
Hindawi Publishing Corporation
International Journal of Mathematics and Mathematical Sciences
Volume 2011, Article ID 812680, 8 pages
doi:10.1155/2011/812680

Research Article
Spatial Numerical Range of Operators on
Weighted Hardy Spaces

Abdolaziz Abdollahi and Mohammad Taghi Heydari

Department of Mathematics, College of Sciences, Shiraz University, Shiraz 71454, Iran

Correspondence should be addressed to Abdolaziz Abdollahi, abdollahi@shirazu.ac.ir

Received 2 November 2010; Revised 29 December 2010; Accepted 24 January 2011

Academic Editor: Alexander Rosa

Copyright q 2011 A. Abdollahi and M. T. Heydari. This is an open access article distributed under
the Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

We consider the spatial numerical range of operators on weighted Hardy spaces and give
conditions for closedness of numerical range of compact operators. We also prove that the spatial
numerical range of finite rank operators on weighted Hardy spaces is star shaped; though, in
general, it does not need to be convex.

1. Introduction

For a bounded linear operator T on a Hilbert spaceH, the numerical rangeW(T) is the image
of the unit sphere of H under the quadratic form x �→ 〈Tx, x〉 associated with the operator.
More precisely,

W(T) = {〈Tx, x〉 : x ∈ H, ‖x‖ = 1}. (1.1)

Let X be a complex normed space with dual apace X∗. The Banach algebra of all bounded
linear operators is denoted by L(X). For an operator T ∈ L(X), the spatial numerical range
V (T) of T is defined by

V (T) = {〈Tx, x∗〉 : x ∈ X, x∗ ∈ X∗, ‖x‖ = ‖x∗‖ = 〈x, x∗〉 = 1}. (1.2)

When X is a Hilbert space, ‖x‖ = ‖x∗‖ = 〈x, x∗〉 if and only if x∗ is the function given
by x∗(y) = 〈y, x〉(y ∈ X). Thus, V (T) in this case coincides with classical W(T). The algebra
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numerical range is defined by

V (L(X), T) =
{
F(T) : F ∈ L(X)∗, ‖F‖ = 1 = F(Id)

}
. (1.3)

The notion of numerical range or the classical field of values was first introduced by
O. Toeplitz in 1918 for matrices. This concept was independently extended by G. Lumer
and F. Bauer in the sixties to a bounded linear operator on an arbitrary Banach space. In
1975, Lightbourne and Martin [1] extended this concept by employing a class of seminorms
generated by a family of supplementary projections.

In [2], Gaur and Husain have studied the spatial numerical range of elements of
Banach algebras without identity. Specifically, the relationship between spatial numerical
ranges, numerical ranges, and spectra has been investigated. Among other results, it has
been shown that the closure of the spatial numerical range of an element of a Banach algebra
without identity but with regular norm is exactly its numerical range as an element of the
unitized algebra.

A complete survey on numerical ranges of operators can be found in the books by
Bonsall and Duncan [3, 4]; we refer the reader to these books for general information and
background.

In Section 2, after giving some background material, we give useful formula for the
spatial numerical range of operators on weighted Hardy space. In Section 3, we show that
the spatial numerical range of an operator needs not to be convex, and we also prove that the
spatial numerical range of finite rank operators is star shaped. Finally, in Section 4, we give
conditions for closedness of numerical range of compact operators.

2. Preliminaries

Let X be a complex normed space with dual space X∗. The mapping [·, ·] : X × X → C is
called a semi-inner product on X if the following properties are satisfied:

(i) [x + y, z] = [x, z] + [y, z] for all x, y, z ∈ X,

(ii) [λx, y] = λ[x, y] for all x, y ∈ X and λ ∈ C,

(iii) [x, x] ≥ 0 for all x ∈ X,

(iv) |[x, y]|2 ≤ [x, x][y, y] for all x, y ∈ X and λ ∈ C.

In [5], Lumer defined the concept of a semi-inner product onX and showed that every
normed linear space (X, ‖ · ‖) has at least one semi-inner product [·, ·], such that

[x, x] = ‖x‖2 (x ∈ X). (2.1)

In terms of a semi-inner product satisfying (2.1), the definition of usual numerical
range for Hilbert space operator at once generalizes to give the definition of the numerical
range W(T) for a linear operator on X,

W(T) = {[Tx, x] : ‖x‖ = 1}. (2.2)

In most cases, there are infinitely many semi-inner products on X satisfying (2.1); however,
Lumer proved that coW(T), the closed convex hull of W(T), is independent of the choice of
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semi-inner product satisfying (2.1). In fact, Lumer showed that coW(T) depends only on the
norms of the operators.

The unit ball of X is called smooth if for all x, with ‖x‖ = 1, there is a unique x∗ ∈ X∗,
such that ‖x∗‖ = 1 and 〈x, x∗〉 = 1. In this case, there is a unique semi-inner products on X
satisfying (2.1), and then V (T) coincides with numerical range W(T) corresponding to the
unique semi-inner product satisfying (2.1).

A principal result in spatial numerical range is a Theorem ofWilliams that gives σ(T) ⊆
V (T), where σ(T) is the spectrum of T . Also we have (see [3])

(i) W(T) ⊆ V (T),

(ii) coW(T) = coV (T) = V (L(X), T),

(iii) sup{|λ| : λ ∈ W(T)} = sup{|λ| : λ ∈ V (T)}.
It is of course trivial that every eigenvalue of T is actually in V (T).

Let 1 < p < ∞ and {β(n)}n be a sequence of positive numbers with β(0) = 1. The
weighted Hardy space, which is denoted byHp(β), is the set of all formal power series f(z) =
∑∞

n=0 f̂(n)z
n with

∥∥f
∥∥p =

∥∥f
∥∥p

Hp(β) =
∞∑

n=0

∣∣∣f̂(n)
∣∣∣
p
β(n)p < ∞. (2.3)

Let μ(K) =
∑

n∈K β(n)p, for K ⊆ N ∪ {0}. Then μ is a σ-finite measure and Hp(β) = Lp(μ). So,
the space Hp(β) is reflexive Banach space with the norm ‖ · ‖Hp(β), and the dual of Hp(β) is
Hq(βp/q), where 1/p + 1/q = 1 and βp/q = {β(n)p/q} [6].

In the case p = 2, the weighted Hardy spaces with β(n) = 1, β(n) = (n + 1)(−1/2),
and β(n) = (n + 1)1/2 are classical Hardy space, Bergman space, and the Dirichlet space,
respectively. The space H2(β) becomes a Hilbert space with inner product

〈
f, g

〉
=

∞∑

n=0

anbnβ(n)2, (2.4)

where f(z) =
∑

anz
n and g(z) =

∑
bnz

n are the elements of H2(β) [7].
The notation 〈f, g〉 is to stand for g(f), where f ∈ Hp(β) and g ∈ (Hp(β))∗. Note that

〈
f, g

〉
=

∞∑

n=0

f̂(n)ĝ(n)β(n)p. (2.5)

For f ∈ Hp(β) and g ∈ Hq(βp/q), with f(z) =
∑

anz
n and g(z) =

∑
bnz

n, we define f∗

and ∗g by f∗(z) =
∑ |an|p−1 sgn(an)zn and ∗g(z) =

∑ |bn|q−1 sgn(bn)zn, respectively, where for
a nonzero complex number w, sgn(w) = (w/|w|) and sgn(0) = 0. Clearly,

∥∥f∗∥∥q

q =
∥∥f∗∥∥q

Hq(βp/q) =
∞∑

n=0

∣∣∣f̂(n)
∣∣∣
p
β(n)p =

∥∥f
∥∥p

p < ∞,

∥∥∗g
∥∥p

p =
∞∑

n=0

∣∣ĝ(n)
∣∣qβ(n)p =

∥∥g
∥∥q

q < ∞.

(2.6)
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So, f∗ ∈ Hq(βp/q) and ∗g ∈ Hp(β). Obviously, one can see that ∗(f∗) = f for all f ∈ Hp(β)
and (∗g)∗ = g for all g in (Hp(β))∗. By a simple computation, we also have the following
consequences:

(a) if α ≥ 0 and f ∈ Hp(β), then (αf)∗ = αp−1f∗,

(b) if f ∈ Hp(β), 〈f, f∗〉 = ‖f‖pp.

We define a semi-inner product onHp(β) by

[
g, f

]
:=

〈
g, Ff

〉
, (2.7)

where f, g ∈ Hp(β) and Ff := ‖f‖2−pf∗. Obviously, we have [f, f] = ‖f‖2p.

Lemma 2.1. If T is a bounded linear operator onHp(β), then

V (T) = W(T) =
{〈
Tf, f∗〉 : f ∈ Hp(β

)
,
∥∥f

∥∥ = 1
}

=
{〈

T
(∗g

)
, g

〉
: g ∈ Hq

(
βp/q

)
,
∥∥g

∥∥ = 1
}
,

(2.8)

whereW(T) is the numerical range of T with respect to the semi-inner product defined by (2.7).

Proof. Suppose that f ∈ Hp(β), g ∈ (Hp(β))∗, ‖f‖ = ‖g‖ = 1, and 〈f, g〉 = 1. Then

1 =
〈
f, g

〉 ≤ ∥∥f
∥∥∥∥g

∥∥ = 1. (2.9)

So, equality occurs in Holder inequality, and hence there are complex numbers α and η

(independent of n), such that |f̂(n)|pβ(n)p = α|ĝ(n)|qβ(n)p and arg(f̂(n)ĝ(n)) = η (see [8]).
Hence, |f̂(n)|p = α|ĝ(n)|q. But

1 =
∥∥f

∥∥p

p =
∑∣∣∣f̂(n)

∣∣∣
p
β(n)p = α

∑∣∣ĝ(n)
∣∣qβ(n)p = α, (2.10)

and hence |f̂(n)|p = |ĝ(n)|q. On the other hand,

1 =
∑

f̂(n)ĝ(n)β(n)p

=
∑∣∣∣f̂(n)

∣∣∣
∣∣ĝ(n)

∣∣ei arg(f̂(n)ĝ(n))β(n)p

= eiη
∑∣∣∣f̂(n)

∣∣∣
∣∣∣f̂(n)

∣∣∣
p/q

β(n)p = eiη.

(2.11)

Therefore, e i arg (f̂ (n) ĝ (n)) = 1, or equivalently e i arg (f̂ (n)) = e i arg (ĝ(n)). Hence, ĝ (n) =
|f̂(n)|p/qei arg(f̂(n)), or g = f∗. Then, the unit ball of Hp(β) is smooth, and so there is one and
only one semi-inner product on Hp(β) which satisfy (2.1). Then, V (T) = W(T) [3]. The last
equality can be proved in a similar way as the first part of this proof, and so we omit it.
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3. Shape of the Spatial Numerical Range

The usual numerical range of a bounded linear operator on a Hilbert space is convex, and for
every bounded linear operator T on a normed space X, we know that V (L(X), T) is convex.
Although V (T) needs not to be convex (see [3]), B. E. Cain and H. Schneider proved that it
is connected. Also in [9], Kuliyev proved that the spatial numerical range of a given operator
on a separable Banach space is pathwise connected.

Recall that V (T) is star shaped with respect to zero if tz ∈ V (T) for 0 ≤ t ≤ 1 and
z ∈ V (T).

In Theorem 3.1, we give a necessary and sufficient condition for the numerical range
of a bounded linear operator to be star shaped. In Example 3.2, we show that the spatial
numerical range of linear operator T on Hp(β) needs not to be convex, even if T is compact
(see also [3]). We also determine the shape of V (T), when T is a finite rank operator. Finally,
in Theorem 3.3, we prove that there is an operator T on Hp(β) that may not be star shaped.

Theorem 3.1. Let T be a bounded linear operator onHp(β). Then

(a) V (T) is star shaped with respect to zero if and only if

V (T) =
{〈

Tf, f∗〉 : f ∈ Hp(β
)
,
∥∥f

∥∥
p ≤ 1

}
, (3.1)

(b) if T is finite rank on Hp(β) and 0 ∈ V (T), then V (T) is star shaped with respect to zero.

Proof. The proof is trivial, as 〈T(kf), (kf)∗〉 = kp〈Tf, f∗〉, for each nonnegative real number
k and f ∈ Hp(β).

Example 3.2. Let β(1) = 1 and T be the linear operator on Hp(β) given by

(
T̂f

)
(n) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

if̂(0) + f̂(1) n = 0,

−
(
f̂(0) + if̂(1)

)
n = 1,

0 n > 1.

(3.2)

Therefore,

V (T) =
{〈
Tf, f∗〉 :

∥∥f
∥∥ = 1, f ∈ Hp(β

)}

=
{(

T̂f
)
(0)

∣∣∣f̂(0)
∣∣∣
p/q

e−iθ0 +
(
T̂f

)
(1)

∣∣∣f̂(1)
∣∣∣
p/q

e−iθ1 :
∥∥f

∥∥ = 1, f ∈ Hp(β
)
}
,

(3.3)

where θ0 = arg(f̂(0)) and θ1 = arg(f̂(1)). By writing |f̂(0)| = r, |f̂(1)| = s, θ = θ1 − θ0, we have

V (T) =
{
rs
(
rp−2 − sp−2

)
cos θ + i

[
rp − sp + rs

(
rp+2 + sp+2

)
sin θ

]
: rp + sp ≤ 1

}
. (3.4)
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Figure 1: V (T) for p = 3.

Now, let

α = sup{Re z : z ∈ V (T)} = sup
{
rs
(
rp−2 − sp−2

)
: rp + sp ≤ 1

}
,

β = sup{V (T) ∩ R}

= sup
{
cos θ · rs

(
rp−2 − sp−2

)
: rp + sp ≤ 1, rp − sp + rs

(
rp+2 + sp+2

)
sin θ = 0

}
.

(3.5)

We have α > β unless p = 2. If

z = rs
(
rp−2 − sp−2

)
cos θ + i

[
rp − sp + rs

(
rp+2 + sp+2

)
sin θ

]
∈ V (T), (3.6)

then the conjugate of z is

z = sr
(
sp−2 − rp−2

)
cos(π + θ) + i

[
sp − rp + sr

(
sp+2 + rp+2

)
sin(π + θ)

]
∈ V (T), (3.7)

and so V (T)∗ = V (T). Thus, α was attained at points above and below the real axis, and we
have concluded that V (T) is not convex unless p = 2. In Figure 1, we draw the shape of V (T),
for p = 3.

Theorem 3.3. There is an operator T on Hp(β) with 0 ∈ V (T), such that V (T) is not star shaped.

Proof. We proof this theorem by contradiction. Suppose that the spatial numerical range of
each linear operator that allowed origin is star shaped. If a, z ∈ V (T), then 0 ∈ V (T − a), and
so t(z − a) ∈ V (T − a) for 0 ≤ t ≤ 1. Hence, tz + (1 − t)a ∈ V (T), and it follows that V (T) is
convex which is a contradiction to the previous example.
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4. Compact Operators

Since H2(β) is a Hilbert space, the numerical range of a compact operator on H2(β) is closed
if and only if it contains the origin. Also the numerical range of a compact operator onHp(β)
contains all nonzero extreme points of its closure, and since Hp(β) is infinite dimensional,
there is a compact operator T on Hp(β), such that V (T) is not closed (see [10] and page 103-
109 of [11]). So, in general, the spatial numerical range of a compact operator needs not to be
closed. In the following theorem, we give a closedness condition of such operators.

Theorem 4.1. Let T be a compact operator onHp(β). If V (T) is star shaped with respect to zero, then
it is closed.

Proof. Since V (T) is star shaped with respect to zero, then by Theorem 3.1,

V (T) =
{〈

Tf, f∗〉 : f ∈ Hp(β
)
,
∥
∥f

∥
∥
p ≤ 1

}
. (4.1)

For given α ∈ V (T), there is a sequence hn with ‖hn‖p = 1 and 〈Thn, h
∗
n〉 → α. By reflex-

ivity ofHp(β) and Alaogul’s Theorem, there is a sequence {nk}∞k=1, such that hnk → h in weak
topology and h∗

nk
→ g in weak∗ topology for some h ∈ ball(Hp(β)) and g ∈ ball((Hp(β))∗).

Now, let m ∈ N. Define the bounded linear functionals x, x∗ by

x
(
f∗) := f̂∗(m), x∗(f

)
:= f̂(m), (4.2)

respectively, on (Hp(β))∗ and Hp(β). Hence,

〈hnk , x
∗〉 −→ 〈h, x∗〉, 〈

h∗
nk
, x

〉 −→ 〈
g, x

〉
, (4.3)

as k → ∞. Then,

ĥnk(m) −→ ĥ(m), ĥ∗
nk
(m) −→ ĝ(m), (4.4)

as k → ∞. But by definition ĥ∗
nk
(m) = | ĥ nk(m)| p/q e i arg (ĥ n k

(m)). Therefore, ĝ (m) =

|ĥ(m)|p/qei arg(ĥ(m)) or g = h∗.
On the other hand,

∣∣〈Thnk , h
∗
nk

〉 − 〈Th, h∗〉∣∣ ≤ ∣∣〈Thnk , h
∗
nk

〉 − 〈
Th, h∗

nk

〉∣∣ +
∣∣〈Th, h∗

nk

〉 − 〈Th, h∗〉∣∣

=
∣∣〈T(hnk − h), h∗

nk

〉∣∣ +
∣∣〈Th,

(
h∗
nk

− h∗)〉∣∣

≤ ‖T(hnk − h)‖∥∥h∗
nk

∥∥ +
∣∣〈Th,

(
h∗
nk

− h∗)〉∣∣.

(4.5)

Since T is completely continuous and hnk → h weakly, then ‖T(hnk − h)‖ → 0, and hence
〈Thnk , h

∗
nk
〉 → 〈Th, h∗〉. So, α = 〈Th, h∗〉, and the proof is complete by using (4.1).

Since in infinite dimensional spaces 0 is allowed in spectrum of any compact operator,
then we have the following corollary.

Corollary 4.2. Let T be a compact operator onHp(β), such that V (T) is convex. Then V (T) is closed
if and only if 0 ∈ V (T).
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