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We study some generalized integral operators for the classes of p-valent functions with bounded
radius and boundary rotation. Our work generalizes many previously known results. Many of our
results are best possible.

1. Introduction

Let Ap denote the class of functions of the form

f(z) = zp +
∞∑

n=p+1

anz
n, p ∈ N = {1, 2, . . .}, (1.1)

which are analytic in the open unit discU = {z : |z| < 1}.
Let f and g be analytic functions in U we say that f is subordinate to g, written as

f ≺ g; (1.2)

if there exists a Schwarz function w(z) inU, with w(0) = 0 and |w(z)| < 1 (z ∈ U), such that

f(z) = g(w(z)). (1.3)
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In particular, when g is univalent, then the above subordination is equivalent to

f(0) = 0, f(U) ⊆ g(U). (1.4)

For functions f, g ∈ Ap, given by

f(z) = zp +
∞∑

n=p+1

anz
n, g(z) = zp +

∞∑

n=p+1

bnz
n, z ∈ U, (1.5)

we define the Hadamard product (or convolution) of f and g by

(
f ∗ g)(z) = zp +

∞∑

n=p+1

anbnz
n, z ∈ U. (1.6)

Janowski [1] defined the class P[A,B] as follows.
Let h be a function, analytic in U, with h(0) = 1. Then h is said to belong to the class

P[A,B], −1 ≤ B < A ≤ 1, if and only if, for z ∈ U,

h(z) =
1 +Aw(z)
1 + Bw(z)

, where w(z) is a Schwarz function. (1.7)

Or equivalently, we can say that h ∈ P[A,B], −1 ≤ B < A ≤ 1, if and only if,

h(z) ≺ 1 +Az

1 + Bz
, z ∈ U. (1.8)

Geometrically, h(z) is in the class P[A,B], if and only if, h(0) = 1 and the image of h(U) lies
inside the open disc centered on the real axis with diameter end points,

D1 = h(−1) = 1 −A

1 − B
, D2 = h(1) =

1 +A

1 + B
, 0 < D1 < 1 < D2. (1.9)

Clearly P[A,B] ⊂ P((1 −A)/(1 − B)).
In the recent paper, Noor [2] introduced the class Pk(α). We define it as follows. Let

Pk(α), 0 ≤ α < p, be the class of functions p(z)with p(0) = 1 and satisfying the property

p(z) =
1
2

∫2π

0

1 + (1 − 2α)ze−it

1 − ze−it
dμ(t), (1.10)

where μ(t) is a real-valued function of bounded variation on [0, 2π] and
∫2π
0 dμ(t) = 2 and

∫2π
0 |dμ(t)| ≤ k.



International Journal of Mathematics and Mathematical Sciences 3

The classes Vk(α) and Rk(α) are related to the class Pk(α) and can be defined as

f ∈ Vk(α), iff

(
zf ′(z)

)′

pf ′(z)
∈ Pk(α), z ∈ U,

f ∈ Rk(α), iff
zf ′(z)
pf(z)

∈ Pk(α), z ∈ U.

(1.11)

We define a class Pk[A,B] as follows.
Let Pk[A,B], k ≥ 2, −1 ≤ B < A ≤ 1, denote the class of p-valent analytic functions h(z)

that are represented by

h(z) =
(
k

4
+
1
2

)
h1(z) −

(
k

4
− 1
2

)
h2(z), z ∈ U, (1.12)

where h1, h2 ∈ P[A,B]. For A = 1 − 2α (0 ≤ α < p) and B = −1, it reduces to the class Pk(α)
and P2(α) = P(α) is the class of p-valent analytic functions h(z) with Reh(z) > α, z ∈ U.
Taking A = 1, B = −1, and p = 1, we have Pk[1,−1] = Pk (see [3]), and P2[1,−1] = P is the
class of functions with positive real part.

Definition 1.1. A function f, analytic inU, and given by (1.1) is said to be in the classRk[A,B];
−1 ≤ B < A ≤ 1, k ≥ 2, if and only if,

zf ′(z)
pf(z)

∈ Pk[A,B], z ∈ U. (1.13)

For p = 1, Rk[A,B] is introduced and studied by Noor [4]. We note that

Rk[A,B] ⊂ Rk

(
1 −A

1 − B

)
⊂ Rk, (1.14)

where Rk is the class of functions with bounded radius rotation (see [5]). For k = 2, we have

R2[A,B] ≡ S∗
p[A,B] ⊂ S∗

p

(
1 −A

1 − B

)
⊂ S∗

p, (1.15)

where S∗
p is the class of p-valent starlike functions. Similarly, we can define the class Vk[A,B]

as follows.

Definition 1.2. A function f, analytic inU, and given by (1.1) is said to be in the class Vk[A,B];
−1 ≤ B < A ≤ 1, k ≥ 2, if and only if,

(
zf ′(z)

)′

pf ′(z)
∈ Pk[A,B], z ∈ U. (1.16)
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It is clear that

f ∈ Vk[A,B], iff
zf ′(z)

p
∈ Rk[A,B], z ∈ U. (1.17)

For p = 1, Vk[A,B] is the class introduced and studied by Noor [4]. It is easy to see that,

Vk[A,B] ⊂ Vk

(
1 −A

1 − B

)
⊂ Vk, (1.18)

where Vk is the class of functions with bounded boundary rotation see [5]. Also

V2[A,B] ≡ Cp[A,B] ⊂ Cp

(
1 −A

1 − B

)
⊂ Cp, (1.19)

where Cp is the class of p-valent convex functions.

Very recently, Frasin [6], introduced the following general integral operators for p-
valent functions,

Fp(z) =
∫z

0
ptp−1

(
f1(t)
tp

)α1

· · ·
(
fn(t)
tp

)αn

dt, (1.20)

Gp(z) =
∫z

0
ptp−1

(
f ′
1(t)

ptp−1

)α1

· · ·
(

f ′
n(t)

ptp−1

)αn

dt, where αi ∈ C, z ∈ U. (1.21)

Clearly, we may see that for p = 1, these operators become the general integral operators

F1(z) = Fn(z), G1(z) = Fα1,α2,...,αn(z), (1.22)

introduced and studied by Breaz and Breaz [7] and Breaz et al. [8], (see also [9, 10]).
For p = n = 1, α1 = α ∈ [0, 1] in (1.20), we obtain the integral operator

∫z
0 (f(t)/t)

αdt
studied in [11] and for p = n = 1, α1 = δ ∈ C, |δ| < 1/4 in (1.21), we obtain the integral
operator

∫z
0 (f

′(t))δdt, studied in [12].

2. Main Results

Lemma 2.1. Let β > 0, β + γ > 0, α ∈ [α0, 1), with α0 = max{(β − γ − 1)/2β,−γ/β}. If

p(z) +
zp′(z)

βp(z) + γ
≺ 1 + (1 − 2α)z

1 − z
, (2.1)

then

p(z) ≺ Q(z) ≺ 1 + (1 − 2α)z
1 − z

, (2.2)
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where Q(z) = 1/βG(z) − γ/β,

G(z) =
∫1

0

(
1 − z

1 − tz

)2β(1−α)
tβ+γ−1dt = 2F1

(
2β(1 − α), 1, β + γ + 1;

z

1 − z

)
, (2.3)

ρ = ρ
(
α, β, γ

)
=

β + γ

β2F1
(
2β(1 − α), 1, β + γ + 1; 1/2

) − γ

β
, (2.4)

2F1 denotes the Gauss hypergeometric function. From (2.2), we can deduce the sharp result p ∈
P(ρ), where ρ is defined in (2.4). This result is a special case of one given in [11].

Proof. To prove this Lemma we use Theorem 3.2j of [11, page 97]. Take h(z) = (1 + (1 −
2α)z)/(1 − z), 0 ≤ α < 1 and

H(z) = βh(z) + γ =
a + bz

1 − z
, (2.5)

where a = β + γ and b = β(1 − 2α) + γ .
Since H is convex to apply Theorem 3.2j of [11, page 97] we only need to determine

condition ReH(z) > 0.
The range of |z| ≤ 1 under H(z) is a half plane. In order to satisfy the required

condition this half plane needs to lie in the right half plane. This requirement will be satisfied
if ReH(−1) = ReH(i) and ReH(0) > ReH(−1) ≥ 0. Or we can write it as

β(1 − α) > 0, βα + γ ≥ 0. (2.6)

When β > 0, β + γ > 0, these conditions imply that α ∈ [−γ/β, 1), and if β + γ > 1, then
α ∈ [(β − γ − 1)/2β, 1). Hence all the conditions of Theorem 3.2j of [11, page 97] are satisfied
for α ∈ [α0, 1), with α0 = max{(β − γ − 1)/2β,−γ/β}, thus we have the required result.

To show that the solution Q(z) can be represented in terms of hypergeometric
functions we take A = 1 − 2α, B = −1, n = 1 in Theorem 3.3d of [11, page 109].

Lemma 2.2. Let f ∈ Vk(α), 0 ≤ α < p, k ≥ 2. Then f ∈ Rk(ρ) inU, where

ρ = ρ
(
α, p
)
=

1

2F1
(
2p(1 − α), 1, p + 1; 1/2

) . (2.7)

This result is sharp.

Proof. Let for k ≥ 2, z ∈ U, we have

zf ′(z)
pf(z)

= h(z) =
(
k

4
+
1
2

)
h1(z) −

(
k

4
− 1
2

)
h2(z), (2.8)

where h, hi are analytic inU with h(0) = 1, hi(0) = 1, i = 1, 2.
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We define

φp(z) = z +
∞∑

n=1

1
p(1 + (n − 1))

zn, z ∈ U. (2.9)

By using (2.8), with convolution technique, see [13], we have

φp(z)
z

∗ h(z) =
(
k

4
+
1
2

)(
φp(z)
z

∗ h1(z)

)
−
(
k

4
− 1
2

)(
φp(z)
z

∗ h2(z)

)
. (2.10)

This implies that,

h(z) +
zh′(z)
ph(z)

=
(
k

4
+
1
2

)(
h1(z) +

zh′
1(z)

ph1(z)

)
−
(
k

4
− 1
2

)(
h2(z) +

zh′
2(z)

ph2(z)

)
. (2.11)

Logarithmic differentiation of (2.8) yields,

(
zf ′(z)

)′

pf ′(z)
= h(z) +

zh′(z)
ph(z)

=
(
k

4
+
1
2

)(
h1(z) +

zh′
1(z)

ph1(z)

)
−
(
k

4
− 1
2

)(
h2(z) +

zh′
2(z)

ph2(z)

)
.

(2.12)

Since (zf ′(z))′/pf ′(z) ∈ Pk(α), 0 ≤ α < p, thus

hi(z) +
zh′

i(z)
phi(z)

∈ P(α), i = 1, 2. (2.13)

By using Lemma 2.1 (for β = p and γ = 0), we deduce that hi ∈ P(ρ), where ρ is given in
(2.7). This estimate is best possible because of the best dominant property of function Q(z),
where

Q(z) =
1

2F1
(
2p(1 − α), 1, p + 1; z/(1 − z)

) , z ∈ U. (2.14)

For p = 1, we have the sharp result proved in [14].
We begin with the following theorem.

Theorem 2.3. (i) Let αi > 0, fi ∈ Rk[A,B] for all i = 1, 2, . . . , n, and,
∑n

i=1 αi = 1. Then the integral
operator Fp ∈ Vk[A,B] inU, where −1 ≤ B < A ≤ 1, k ≥ 2.

(ii) Let fi ∈ Rk(α), αi > 0 for all i = 1, 2, . . . , n with α = (1 − A)/(1 − B), k ≥ 2. If∑n
i=1 αi = 1, then the integral operator Fp defined by (1.20) also belongs to the class Rk(ρ) in U,

where ρ = ρ(α, p) is defined by (2.7). This result is sharp.
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Proof (i). From (1.20), we can see that Fp ∈ Ap inU, and

F ′
p(z) = pzp−1

[(
f1(z)
zp

)α1

· · ·
(
fn(z)
zp

)αn]
. (2.15)

Differentiating logarithmically and multiplying by z, we obtain,

zF ′′
p(z)

F ′
p(z)

=
(
p − 1

)
+

n∑

i=1

αi

(
zf ′

i(z)
f ′
i(z)

− p

)
, z ∈ U. (2.16)

Thus, we have

1 +
zF ′′

p(z)

F ′
p(z)

=
n∑

i=1

αi

(
zf ′

i(z)
f ′
i(z)

)
, (2.17)

or

(
zF ′

p(z)
)′

pF ′
p(z)

=
n∑

i=1

αi

(
zf ′

i(z)
pf ′

i(z)

)

=
(
k

4
+
1
2

)( n∑

i=1

αipi(z)

)
−
(
k

4
− 1
2

)( n∑

i=1

αihi(z)

)
,

(2.18)

where hi, pi ∈ P[A,B], for all i = 1, 2, . . . , n.
Since P[A,B] is a convex set, see [15], it follows that,

(
zF ′

p(z)
)′

pF ′
p(z)

=
(
k

4
+
1
2

)
H1(z) −

(
k

4
− 1
2

)
H2(z), (2.19)

where H1,H2 ∈ P[A,B] and therefore,

(
zF ′

p(z)
)′

pF ′
p(z)

∈ Pk[A,B], z ∈ U. (2.20)

This proves the result.

Substituting p = 1, in Theorem 2.3(i), we have the following corollary.

Corollary 2.4. Let αi > 0, fi ∈ Rk[A,B] for all i = 1, 2, . . . , n, −1 ≤ B < A ≤ 1, k ≥ 2. Then the
integral operator Fp ∈ Vk[A,B] inU.

Remark 2.5. Letting α1 = α, α2 = β, and n = 2 in Corollary 2.4, we obtain a result due to Noor
[4].



8 International Journal of Mathematics and Mathematical Sciences

For n = 1, α1 = α = 1, and f1 = f in Theorem 2.3(i), we have the following.

Corollary 2.6. Let f ∈ Rk[A,B] in U, −1 ≤ B < A ≤ 1, k ≥ 2. Then the integral operator∫z
0 p(f(t)/t)dt ∈ Vk[A,B], z ∈ U.

Proof (ii). Taking A = 1 − 2α, B = −1, with α = (1 −A)/(1 − B), we have for all i = 1, 2, . . . , n,

fi ∈ Rk[1 − 2α,−1] = Rk(α), (2.21)

using part (i) of Theorem 2.3, we have

Fp ∈ Vk[1 − 2α,−1] = Vk(α) in U. (2.22)

Now using Lemma 2.2 for Fp ∈ Vk(α), α = (1 −A)/(1 − B) implies that

Fp ∈ Rk

(
ρ
)
, where ρ = ρ

(
α, p
)
is defined in (2.7). (2.23)

The sharpness of the result is clear from the function Q(z) defined by (2.14).

For p = 1, we have the following corollary.

Corollary 2.7. Let αi > 0, fi ∈ Rk(α) for all i = 1, 2, . . . , n, with α = (1−A)/(1−B) andA = 1−2α,
B = −1. Then the integral operator Fp defined by (1.20) also belongs to the class Rk(ρ) inU, where

ρ = ρ(α) =

⎧
⎪⎪⎨

⎪⎪⎩

2α − 1
2 − 22(1−α)

, if α/=
1
2

1
2 ln 2

, if α =
1
2
.

(2.24)

Remark 2.8. Letting α1 = μ, α2 = η, and n = 2 in Corollary 2.7, we have the sharp result proved
in [14].

For A = 1, B = −1, and p = 1, we have

fi ∈ Rk(0) implies that Fp ∈ Vk

(
1
2

)
in U. (2.25)

Theorem 2.9. (i) Let αi > 0,fi ∈ Vk[A,B] for all i = 1, 2, . . . , n. If
∑n

i=1 αi = 1, then the integral
operator Gp defined by (1.21), also belongs to the class Vk[A,B] inU, where −1 ≤ B < A ≤ 1, k ≥ 2.

(ii) Let for αi > 0,
∑n

i=1 αi = 1 and fi ∈ Vk(α), for all i = 1, 2, . . . , n with 0 ≤ α < p,
α = (1−A)/(1−B), k ≥ 2. Then the integral operatorGp ∈ Rk(ρ) inU, where ρ = ρ(α, p) is defined
by (2.7). This result is sharp.
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Proof (i). From definition (1.20), we have

1 +
zG′′

p(z)

G′
p(z)

= p +
n∑

i=1

αi

(
zf ′′

i (z)
f ′
i(z)

− p + 1

)

=
n∑

i=1

αi

(
zf ′

i(z)
)′

f ′
i(z)

,

(2.26)

or

(
zG′

p(z)
)′

pG′
p(z)

=
n∑

i=1

αi

(
zf ′

i(z)
)′

pf ′
i(z)

=
(
k

4
+
1
2

)( n∑

i=1

αipi(z)

)
−
(
k

4
− 1
2

)( n∑

i=1

αihi(z)

)
,

(2.27)

where hi, pi ∈ P[A,B], for all i = 1, 2, . . . , n.
Since P[A,B] is a convex set, see [15], it follows that,

(
zG′

p(z)
)′

pG′
p(z)

=
(
k

4
+
1
2

)
H1(z) −

(
k

4
− 1
2

)
H2(z), z ∈ U, (2.28)

where H1,H2 ∈ P[A,B] and therefore,

(
zG′

p(z)
)′

pG′
p(z)

∈ Pk[A,B] in U. (2.29)

This implies that Gp ∈ Vk[A,B].

Letting p = 1 in Theorem 2.9(i), we have the following corollary.

Corollary 2.10. Let αi > 0, fi ∈ Vk[A,B] for all i = 1, 2, . . . , n and −1 ≤ B < A ≤ 1, k ≥ 2. If∑n
i=1 αi = 1, then Gp ∈ Vk[A,B] inU.

Proof (ii). Taking A = 1 − 2α, B = −1, we have for all i = 1, 2, . . . , n

fi ∈ Vk[1 − 2α,−1] = Vk(α), where α =
1 −A

1 − B
. (2.30)

Now using part (i) of Theorem 2.9, we have

Gp ∈ Vk[1 − 2α,−1] = Vk(α) in U. (2.31)
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Now using Lemma 2.2, for α = (1 −A)/(1 − B), we have

Gp∈Vk(α) implies that Gp∈Rk

(
ρ
)
, in U, where ρ=ρ

(
α, p
)
is defined in (2.7). (2.32)

The sharpness of the result is clear from the function Q(z) defined by (2.14).

For p = 1, we have the following corollary.

Corollary 2.11. (i) Let αi > 0, fi ∈ Vk(α), i = 1, 2, . . . , n, with α = (1−A)/(1−B) and A = 1−2α,
B = −1. Then Gp ∈ Rk(ρ) inU, where ρ = ρ(α) and defined in (2.24).

Also for A = 1, B = −1, we have.
(ii) If fi ∈ Vk(0) for all i = 1, 2, . . . , n, then Gp ∈ Rk(1/2) inU.
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