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We introduce new subclasses Sσ,s
k
(λ, δ, φ) and Kσ,s

k
(λ, δ, φ) of analytic functions with respect to k-

symmetric points defined by differential operator. Some interesting properties for these classes are
obtained.

1. Introduction

Let A denote the class of functions of the form

f(z) = z +
∞∑

n=2

anz
n, (1.1)

which are analytic in the unit diskU = {z ∈ � : |z| < 1}.
Also let ℘ be the class of analytic functions p with p(0) = 1, which are convex and

univalent inU and satisfy the following inequality:

�
{
p(z)
}
> 0, z ∈ U. (1.2)

A function f ∈ A is said to be starlike with respect to symmetrical points inU if it satisfies

�

{
zf ′(z)

f(z) − f(−z)
}
> 0, z ∈ U. (1.3)



2 International Journal of Mathematics and Mathematical Sciences

This class was introduced and studied by Sakaguchi in 1959 [1]. Some related classes are
studied by Shanmugam et al. [2].

In 1979, Chand and Singh [3] defined the class of starlike functions with respect to
k-symmetric points of order α (0 ≤ α < 1). Related classes are also studied by Das and Singh
[4].

Recall that the function F is subordinate to G if there exists a function ω, analytic inU,
with ω(0) = 0 and |ω(z)| < 1, such that F(z) = G(w(z)), z ∈ U. We denote this subordination
by F(z) ≺ G(z). If G(z) is univalent inU, then the subordination is equivalent to F(0) = G(0)
and F(U) ⊂ G(U).

A function f ∈ A is in the class Sk(φ) satisfying

zf ′(z)
fk(z)

≺ φ(z), z ∈ U, (1.4)

where φ ∈ ℘, k is a fixed positive integer, and fk(z) is given by the following:

fk(z) =
1
k

k−1∑

ν=0

ε−νf(ενz)

= z +
∞∑

ι=2

ak(ι−1)+1zk(ι−1)+1,
(
ε = exp

(
2πi
k

)
, z ∈ U

)
.

(1.5)

The classes Sk(φ) of starlike functions with respect to k-symmetric points and Kk(φ) of
convex functions with respect to k-symmetric points were considered recently by Wang et al.
[5]. Moreover, the special case

φ(z) =
1 + βz
1 − αβz , 0 ≤ α ≤ 1, 0 < β ≤ 1 (1.6)

imposes the class Sk(α, β), which was studied by Gao and Zhou [6], and the class S1(φ) =
S∗(φ) was studied by Ma and Minda [7].

Let two functions given by f(z) = z +
∑∞

n=2 anz
n and g(z) = z +

∑∞
n=2 bnz

n be analytic
in U. Then the Hadamard product (or convolution) f ∗ g of the two functions f , g is defined
by

f(z) ∗ g(z) = z +
∞∑

n=2

anbnz
n, (1.7)

and for several function f1(z), . . . , fm(z) ∈ A,

f1(z) ∗ · · · ∗ fm(z) = z +
∞∑

n=2
(a1n · · ·amn)zn, z ∈ U. (1.8)

The theory of differential operators plays important roles in geometric function theory.
Perhaps, the earliest study appeared in the year 1900, and since then, many mathematicians
have worked extensively in this direction. For recent work see, for example, [8–12].
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We now define differential operator as follows:

Dσ,s
λ,δf(z) = z +

∞∑

n=2

ns(C(δ, n)[1 + λ(n − 1)])σanzn, (1.9)

where λ ≥ 0, C(δ, n) = (δ + 1)n−1/(n − 1)!, for δ, σ, s ∈ N0 = {0, 1, 2, . . .}, and (x)n is the
Pochhammer symbol defined by

(x)n =
Γ(x + n)
Γ(x)

=

⎧
⎨

⎩

1, n = 0,

x(x + 1) · · · (x + n − 1), n = {1, 2, 3, . . .}.
(1.10)

HereDσ,s
λ,δ
f(z) can also be written in terms of convolution as

ψ(z) =

[
λz

(1 − z)2
− λz

1 − z +
z

1 − z

]
∗ z

(1 − z)δ+1
, z ∈ U,

Dσ,s
λ,δ
f(z) = ψ(z) ∗ · · · ∗ ψ(z)

︸ ︷︷ ︸
σ-times

∗
∞∑

n=1

nszn ∗ f(z) = Dδ ∗ · · · ∗Dδ︸ ︷︷ ︸
σ-times

∗Dσ,s
λ
f(z),

(1.11)

where Dδ = z +
∑∞

n=2 C(δ, n)z
n andDσ,s

λ
= z +

∑∞
n=2 n

s[1 + λ(n − 1)]σzn.
Note that D0,1

λ,δ
f(z) = D1,0

1,0f(z) = z f ′(z) and D0,0
λ,δ
f(z) = f(z). When σ = 0, we get the

Sǔlǔgean differential operator [9], when λ = s = 0, σ = 1 we obtain the Ruscheweyh operator
[8], when s = 0, σ = 1, we obtain the Al-Shaqsi and Darus [11], and when δ = s = 0, we
obtain the Al-Oboudi differential operator [10].

In this paper, we introduce new subclasses of analytic functions with respect to k-
symmetric points defined by differential operator. Some interesting properties of Sσ,s

k
(λ, δ, φ)

and Kσ,s
k
(λ, δ, φ) are obtained.

Applying the operator Dσ,s
λ,δf(z)

Dσ,s
λ,δfk(z) =

1
k

k−1∑

ν=0

ε−νDσ,s
λ,δf(ε

νz), εk = 1, (1.12)

where k is a fixed positive integer, we now define classes of analytic functions containing the
differential operator.

Definition 1.1. Let Sσ,sk (λ, δ, φ) denote the class of functions in A satisfying the condition

z
(
Dσ,s
λ,δ
f(z)
)′

Dσ,s
λ,δfk(z)

≺ φ(z), (1.13)

where φ ∈ ℘.
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Definition 1.2. Let Kσ,s
k
(λ, δ, φ) denote the class of functions in A satisfying the condition

(
z
(
Dσ,s
λ,δf(z)

)′)′

(
Dσ,s
λ,δ
fk(z)

)′ ≺ φ(z), (1.14)

where φ ∈ ℘.

In order to prove our results, we need the following lemmas.

Lemma 1.3 (see [13]). Let c > −1, and let Ic : A → A be the integral operator defined by F = Ic(f),
where

F(z) =
c + 1
zc

∫z

0
tc−1f(t)dt. (1.15)

Let φ be a convex function, with φ(0) = 1 and �{φ(z) + c} > 0 in U. If f ∈ A and zf ′(z)/f(z) ≺
φ(z), then zF ′(z)/F(z) ≺ q(z) ≺ φ(z), where q is univalent and satisfies the differential equation

q(z) +
zq′(z)
q(z) + c

= φ(z). (1.16)

Lemma 1.4 (see [14]). Let κ, υ be complex numbers. Let φ be convex univalent in U with φ(0) = 1
and �[κφ + υ] > 0, z ∈ U, and let q(z) ∈ A with q(0) = 1 and q(z) ≺ φ(z). If p(z) = 1 + p1z +
p2z2 + · · · ∈ ℘ with p(0) = 1, then

p(z) +
zp′(z)

κq(z) + υ
≺ φ(z) =⇒ p(z) ≺ φ(z). (1.17)

Lemma 1.5 (see [15]). Let f and g, respectively, be in the classes convex function and starlike
function. Then, for every functionH ∈ A, one has

(
f(z) ∗ g(z)H(z)

)

f(z) ∗ g(z) ∈ co(H(U)), z ∈ U, (1.18)

where co(H(U)) denotes the closed convex hull ofH(U).

2. Main Results

Theorem 2.1. Let f ∈ Sσ,sk (λ, δ, φ). Then fk defined by (1.5) is in Sσ,s1 (λ, δ, φ) = Sσ,s(λ, δ, φ).

Proof. Let f ∈ Sσ,s
k
(λ, δ, φ), then by Definition 1.1 we have

z
(
Dσ,s
λ,δ
f(z)
)′

Dσ,s
λ,δ
fk(z)

≺ φ(z). (2.1)
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Substituting z by ενz, where εk = 1 (ν = 0, 1, . . . , k − 1) in (2.1), respectively, we have

ενz
(
Dσ,s
λ,δ
f(ενz)

)′

Dσ,s
λ,δfk(ε

νz)
≺ φ(z). (2.2)

According to the definition of fk and εk = 1, we know fk(ενz) = ενfk(z) for any ν = 0, 1, . . . ,
k − 1, and summing up, we can get

1
k

k−1∑

ν=0

ε−ν

⎡
⎢⎣
z
(
Dσ,s
λ,δ
f( ενz )

)′

Dσ,s
λ,δfk(z)

⎤
⎥⎦ =

z
[
(1/k)

∑k−1
ν=0 ε

−νDσ,s
λ,δ
f(ενz)

]′

Dσ,s
λ,δfk(z)

=
z
(
Dσ,s
λ,δ
fk(z)

)′

Dσ,s
λ,δfk(z)

. (2.3)

Hence there exist ζν inU such that

z
(
Dσ,s
λ,δ
fk(z)

)′

Dσ,s
λ,δ
fk(z)

=
1
k

k−1∑

ν=0

φ(ζν) = φ(ζ0), (2.4)

for ζ0 ∈ U since φ(U) is convex. Thus fk ∈ Sσ,s(λ, δ, φ).

Theorem 2.2. Let f ∈ A and φ ∈ ℘. Then

f ∈ Kσ,s
k

(
λ, δ, φ

)⇐⇒ zf ′ ∈ Sσ,s
k

(
λ, δ, φ

)
. (2.5)

Proof. Let

g(z) = z +
∞∑

n=2

ns(C(δ, n)[1 + λ(n − 1)])σzn, (2.6)

and the operatorDσ,s
λ,δ
f can be written as Dσ,s

λ,δ
f = g ∗ f .

Then from the definition of the differential operatorDσ,s
λ,δ, we can verify

(
z
(
Dσ,s
λ,δ
f(z)
)′)′

(
Dσ,s
λ,δ
fk(z)

)′ =

(
z
(
g ∗ f)′

)′
(z)

(
g ∗ f)′

k(z)
=
z
(
g ∗ zf ′)′(z)
(
g ∗ zf ′)

k(z)
=
z
(
Dσ,s
λ,δ
zf ′(z)

)′

Dσ,s
λ,δ
zf ′

k(z)
. (2.7)

Thus f ∈ Kσ,s
k
(λ, δ, φ) if and only if zf ′ ∈ Sσ,s

k
(λ, δ, φ).

By using Theorems 2.2 and 2.1, we get the following.

Corollary 2.3. Let f ∈ Kσ,s
k
(λ, δ, φ). Then fk defined by (1.5) is in Kσ,s

1 (λ, δ, φ) = Kσ,s(λ, δ, φ).
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Proof. Let f ∈ Kσ,s
k
(λ, δ, φ). Then Theorem 2.2 shows that zf ′ ∈ Sσ,s

k
(λ, δ, φ). We deduce from

Theorem 2.1 that (zf ′)k ∈ Sσ,s(λ, δ, φ). From (zf ′)k = zf ′
k
, Theorem 2.2 now shows that fk ∈

Kσ,s
1 (λ, δ, φ) = Kσ,s(λ, δ, φ).

Theorem 2.4. Let φ ∈ ℘, λ > 0 with�[φ(z) + (1/λ) − 1] > 0. If f ∈ Sσ,sk (λ, δ, φ), then

z
(
Dσ−1,s
λ,δ

(
Dδfk(z)

))′

Dσ−1,s
λ,δ

(
Dδfk(z)

) ≺ q(z) ≺ φ(z), (2.8)

whereDσ−1,s
λ,δ

(Dδfk(z)) = D
σ−1,s
λ,δ

∗Dδfk(z) and q is the univalent solution of the differential equation

q(z) +
zq′(z)

q(z) + (1/λ) − 1
= φ(z). (2.9)

Proof. Let f ∈ Sσ,sk (λ, δ, φ). Then in view of Theorem 2.1, fk ∈ Sσ,s(λ, δ, φ), that is,

z
(
Dσ,s
λ,δ
fk(z)

)′

Dσ,s
λ,δ
fk(z)

≺ φ(z). (2.10)

From the definition of Dσ,s
λ,δ

, we see that

Ds,σ
λ,δfk(z) = (1 − λ)

(
Ds,σ−1
λ,δ ∗Dδfk(z)

)
+ λz
(
Ds,σ−1
λ,δ ∗Dδfk(z)

)′
(2.11)

which implies that

Ds,σ−1
λ,δ

∗Dδfk(z) =
1

λz(1/λ)−1

∫z

0
t(1/λ)−2Ds,σ

λ,δ
fk(t)dt. (2.12)

Using (2.10) and (2.12), we see that Lemma 1.3 can be applied to get (2.8), where c = (1/λ) −
1 > −1 and �{φ} > 0 with �[φ(z) + (1/λ) − 1] > 0 and q satisfies (2.9). We thus complete the
proof of Theorem 2.4.

Theorem 2.5. Let φ ∈ ℘ and s ∈N0. Then

Sσ,s+1
k

(
λ, δ, φ

) ⊂ Sσ,s
k

(
λ, δ, φ

)
. (2.13)

Proof. Let f ∈ Sσ,s+1k (λ, δ, φ). Then

z
(
Dσ,s+1
λ,δ

f(z)
)′

Dσ,s+1
λ,δ

fk(z)
≺ φ(z). (2.14)
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Set

p(z) =
z
(
Dσ,s
λ,δ
f(z)
)′

Dσ,s
λ,δ
fk(z)

, (2.15)

where p is analytic function with p(0) = 1. By using the equation

z
(
Dσ,s
λ,δf(z)

)′
= Dσ,s+1

λ,δ f(z), (2.16)

we get

p(z) =
Dσ,s+1
λ,δ

f(z)

Dσ,s
λ,δ
fk(z)

(2.17)

and then differentiating, we get

z
(
Dσ,s+1
λ,δ f(z)

)′
= zDσ,s

λ,δfk(z)p
′(z) + z

(
Dσ,s
λ,δfk(z)

)′
p(z), (2.18)

Hence

z
(
Dσ,s+1
λ,δ

f(z)
)′

Dσ,s+1
λ,δ fk(z)

=
Dσ,s
λ,δfk(z)

Dσ,s+1
λ,δ fk(z)

zp′(z) +
z
(
Dσ,s
λ,δ
fk(z)

)′

Dσ,s+1
λ,δ fk(z)

p(z). (2.19)

Applying (2.16) for the function fk we obtain

z
(
Dσ,s+1
λ,δ f(z)

)′

Dσ,s+1
λ,δ

fk(z)
=

Dσ,s
λ,δ
fk(z)

Dσ,s+1
λ,δ

fk(z)
zp′(z) + p(z). (2.20)

Using (2.20) with q(z) = (Dσ,s+1
λ,δ

fk(z))/(D
σ,s
λ,δ
fk(z)), we obtain

z
(
Dσ,s+1
λ,δ

f(z)
)′

Dσ,s+1
λ,δ

fk(z)
=
zp′(z)
q(z)

+ p(z). (2.21)

Since f ∈ Sσ,s+1
k

(λ, δ, φ), then by using (2.14) in (2.21) we get the following.

zp′(z)
q(z)

+ p(z) ≺ φ(z). (2.22)

We can see that q(z) ≺ φ(z), hence applying Lemma 1.4 we obtain the required result.

By using Theorems 2.2 and 2.5, we get the following.
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Corollary 2.6. Let φ ∈ ℘ and s ∈ N0. Then

Kσ,s+1
k

(
λ, δ, φ

) ⊂ Kσ,s
k

(
λ, δ, φ

)
. (2.23)

Now we prove that the class Sσ,sk (λ, δ, φ), φ ∈ ℘, is closed under convolution with
convex functions.

Theorem 2.7. Let f ∈ Sσ,s
k
(λ, δ, φ), φ ∈ ℘, and ϕ is a convex function with real coefficients in U.

Then f ∗ ϕ ∈ Sσ,s
k
(λ, δ, φ).

Proof. Let f ∈ Sσ,sk (λ, δ, φ), then Theorem 2.1 asserts that Dσ,s
λ,δfk(z) ∈ S∗(φ), where �{φ} > 0.

Applying Lemma 1.5 and the convolution properties we get

z
(
Dσ,s
λ,δ

(
f ∗ ϕ)(z)

)′

Dσ,s
λ,δ

(
fk ∗ ϕ

)
(z)

=
z
(
Dσ,s
λ,δ
f(z) ∗ ϕ(z)

)′

ϕ(z) ∗Dσ,s
λ,δfk(z)

=
ϕ(z) ∗

(
z
(
Dσ,s
λ,δ
f(z)
)′
/fDσ,s

λ,δ
fk(z)

)
Dσ,s
λ,δ
fk(z)

ϕ(z) ∗Dσ,s
λ,δ
fk(z)

∈ co

⎛
⎜⎝
z
(
Dσ,s
λ,δf
)′

Dσ,s
λ,δ
fk

(U)

⎞
⎟⎠ ⊆ φ(U).

(2.24)

Corollary 2.8. Let f ∈ Kσ,s
k
(λ, δ, φ), φ ∈ ℘, and ϕ is a convex function with real coefficients in U.

Then f ∗ ϕ ∈ Kσ,s
k
(λ, δ, φ).

Proof. Let f ∈ Kσ,s
k (λ, δ, φ), φ ∈ ℘. Then Theorem 2.2 shows that zf ′ ∈ Sσ,sk (λ, δ, φ). The result

of Theorem 2.7 yields (zf ′) ∗ ϕ = z(f ∗ ϕ)′ ∈ Sσ,sk (λ, δ, φ), and thus f ∗ ϕ ∈ Kσ,s
k (λ, δ, φ).

Some other works related to other differential operators with respect to symmetric
points for different types of problems can be seen in ([16–21]).
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