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An approach is followed here to generate a new topology on a set X from an ideal I and a family
S of subsets of X. The so-obtained topology is related to other known topologies on X. The cases
treated here include the one when S = Tα is taken, then the case when S = RO(X, T) is considered.
The approach is open to apply to other choices of S. As application, some known results are
obtained as corollaries to those results appearing here. In the last part of this work, some ideal-
continuity concepts are studied, which originate from some previously known terms and results.

1. Introduction

The interest in the idealized version of many general topological properties has grown
drastically in the past 20 years. In this work, no particular paper will be referred to except
where it is needed and encountered. However, many symbols, definitions, and concepts used
here are as in [1].

2. Open Sets via a Family S and an Ideal I
Recall that an ideal on a set X is a family I of subsets of X, that is, I ⊆ P(X) (the power
set of X), such that I is closed under finite union, and if I ∈ I and J ⊆ I, then J ∈ I
(heredity property). An ideal topological space is a triple (X, T,I), where X is a set, T is a
topology on X, and I is an ideal on X. Let (X, T,I) be an ideal topological space. The family
B = {U − I : U ∈ T and I ∈ I}forms a base for a topology T∗(I) on X finer than T [1].

As a start, this concept will be put in a more general setting as follows.

Definition 2.1. Let (X, T,I) be an ideal topological space, and let S be a family of subsets of
X.
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(a) A set A ⊆ X is called an IS-open set if for each x ∈ A, there exist U ∈ S and I ∈ I
such that x ∈ U andU−I ⊆ A, or equivalentlyU−A ∈ I. The family of all IS-open
subsets is written ISO(X, T).

(b) The topology on X generated by the subbase ISO(X, T) is denoted by TISO.

Remark 2.2. (1) The family ISO(X, T) needs not form, in general, a topology on X.
(2) In the case where S ⊆ T , it is clear that TISO ⊆ T∗(I), and TISO = T∗(I) for the

case S = T .

Proposition 2.3. Let (X, T,I) be an ideal topological space and let S ⊆ P(X). Let S(I) = {S − I :
S ∈ S and I ∈ I}. Let T(S(I)) be the topology generated by the subbase S(I), then T(S(I)) =
TISO.

Proof. Note that S(I) ⊆ TISO, and therefore T(S(I)) ⊆ TISO. Now letA ∈ TISO, then for
each x ∈ A, there exists Sx ∈ S with x ∈ Sx and Ix ∈ I such that Sx − Ix ⊆ A. This means
that A = ∪{Sx − Ix : x ∈ A} where Sx − Ix ∈ S(I) for each x ∈ A. Thus, A ∈ T(S(I)) since
S(I) ⊆ T(S(I)).

Proposition 2.4. Let (X, T,I) be an ideal topological space. If T(S) denotes the topology on X
generated by the subbase S, then TISO = T(S(I)) = (T(S))∗(I).

Proof. To show that T(S(I)) = (T(S))∗(I), first note that S ⊆ T(S) and therefore S(I) =
{S − I : S ∈ S and I ∈ I} ⊆ (T(S))∗(I). This implies that T(S(I)) ⊆ (T(S))∗(I). Next,
consider the base B = {U − I : U ∈ T(S) and I ∈ I} for (T(S))∗(I). Let B ∈ B, say B = U − I
for some U ∈ T(S) and some I ∈ I. If x ∈ B, then x ∈ U, and so there exist S1, . . . , Sn ∈ S
such that x ∈ (

⋂n
k=1 Sk) − I ⊆ U − I, where (

⋂n
k=1 Sk) − I =

⋂n
k=1(Sk − I) ∈ T(S(I)), that is,

B = U − I ∈ T(S(I)), and hence B ⊆ T(S(I)). This shows that (T(S))∗(I) ⊆ T(S(I)).
If (X, T) is a topological space, we let int(A) (resp., cl(A)) denote the interior of A

(resp., the closure of A) in (X, T). A subset A of (X, T) is called semiopen if A ⊆ cl(int(A),
and A is called an α-set if A ⊆ int(cl(int(A)). The family of all α-sets forms a topology Tα on
X finer than T .

Example 2.5. Let (X, T,In) be an ideal topological space, where In is the ideal of all nowhere
dense subsets of (X, T). Let S = SO(X, T), the family of all semiopen subsets of (X, T,In).
In this case, it is noted that T(S) is the topology studied in [2] and is called the topology of
semiopen sets and denoted by TSO. So T(S(In)) = (T(S))∗(In) = (T(S))α, the topology of
all α-sets in the space (X, T(S)).

Next, the case where (X, T,I) is given and the family S = Tα is considered. Recall that
Tα is a topology onX finer than T . It is known that Tα = T∗(In). It is then clear that the family
{U − I : U ∈ T and I ∈ In} is a base for Tα. In fact, Tα = {U − I : U ∈ T and I ∈ In}, see [3].

Definition 2.6. Let (X, T,I) be an ideal topological space, A ⊆ X, and S = Tα. A is called an
I-α-open subset (IαO-set, for short) if for each x ∈ A, there exist Ux ∈ Tα and Ix ∈ I such
that x ∈ Ux − Ix ⊆ A, or equivalently Ux − A ∈ I. The family of all IαO-sets of (X, T,I) is
denoted by IαO(X, T).

The following is a consequence of [1, Theorem 3.1].

Proposition 2.7. Let (X, T,I) be an ideal topological space, then the family B = {U − I : U ∈ Tα

and I ∈ I} is a base for the topology (Tα)∗(I) on X.
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Proposition 2.8. If (X, T,I) is an ideal topological space, then IαO(X, T) = (Tα)∗(I). So T ⊆ Tα ⊆
(Tα)∗(I) = IαO(X, T).

Proof. It is enough to note that the family B = {U− I : U ∈ Tα and I ∈ I} is a base for (Tα)∗(I)
as well as for IαO(X, T).

Let (X, T,I) be an ideal topological space. When dealing with the topology
IαO(X, T) = (Tα)∗(I), it is found to have a base consisting of elements of the form B = V − I
with V ∈ Tα and I ∈ I. But as it is well known, the set V takes the formU− I1 for someU ∈ T
and I1 ∈ In. So B = V − I = (U − I1) − I = U − (I1 ∪ I) where U ∈ T . It is now clear that
in a more general setting, one needs to deal with a situation where two ideals I1 and I2 are
considered on (X,T). At this point, let I1 ∨I2 = {I1 ∪ I2 : I1 ∈ I1 and I2 ∈ I2}, where it is easy
to see that I1 ∨ I2 is itself an ideal on (X, T).

Proposition 2.9. Let I1 and I2 be two ideals on a space (X, T), then T∗(I1 ∨I2) = T∗(I1)∨ T∗(I2)
(see [1, Corollary 3.5]) (and recall that T ∨ T/ is the supremum of the two topologies T and T/ which
is the topology generated by the subbase T ∪ T/).

Proof. Since I1 ⊆ I1 ∨ I2 and I2 ⊆ I1 ∨ I2, then (by Theorem 2.3(b) of [1]) it follows that
T∗(I1) ⊆ T∗(I1 ∨I2) and T∗(I2) ⊆ T∗(I1 ∨I2). Therefore, T∗(I1)∨T∗(I2) ⊆ T∗(I1 ∨I2). Next,
if B is a base for T∗(I1 ∨ I2) and B ∈ B, then B = U − (I1 ∪ I2) for some U ∈ T , I1 ∈ I1, and
I2 ∈ I2. So B = U−(I1∪I2) = U∩(X−I1∪I2) = (U∩(X−I1)∩(U∩(X−I2)) = B1∩B2. Where B1

is a basic open set in T∗(I1) and B2 is a basic open set in T∗(I2). Thus B1∩B1 ∈ T∗(I1)∨T∗(I2)
and so B ⊆ T∗(I1) ∨ T∗(I2) which means that T∗(I1 ∨ I2) ⊆ T∗(I1) ∨ T∗(I2).

Corollary 2.10. (see [1, Corollary 3.4]) Let (X, T,I) be an ideal topological space, then (T∗(I))∗(I) =
T∗(I). In particular, (Tα)α = Tα.

3. IRO Sets

Let (X, T) be a topological space. A subsetA ⊆ X is called regular open if A = int(cl(A)). The
family of all regular open subsets of (X, T) is denoted by RO(X, T). It is a known fact that
RO(X, T) is a base for a topology Ts on X, finer than T , and is called the semiregularization
of (X, T).

In pursuing the approach used in the first section, it is now the time to consider the
case where S = RO(X, T).

Definition 3.1. Let (X, T,I) be an ideal topological space, and letA ⊆ X. The set A is called an
ideal regular-open set, or IRO set for short, if for each x ∈ A, there exist a regular open set
Rx ∈ RO(X, T) and Ix ∈ I such that x ∈ Rx − Ix ⊆ A, or equivalently Rx −A ∈ I. The family
of all IRO sets of (X, T,I) is denoted by IRO(X, T).

Proposition 3.2. Let (X, T,I) be an ideal topological space, then the family IRO(X, T) is a base for
a topologyM on X.

Proof. It is clear that X ∈ IRO(X, T). So it is enough to show that if B1, B2 ∈ IRO(X, T)
then B1 ∩ B2 ∈ IRO(X, T). To this end, let x ∈ B1 ∩ B1, then there exist R1, R2 ∈ RO(X, T)
such that x ∈ R1 ∩ R2, I1 = R1 − B1 ∈ I, and I2 = R2 − B2 ∈ I. Now, R1 ∩ R2 ∈ RO(X, T)
and R1 ∩ R2 − (B1 ∩ B2) = (R1 ∩ R2) ∩ (X − B1 ∩ B2) = (R1 ∩ R2) ∩ ((X − B1) ∪ (X − B2)) =
((R1 ∩ R2) ∩ (X − B1)) ∪ ((R1 ∩ R2) ∩ (X − B2)) ⊆ I1 ∩ I2 ∈ I. So B1 ∩ B2 ∈ IRO(X, T) as
claimed.
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Proposition 3.3. Let (X, T,I) be an ideal topological space. If Ts denotes the topology onX generated
by the base RO(X, T), thenM = (Ts)∗(I) (whereM is the topology constructed in Proposition 3.2).

Proof. We need to appeal to Proposition 2.4, with S = RO(X, T) and so T(S) = Ts, while
TISO = TIRO = M = (Ts)

∗(I).
In general, for an ideal topological space (X, T,I), the two topologies T and (Ts)∗ need

not be comparable.

Example 3.4. (a) Let (X, T,I) be an ideal topological space where X = � (the set of real
numbers), T is the left ray topology on �, and I is the ideal If of all finite subsets of X.
It is easy to see that Ts = {∅,�}. Then (Ts)

∗(I) is the cofinite topology on X [1, Example 2.5],
and clearly T and (Ts)∗ are incomparable.

(b) Consider the space (X, T,I) where X = �, T is the cofinite topology on �, and I is
the ideal Ic of all countable subsets of X. Again Ts = {∅,�} while (Ts)∗(I) is the cocountable
topology on X. Here, T ⊆ (Ts)

∗(I).

Definition 3.5 (see [4]). A subsetA of a space (X, T) is calledω-regular open if for each x ∈ A,
there exists a regular open set Rx ∈ RO(X, T) such that x ∈ Rx and Rx − A is countable. The
family of all ω-regular open subsets of (X, T) is denoted by ωRO(X, T).

The next result is an immediate consequence of definitions.

Proposition 3.6. Let (X, T) be a topological space, then a subset A ⊆ X is an ω-regular open subset
of (X, T) if and only if A is ideal regular open with I = Ic. Thus, ωRO(X, T) = (Ts)∗(Ic).

Corollary 3.7 (see [4, Theorem 2.1]). Let (X, T) be a topological space, then (X,ωRO(X, T)) is a
topological space.

A topological space (X, T) is called nearly Lindelöf (see [5]) if every cover of (X, T) by regular
open subsets has a countable subcover.

It is clear that if (X, T) is nearly Lindelöf, then (X, Ts) is Lindelöf. In fact, the family RO(X, T)
forms a base for (X, Ts), and in this case, every basic open cover of (X, Ts) will have a countable
subcover. On the other hand, by the well-known fact [6, Lemma 1.1] that the two spaces (X, T) and
(X, Ts) have the same regular open sets, it follows that (X, T) is nearly Lindelöf if and only if (X, Ts)
is nearly Lindelöf.

Corollary 3.8 (see [5, Proposition 1.3]). A space (X, T) is nearly Lindelöf if and only if (X, Ts) is
Lindelöf.

Recall that a subset A of a space (X, T) is called ω-open (see [7]) if for each x ∈ A, there exists
Ux ∈ T such that x ∈ Ux andUx −A is countable, that is,Ux − Ix ⊆ A for some Ix ∈ Ic. The family
of all ω-open subsets of a space (X, T) is denoted by Tω.

The definitions imply directly the following result.

Proposition 3.9. If (X, T) is a topological space, then Tω = T∗(Ic).

Corollary 3.10 (see [7, Proposition 2.5]). Let (X, T) be a topological space. The family Tω is a
topology on X with T ⊆ Tω.

Proposition 3.11 (see [7, Proposition 4.5]). A space (X, T) is Lindelöf if and only if the space
(X, Tω) = (X, T∗(Ic)) is Lindelöf.

The following result can now be stated.



International Journal of Mathematics and Mathematical Sciences 5

Proposition 3.12. The following statements are equivalent for a space (X, T):

(a) (X, T) is nearly Lindelöf,

(b) (X, Ts) is Lindelöf,

(c) (X, (Ts)
∗(Ic)) is Lindelöf.

Proof. (a)⇔(b) Follow by Corollary 3.8.
(b)⇔(c) By applying Proposition 3.11 to the space (X, Ts), it follows that (X, Ts) is

Lindelöf if and only if (X, (Ts)ω) = (X, (Ts)∗(Ic)) is Lindelöf.

Corollary 3.13 (see [4, Theorem 3.1]). The following statements are equivalent for any space
(X, T):

(a) (X, T) is nearly Lindelöf,

(b) Every ω-regular open cover of (X, T) admits a countable subcover.

Proof. Now, (X, T) is nearly Lindelöf if and only if (X, (Ts)∗(Ic)) is Lindelöf (Proposition 3.12).
On the other hand, (X, (Ts)∗(Ic)) = ωRO(X, T) (Proposition 3.6), and therefore (X,T) is
nearly Lindelöf if and only if (X,ωRO(X, T)) is Lindelöf if and only if every ω-regular open
cover of (X, T) has a countable subcover.

Corollary 3.14 (see [4, Proposition 3.1]). A space (X, T) is nearly Lindelöf if and only if for every
family of ω-regular closed subsets {Fα : α ∈ Δ} that satisfies the countable intersection property has
a nonempty intersection.

Proof. Again (X, T) is nearly Lindelöf if and only if (X,ωRO(X, T)) is Lindelöf (note that
ωRO(X, T) = (Ts)∗(Ic)). Now, the result follows by a well-known fact concerning Lindelöf
spaces and the fact that a subset F is ω-regular closed if it is the complement of an ω-regular
open set.

Let (X, T,I) be an ideal topological space. The ideal I is called completely codense [8]
if I∩PO(X, T) = {∅}, where PO(X, T) is the family of all preopen subsets of (X, T) andA ⊆ X
is called preopen if A ⊆ int(cl(A)).

Proposition 3.15. Let (X, T,I) be an ideal topological space, and assume that I is completely
codense, then (X, T,I) is nearly Lindelöf if and only if (X, T∗(I)) is nearly Lindelöf.

Proof. By a remark on [9, page 3], it follows that RO(X, T) = RO(X, T∗(I)). This implies that
Ts = (T∗(I))s. Then (X, T) is nearly Lindelöf, if and only if (X, Ts) is Lindelöf if and only if
(X, (T∗(I))s) is Lindelöf if and only if (X, T∗(I)) is nearly Lindelöf.

Let (X, T,I) be an ideal topological space. The topology T is compatible with the ideal
I, written T ∼ I, [1], if whenever a subset A ⊆ X satisfies for each x ∈ A, there exists Ux ∈ T
with x ∈ Ux and Ux ∩A ∈ I, then A ∈ I.

Proposition 3.16. Let (X, T,I) be an ideal topological space, then T ∼ I if and only if T∗(I) ∼ I.

Proof. Let T∗(I) ∼ I. Let A ⊆ X be satisfying for each x ∈ A, there exists Ux ∈ T with
x ∈ Ux and Ux ∩ A ∈ I. Our assumption and the fact that T ⊆ T∗(I) imply A ∈ I, and so
T ∼ I. Conversely, assume that T ∼ I, then T∗(I) = B = {U − I : U ∈ T and I ∈ I} [1,
Theorem 4.4]. LetA ⊆ X satisfy for each x ∈ A there exists Bx = Ux − Ix ∈ B with x ∈ Bx and
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Bx ∩A = (Ux − Ix) ∩A = I1 ∈ I. Then x ∈ Ux ∈ T with Ux ∩A ⊆ Ix ∪ I1 and so Ux ∩ A ∈ I.
But T ∼ I, so A ∈ I which means that T∗(I) ∼ I.

Proposition 3.17. A space (X, T,Ic) is hereditarily Lindelöf if and only if (X, T∗(Ic)) is hereditarily
Lindelöf.

Proof. It is known that (X, T) is hereditarily Lindelöf if and only if T ∼ Ic [1, Theorem 4.10] if
and only if T∗(Ic) ∼ Ic if and only if (X, T∗(Ic)) is hereditarily Lindelöf.

4. Continuity via Ideals

As a start, two known concepts of ideal continuity are stated.

Definition 4.1 (see [10]). Let (X, T,I) be an ideal topological space. Let f : (X, T,I) → (Y,M)
be a given function.

(a) The function f is called I-continuous if for every V ∈ M, there exist U ∈ T and
I ∈ I such that f−1(V ) = U − I.

(b) The function f is called pointwise I-continuous if for each x ∈ X and for each
V ∈ M with f(x) ∈ V , there exists U ∈ T such that x ∈ U and U − f−1(V ) ∈ I.

It is noted in [10] that every I-continuous function is pointwise I-continuous. An
example [10, page 327] is provided to show that the converse is not true in general.

Definition 4.2. Let f : (X, T,I) → (Y,M) be given. The function f is called I∗-continuous if
f : (X, T∗(I)) → (Y,M) is continuous.

Proposition 4.3. A function f : (X, T,I) → (Y,M) is I∗-continuous if and only if f is pointwise
I-continuous.

Proof. Let f : (X, T,I) → (Y,M) be I∗-continuous, that is, f : (X, T∗(I)) → (Y,M) is
continuous. Let x ∈ X, V ∈ M, and f(x) ∈ V , then x ∈ f−1(V ) ∈ T∗(I). So there exists
a basic open set U − I, for some U ∈ T and I ∈ I, such that x ∈ U − I ⊆ f−1(V ).
Equivalently, x ∈ U and U-f−1(V ) ∈ I. Thus, f is pointwise I-continuous. Conversely, let
f be pointwise I-continuous. If V ∈ M, then for each x ∈ f−1(V ), there exists Ux ∈ T such
that Ux − f−1(V ) ∈ I, or equivalently, x ∈ Ux − Ix ⊆ f−1(V ) for some Ix ∈ I. It follows that
f−1(V ) = ∪{Ux − Ix : x ∈ f−1(V )} and so f−1(V ) ∈ T∗(I). Thus, f is I∗-continuous.

The statement of the lemma on [10, page 326] can be formulated as in the next result.

Proposition 4.4. Let f : (X, T,I) → (Y,M) be a given function. Assume that I is codense (this
means that T ∩ I = {∅}) and that (Y,M) is regular. If f is I∗-continuous, then f is continuous and
hence I-continuous.

Proposition 4.5. Let f : (X, T,I) → (Y,M) be a given function. Assume that T ∼ I, then f is
I-continuous if and only if f is I∗-continuous.

Proof. Let f be I-continuous, then as stated at the beginning of this section, f is
I∗-continuous. Conversely, let f be I∗-continuous, then by [1, Theorem 4.4], T∗(I) = {U − I :
U ∈ T and I ∈ I}. So if V ∈ M, then f−1(V ) ∈ T∗(I) and so f−1(V ) = U − I for some U ∈ T
and I ∈ I. Thus, f is I-continuous.
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Definition 4.6 (see [4]). A function f : (X, T) → (Y,M) is δω-continuous if for each x ∈ X
and each regular open set V ∈ RO(Y,M) with f(x) ∈ V , there exists an ω-regular open setU
of (X, T) such that x ∈ U and f(U) ⊆ V .

Recall that A is an ω-regular open subset of (X, T) if A ∈ ωRO(X, T) = (Ts)
∗(Ic). So

the next result is now clear.

Proposition 4.7. A function f : (X, T) → (Y,M) is δω-continuous if and only if f : (X, Ts,Ic) →
(Y,Ms) is I∗-continuous (i.e., f : (X, (Ts)

∗(Ic)) → (Y,Ms) is continuous).

Proof. Let f : (X, T) → (Y,M) be δω-continuous. If V ∈ RO(Y,M), then by definition,
f−1(V ) is a union of ω-regular open subsets of (X, T), that is, f−1(V ) is a union of elements
of (Ts)∗(Ic), and therefore f−1(V ) ∈ (Ts)∗(Ic). But RO(Y,M) is a base for Ms, and therefore
f : (X, (Ts)

∗(Ic)) → (Y,Ms) is continuous. For the converse, let f : (X, Ts,Ic) → (Y,Ms)
be I∗-continuous. Let x ∈ X, V ∈ RO(Y,M), and f(x) ∈ V , then x ∈ f−1(V ) ∈ (Ts)∗(Ic)
and therefore U = f−1(V ) is an ω-regular open set containing x and f(U) ⊆ V . Thus, f is
δω-continuous.

Corollary 4.8 (see [4, Theorem 4.1]). Let f : (X, T) → (Y,M) be a δω-continuous surjection.
Assume that (X, T) is nearly Lindelöf, then (Y,M) is nearly Lindelöf.

Proof. Assume that f : (X, T) → (Y,M) is a δω-continuous surjection. This means, by
Proposition 4.7, that f : (X, Ts,Ic) → (Y,Ms) is an I∗-continuous surjection which means
that f : (X, (Ts)

∗(Ic)) → (Y,Ms) is a continuous surjection. Assume now that (X, T) is nearly
Lindelöf, then, by Proposition 3.12, (X, (Ts)∗(Ic)) is Lindelöf. So (Y,Ms) is Lindelöf, being the
continuous image of a Lindelöf space. Finally, (Y,M) is nearly Lindelöf by Corollary 3.8.

Definition 4.9 (see [4]). A function f : (X, T) → (Y,M) is called ωR-continuous if f−1(V ) is
ω-regular open in (X, T) for each open set V in (Y,M).

The following result is an immediate consequence of the definitions involved.

Proposition 4.10. A function f : (X, T) → (Y,M) is ωR-continuous if and only if the function
f : (X, Ts,Ic) → (Y,M)is I∗-continuous (i.e., f : (X, (Ts)

∗(Ic)) → (Y,M) is continuous).

Corollary 4.11 (see [4, Theorem 4.2]). Let f : (X, T) → (Y,M) be an ωR-continuous surjection.
If (X, T) is nearly Lindelöf, then (Y,M) is Lindelöf.

Proof. Let f : (X, T) → (Y,M) be an ωR-continuous surjection, then f : (X, (Ts)
∗(Ic)) →

(Y,M) is continuous. If (X, T) is assumed to be nearly Lindelöf, then (X, (Ts)
∗(Ic)) is Lindelöf,

by Proposition 3.12. Therefore (Y,M), being the continuous image of a Lindelöf space, is
Lindelöf.

Definition 4.12 (see [4]). A function f : (X, T) → (Y,M) is called completely continuous if
f−1(V ) is a regular open set in (X, T) for each open set V in (Y,M).

Proposition 4.13. If a function f : (X, T) → (Y,M) is completely continuous, then the function
f : (X, Ts) → (Y,M) is continuous.

Proof. The easy proof is omitted.

Corollary 4.14. Let f : (X, T) → (Y,M) be a completely continuous surjection. If (X, T) is nearly
Lindelöf, then (Y,M) is Lindelöf.

Proof. The proof is a consequence of Propositions 3.12 and 4.13.
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The following example shows that the converse of Proposition 4.13 is not true in
general.

Example 4.15. Let X be a set and A a proper nonempty subset of X. Consider the topology
T = {U : U ⊆ A} ∪ {X} on X. Let Y = {0, 1} with the topology M = {∅, Y, {0}}. Let f :
(X, T) → (Y,M) be the function defined by f(x) = 1 if x ∈ X − A and f(x) = 0 if x ∈ A.
Then V = {0} ∈ M such that f−1(V ) = A ∈ Ts − RO(X, T), and so f is continuous but not
completely continuous.
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spaces,” International Journal of Mathematics and Mathematical Sciences, vol. 19, no. 4, pp. 737–746, 1996.

[6] K. Dlaska, N. Ergun, and M. Ganster, “Countably S-closed spaces,” Mathematica Slovaca, vol. 44, no.
3, pp. 337–348, 1994.

[7] K. Al-Zoubi and B. Al-Nashef, “The topology of ω-open subsets,” Al-Manarah, vol. 9, no. 2, pp. 169–
179, 2003.

[8] V. Renuka Devi, D. Sivaraj, and T. Tamizh Chelvam, “Codense and completely codense ideals,” Acta
Mathematica Hungarica, vol. 108, no. 3, pp. 197–205, 2005.

[9] M. K. Gupta and T. Noiri, “C-compactness modulo an ideal,” International Journal of Mathematics and
Mathematical Sciences, vol. 2006, Article ID 78135, 12 pages, 2006.

[10] J. Kaniewski and Z. Piotrowski, “Concerning continuity apart from a meager set,” Proceedings of the
American Mathematical Society, vol. 98, no. 2, pp. 324–328, 1986.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


