), and (IV) x ∗ y = 0 and
y ∗ x = 0 imply that x = y for any x, y ∈ X. Walendziak obtained other equivalent set of
axioms for a B-algebra [10]. Kim et al. [11] introduced the notion of a (pre-) Coxeter algebra
and showed that a Coxeter algebra is equivalent to an abelian group all of whose elements
have order 2, that is, a Boolean group. C. B. Kim and H. S. Kim [12] introduced the notion
of a BM-algebra which is a specialization of B-algebras. They proved that the class of BM-
algebras is a proper subclass of B-algebras and also showed that a BM-algebra is equivalent
to a 0-commutative B-algebra. In [13], H. S. Kim and Y. H. Kim introduced the notion of a
BE-algebra as a generalization of a BCK-algebra. Using the notion of upper sets, they gave
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an equivalent condition of the filter in BE-algebras. In [14, 15], Ahn and So introduced the
notion of ideals in BE-algebras and proved several characterizations of such ideals.

In this paper, by combining BE-algebras and semigroups, we introduce the notion of
BE-semigroups. We define left (resp., right) deductive systems (LDS (resp., RDS) for short)
of a BE-semigroup, and then we describe LDS generated by a nonempty subset in a BE-
semigroup as a simple form.

2. Preliminaries

We recall some definitions and results discussed in [13].

Definition 2.1 (see [13]). An algebra (X; ∗, 1) of type (2, 0) is called a BE-algebra if

(BE1) x ∗ x = 1 for all x ∈ X,

(BE2) x ∗ 1 = 1 for all x ∈ X,

(BE3) 1 ∗ x = x for all x ∈ X,

(BE4) x ∗ (y ∗ z) = y ∗ (x ∗ z) for all x, y, z ∈ X (exchange).

We introduce a relation “≤” on X by x ≤ y if and only if x ∗ y = 1.

Proposition 2.2 (see [13]). If (X; ∗, 1) is a BE-algebra, then x ∗ (y ∗ x) = 1 for any x, y ∈ X.

Example 2.3 (see [13]). Let X := {1, a, b, c, d, 0} be a set with the following table:

∗ 1 a b c d 0

1 1 a b c d 0
a 1 1 a c c d
b 1 1 1 c c c
c 1 a b 1 a b
d 1 1 a 1 1 a
0 1 1 1 1 1 1

(2.1)

Then (X; ∗, 1) is a BE-algebra.

Definition 2.4 (see [13]). A BE-algebra (X; ∗, 1) is said to be self-distributive if x ∗ (y ∗ z) =
(x ∗ y) ∗ (x ∗ z) for all x, y, z ∈ X.

Example 2.5 (see [13]). Let X := {1, a, b, c, d} be a set with the following table:

∗ 1 a b c d

1 1 a b c d
a 1 1 b c d
b 1 a 1 c c
c 1 1 b 1 b
d 1 1 1 1 1

(2.2)

Then it is easy to see that X is a self-distributive BE-algebra.
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Note that the BE-algebra in Example 2.3 is not self-distributive, since d∗(a∗0) = d∗d =
1, while (d ∗ a) ∗ (d ∗ 0) = 1 ∗ a = a.

Proposition 2.6. Let X be a self-distributive BE-algebra. If x ≤ y, then z∗x ≤ z∗y and y∗z ≤ x∗z
for any x, y, z ∈ X.

Proof. The proof is straightforward.

3. BE-Semigroups

Definition 3.1. An algebraic system (X;�, ∗, 1) is called a BE-semigroup if it satisfies the
following:

(i) (X;�) is a semigroup,

(ii) (X; ∗, 1) is a BE-algebra,

(iii) the operation “�” is distributive (on both sides) over the operation “∗”.

Example 3.2. (1) Define two operations “�” and “∗” on a set X := {1, a, b, c} as follows:

� 1 a b c

1 1 1 1 1
a 1 1 1 1
b 1 1 1 1
c 1 a b c

∗ 1 a b c

1 1 a b c
a 1 1 b c
b 1 a 1 c
c 1 1 1 1

(3.1)

It is easy to see that (X;�, ∗, 1) is a BE-semigroup.
(2) Define two binary operations “�” and “∗” on a set A := {1, a, b, c} as follows:

� 1 a b c

1 1 1 1 1
a 1 1 1 1
b 1 1 1 b
c 1 1 b c

∗ 1 a b c

1 1 a b c
a 1 1 b c
b 1 a 1 c
c 1 1 1 1

(3.2)

It is easy to show that (A;�, ∗, 1) is a BE-semigroup.

Proposition 3.3. Let (X;�, ∗, 1) be a BE-semigroup. Then

(i) (∀x ∈ X) (1 � x = x � 1 = 1),

(ii) (∀x, y, z ∈ X) (x ≤ y ⇒ x � z ≤ y � z, z � x ≤ z � y).

Proof. (i) For all x ∈ X, we have that 1 � x = (1 ∗ 1) � x = (1 � x) ∗ (1 � x) = 1 and x � 1 =
x � (1 ∗ 1) = (x � 1) ∗ (x � 1) = 1.
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(ii) Let x, y, z ∈ X be such that x ≤ y. Then

(x � z) ∗ (y � z
)
=
(
x ∗ y) � z = 1 � z = 1,

(z � x) ∗ (z � y
)
= z � (

x ∗ y) = z � 1 = 1.
(3.3)

Hence x � z ≤ y � z and z � x ≤ z � y.

Definition 3.4. An element a(/= 1) in a BE-semigroup (X;�, ∗, 1) is said to be a left (resp., right)
unit divisor if

(∃b(/= 1) ∈ X)
(
a � b = 1

(
resp., b � a = 1

))
. (3.4)

A unit divisor is an element of X which is both a left and a right unit divisors.

Theorem 3.5. Let (X;�, ∗, 1) be a BE-semigroup. If it satisfies the left (resp., right ) cancellation law
for the operation �, that is,

(∀x(/= 1), y, z ∈ A
) (

x � y = y � z
(
resp., y � x = z � x

)
=⇒ y = z

)
, (3.5)

then X contains no left (resp., right) unit divisors.

Proof. Let (X;�, ∗, 1) satisfy the left cancellation law for the operation � and assume that x �
y = 1 where x/= 1. Then x � y = 1 = x � 1 by Proposition 3.3(i), which implies y = 1. Similarly
it holds for the right case. Hence there is no left (resp., right) unit divisors in X.

Now we consider the converse of Theorem 3.5.

Theorem 3.6. Let (X;�, ∗, 1) be a BE-semigroup in which there are no left (resp., right ) unit divisors.
Then it satisfies the left (resp., right) cancellation law for the operation �.

Proof. Let x, y, z ∈ X be such that x � y = x � z and x/= 1. Then

x � (
y ∗ z) =

(
x � y

) ∗ (x � z) = 1,

x � (
z ∗ y) = (x � z) ∗ (x � y

)
= 1.

(3.6)

Since X has no left unit divisor, it follows that y ∗ z = 1 = z ∗ y so that y = z. The argument is
the same for the right case.

Definition 3.7. Let (X;�, ∗, 1) be a BE-semigroup. A nonempty subset D of X is called a left
(resp., right) deductive system (LDS (resp., RDS), for short) if it satisfies

(ds1) X �D ⊆ D (resp., (D �X ⊆ D)),

(ds2) (∀a ∈ D) ((∀x ∈ X) (a ∗ x ∈ D ⇒ x ∈ D).
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Example 3.8. Let X := {x, y, z, 1} be a set with the following Cayley tables:

� 1 x y z

1 1 1 1 1
x 1 x 1 1
y 1 1 y z
z 1 1 z y

∗ 1 x y z

1 1 x y z
x 1 1 y z
y 1 1 1 z
z 1 1 1 1

(3.7)

It is easy to show that (X;�, ∗, 1) is a BE-semigroup. We know thatD := {1, x} is an LDS of X,
but E := {1, y} is not an LDS of X, since z � y = z /∈ E and/or y ∗ x = 1 ∈ E, y ∈ E but x /∈ E.

Let (X; ∗, 1) be a BE-algebra, and let a, b ∈ X. Then the set

A(a, b) := {x ∈ X | a ∗ (b ∗ x) = 1} (3.8)

is nonempty, since 1, a, b ∈ A(a, b).

Proposition 3.9. IfD is an LDS of a BE-semigroup (X;�, ∗, 1), then

(∀a, b ∈ D) (A(a, b) ⊆ D). (3.9)

Proof. Let x ∈ A(a, b)where a, b ∈ D. Then a∗(b∗x) = 1 ∈ D and so x ∈ D by (ds2). Therefore
A(a, b) ⊆ D.

Theorem 3.10. Let {Di} be an arbitrary collection of LDSs of a BE-semigroup (X;�, ∗, 1), where i
ranges over some index set I. Then ∩i∈IDi is also an LDS of A.

Proof. The proof is straightforward.

Let (X;�, ∗, 1) be a BE-semigroup. For any subset D of X, the intersection of all LDSs
(resp., RDSs) of X containing D is called the LDSs (resp., RDSs) generated by D, and is
denoted by 〈D〉l (resp., 〈D〉r). It is clear that if D and E are subsets of a BE-semigroup
(X;�, ∗, 1) satisfying D ⊆ E, then 〈D〉l ⊆ 〈E〉l (resp., 〈D〉r ⊆ 〈E〉r), and if D is an LDS (resp.,
RDS) of X, then 〈D〉l = D (resp., 〈D〉r = D).

A BE-semigroup (X;�, ∗, 1) is said to be self-distributive if (X; ∗, 1) is a self-distributive
BE-algebra.

Theorem 3.11. Let (X;�, ∗, 1) be a self-distributive BE-semigroup and letD be a nonempty subset of
X such thatA�D ⊆ D. Then 〈D〉l := {a ∈ X | yn ∗ (· · · ∗ (y1 ∗a) · · · ) = 1 for some y1, . . . , yn ∈ D}.

Proof. Denote

B :=
{
a ∈ X | yn ∗

(· · · ∗ (y1 ∗ a
) · · · ) = 1 for some y1, . . . , yn ∈ D

}
. (3.10)
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Let a ∈ X and b ∈ B. Then there exist y1, . . . , yn ∈ D such that yn ∗ (· · · ∗ (y1 ∗ b) · · · ) = 1. It
follows that

1 = x � 1

= x � (
yn ∗

(· · · ∗ (y1 ∗ b
) · · · ))

=
(
x � yn

) ∗ (· · · ∗ ((x � y1
) ∗ (x � b)

) · · · ).
(3.11)

Since x �yi ∈ D for i = 1, . . . , n, we have that x � b ∈ B. Let x, a ∈ X be such that a ∗x ∈ B and
a ∈ B. Then there exist y1, . . . , yn, z1, . . . , zm ∈ D such that

yn ∗
(· · · ∗ (y1 ∗ (a ∗ x)) · · · ) = 1, (3.12)

zm ∗ (· · · ∗ (z1 ∗ a) · · · ) = 1. (3.13)

Using (BE4), it follows from (3.12) that a ∗ (yn ∗ (· · · ∗ (y1 ∗ x) · · · )) = 1, that is, a ≤ yn ∗ (· · · ∗
(y1 ∗ x) · · · ), and so from (3.13) and Proposition 2.6 it follows that

1 = zm ∗ (· · · ∗ (z1 ∗ a) · · · )
≤ zm ∗ (· · · ∗ (z1 ∗

(
yn ∗

(· · · ∗ (y1 ∗ x
) · · · ))) · · · ).

(3.14)

Thus zm ∗ (· · · ∗ (z1 ∗ (yn ∗ (· · · ∗ (y1 ∗ x) · · · ))) · · · ) = 1, which implies x ∈ B. Therefore B is
an LDS of X. Obviously D ⊆ B. Let G be an LDS containing D. To show B ⊆ G, let a be any
element of B. Then there exist y1, . . . , yn ∈ D such that yn ∗ (· · · ∗ (y1 ∗ a) · · · ) = 1. It follows
from (ds2) that a ∈ G so that B ⊆ G. Consequently, we have that 〈D〉l = B.

In the following example, we know that the union of any LDSs (resp., RDSs) D and E
may not be an LDS (resp., RDS) of a self-distributive BE-semigroup (X; ·, ∗, 1).

Example 3.12. Let X := {1, a, b, c, d} be a set with the following Cayley tables:

� 1 a b c d

1 1 1 1 1 1
a 1 1 1 1 1
b 1 1 1 1 1
c 1 1 1 1 1
d 1 1 1 1 d

∗ 1 a b c d

1 1 a b c d
a 1 1 b b d
b 1 a 1 a d
c 1 1 1 1 d
d 1 1 b b 1

(3.15)

It is easy to check that (X;�, ∗, 1) is a self-distributive BE-semigroup. We know that D :=
{1, a} and E := {1, b} are LDSs of X, but D ∪ E = {1, a, b} is not an LDS of X, since b ∗ c = a ∈
D ∪ E, c /∈ D ∪ E.

Theorem 3.13. Let D and E be LDSs of a self-distributive BE-semigroup (X; ·, ∗, 1). Then

〈D ∪ E〉l :=
{
a ∈ X | x ∗ (y ∗ a) = 1 for some x ∈ D, y ∈ E

}
. (3.16)
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Proof. Denote

K :=
{
a ∈ X | x ∗ (y ∗ a) = 1 for some x ∈ D, y ∈ E

}
. (3.17)

Obviously, K ⊆ 〈D ∪ E〉l. Let b ∈ 〈D ∪ E〉l. Then there exist y1, . . . , yn ∈ D ∪ E such that
yn ∗ (· · · ∗ (y1 ∗ b) · · · ) = 1 by Theorem 3.11. If yi ∈ D (resp., E) for all i = 1, . . . , n, then b ∈ D
(resp., E). Hence b ∈ K since b ∗ (1 ∗ b) = 1 (resp., 1 ∗ (b ∗ b) = 1). If some of y1, . . . , yn belong
to D and others belong to E, then we may assume that y1, . . . , yk ∈ D and yk+1, . . . , yn ∈ E for
1 ≤ k < n, without loss of generality. Let p = yk ∗ (· · · ∗ (y1 ∗ b) · · · ). Then

yn ∗
(· · · ∗ (yk+1 ∗ p

) · · · )

= yn ∗
(· · · ∗ (yk+1 ∗

(
yk ∗

(· · · ∗ (y1 ∗ b
) · · · ))) · · · )

= 1,

(3.18)

and so p ∈ E. Now let q = p ∗ b = (yk ∗ (· · · ∗ (y1 ∗ b) · · · )) ∗ b. Then

yk ∗
(· · · ∗ (y1 ∗ q

) · · · )

= yk ∗
(· · · ∗ (y1 ∗

((
yk ∗

(· · · ∗ (y1 ∗ b
) · · · )) ∗ b)) · · · )

=
(
yk ∗

(· · · ∗ (y1 ∗ b
) · · · )) ∗ (yk ∗

(· · · ∗ (y1 ∗ b
) · · · ))

= 1,

(3.19)

which implies that q ∈ D. Since p ∗ (q ∗ b) = q ∗ (p ∗ b) = q ∗ q = 1, it follows that b ∈ K so that
〈D ∪ E〉l ⊆ K. This completes the proof.
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