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Using the notion of fuzzy small submodules of a module, we introduce the concept of fuzzy
coessential extension of a fuzzy submodule of a module. We attempt to investigate various
properties of fuzzy small submodules of a module. A necessary and sufficient condition for fuzzy
small submodules is established. We investigate the nature of fuzzy small submodules of a module
under fuzzy direct sum. Fuzzy small submodules of a module are characterized in terms of fuzzy
quotient modules. This characterization gives rise to some results on fuzzy coessential extensions.
Finally, a relation between small L-submodules and Jacobson L-radical is established.

1. Introduction

After the introduction of fuzzy sets by Zadeh [1], a number of applications of this
fundamental concept have come up. Rosenfeld [2] was the first one to define the concept
of fuzzy subgroups of a group. Since then many generalizations of this fundamental
concept have been done in the last three decades. Naegoita and Ralescu [3] applied this
concept to modules and defined fuzzy submodules of a module. Consequently, fuzzy
finitely generated submodules, fuzzy quotient modules [4], radical of fuzzy submodules,
and primary fuzzy submodules [5, 6] were investigated. Saikia and Kalita [7] defined fuzzy
essential submodules and investigated various characteristics of such submodules. These
modules play a prominent role in fuzzy Goldie dimension of modules.

In this paper we fuzzify various properties of small (or superfluous) submodules of a
module. We define fuzzy small ephimorphism and fuzzy coessential extension of a fuzzy
submodule. We investigate various characteristics of fuzzy small submodules. Necessary
and sufficient conditions for fuzzy small submodules are established. We also investigate the
nature of fuzzy small submodule under fuzzy direct sum. A relation regarding fuzzy small
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submodule of a module and fuzzy quotient module is also established. We attempt to fuzzify
the well-known relation between the Jacobson radical and the small submodules of a module.
In [8] Basnet et. al. have shown that the relation between the Jacobson radical and the small
submodules of a module does not hold in fuzzy setting whereas we have tried to achieve the
relation. It is established that the Jacobson L-radical is the sum of all the small L-submodules
of a module. In case of a finitely generated module, the Jacobson L-radical is also a small
L-submodule of the module under the condition that L-{1} possesses a maximal element.

2. Basic Definitions and Notations

By R we mean a commutative ring with unity 1 and M denotes a R-module. The zero
elements of R and M are 0 and θ, respectively. A complete Heyting algebra L is a complete
lattice such that for all A ⊆ L and for all b ∈ L, ∨{a ∧ b | a ∈ A} = (∨{a | a ∈ A}) ∧ b and
∧{a ∨ b | a ∈ A} = (∧{a | a ∈ A}) ∨ b.

Definition 2.1. A submodule S of a module M over a ring R is said to be a small submodule
of M if for every submodule N ofM with N/=M implies S +N/=M.

The notation S � M indicates that S is a small submodule of M.

Fuzzy set on a nonempty set was introduced by Zadeh [1] in 1965. It is defined as
follows.

Definition 2.2. By a fuzzy set of a module M, we mean any mapping μ from M to [0, 1]. By
[0, 1]M we will denote the set of all fuzzy subsets ofM. If μ is a mapping fromM to L, where
L is a complete Heyting algebra then μ is called an L-subset of M. By LM we will denote the
set of all L-subsets of M.

For each fuzzy set μ in M and any α ∈ [0, 1], we define two sets U(μ, α) = {x ∈ M |
μ(x) ≥ α}, L(μ, α) = {x ∈ M | μ(x) ≤ α}, which are called an upper level cut and a lower level
cut of μ, respectively. The complement of μ, denoted by μc, is the fuzzy set on M defined by
μc(x) = 1 − μ(x). The support of a fuzzy set μ, denoted by μ∗, is a subset of M defined by
μ∗ = {x ∈ M | μ(x) > 0}. The subset μ∗ of M is defined as μ∗ = {x ∈ M | μ(x) = μ(θ)}.

Definition 2.3 (see [9]). If N ⊆ M and α ∈ [0, 1]M then αN is defined as,

αN(x) =

⎧
⎨

⎩

α if x ∈ N,

0 otherwise.
(2.1)

If N= {x} then α{x} is often called a fuzzy point and is denoted by xα. When α = 1
then 1N is known as the characteristic function of N. From now onwards, we will denote the
characteristic function ofN as χN .

If μ, σ ∈ [0, 1]M then

(1) μ ⊆ σ, if and only if μ(x) ≤ σ(x);

(2) (μ ∪ σ)(x) = max{μ(x), σ(x)} = μ(x) ∨ σ(x);

(3) (μ ∩ σ)(x) = min{μ(x), σ(x)} = μ(x) ∧ σ(x).

For any family {μi | i ∈ I} of fuzzy subsets of M, where I is any nonempty index set,
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(4) (
⋃

i∈I μi)(x) = supi∈Iμi(x) =
∨

i∈Iμi(x);

(5) (
⋂

i∈I μi)(x) = infi∈Iμi(x) =
∧

i∈Iμi(x) for all x ∈ M;

(6) (μ + σ)(x) = ∨{μ(y) ∧ σ(z) | y, z ∈ M, y + z = x}.

Definition 2.4 (see [9]). LetX and Y be any two nonempty sets, and f : X → Y be a mapping.
Let μ ∈ [0, 1]X and σ ∈ [0, 1]Y then the image f(μ) ∈ [0, 1]Y and the inverse image f−1(σ) ∈
[0, 1]X are defined as follows: for all y ∈ Y

f
(
μ
)(
y
)
=

⎧
⎨

⎩

∨{μ(x) | x ∈ X, f(x) = y
}
, if f−1(y

)
/=φ,

0, otherwise.
(2.2)

and f−1(σ)(x) = σ(f(x)) for all x ∈ X.

Definition 2.5 (see [9]). Let ζ ∈ [0, 1]R and μ ∈ [0, 1]M. Then ζ  μ is a fuzzy subset of M and
it is defined by

(
ζ  μ

)
(x) = ∨

{
n∧

i=1

(
ζ(ri) ∧ μ(xi)

) | ri ∈ R, xi ∈ M, 1 ≤ i ≤ n, n ∈ N,
n∑

i=1

rixi = x

}

(2.3)

for all x ∈ M.

Definition 2.6 (see [9]). A fuzzy set μ of R is called a fuzzy ideal, if it satisfies the following
properties:

(1) μ(x − y) ≥ μ(x) ∧ μ(y),

(2) μ(xy) ≥ μ(x) ∨ μ(y), for all x, y ∈ R.

The following definition is given by Naegoita and Ralescu [3].

Definition 2.7 (see [3]). Let M be a module over a ring R and L be a Complete Heyting
algebra. An L subset μ in M is called an L-submodule of M, if for every x, y ∈ M and r ∈ R
the following conditions are satisfied:

(1) μ(θ) = 1,

(2) μ(x − y) ≥ μ(x) ∧ μ(y),

(3) μ(rx) ≥ μ(x).

We denote the set of all L-submodules of M by L(M). If L = [0, 1], then μ is called a fuzzy
submodule ofM. The set of all fuzzy submodules of M are denoted by F(M).

Definition 2.8 (see [9]). Let μ, ν ∈ F(M) be such that μ ⊆ ν. Then the quotient of νwith respect
to μ, is a fuzzy submodule of M/μ∗, denoted by ν/μ, and is defined as follows:

(
ν

μ

)

([x]) = ∨{ν(z) | z ∈ [x]}, ∀x ∈ ν∗, (2.4)

where [x] denotes the coset x + μ∗.
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Definition 2.9 (see [9]). Let μ ∈ [0, 1]M. Then ∩{ν | μ ⊆ ν, ν ∈ F(M)} is a fuzzy submodule of
M, and it is called the fuzzy submodule generated by the fuzzy subset μ. We denote this by
〈μ〉, that is,

〈
μ
〉
= ∩{ν | μ ⊆ ν, ν ∈ F(M)

}
. (2.5)

Let ξ ∈ F(M). If ξ = 〈μ〉 for some μ ∈ [0, 1]M, then μ is called a generating fuzzy subset of ξ.

Remark 2.10. (a) If A is a nonempty subset of M, then 〈χA〉 = χ〈A〉, where 〈A〉 is the
submodule ofM generated by A.

(b) If x ∈ M, then χR  χ{x} is a fuzzy submodule of M generated by χ{x}, and in this
case,

χR  χ{x} =
〈
χ{x}

〉
= χ〈{x}〉 = χRx. (2.6)

3. Preliminaries

This section contains some preliminary results that are needed in the sequel.

Lemma 3.1 (see [10]). LetM be a module and suppose thatK ≤ N ≤ M andH ≤ M. Then

(a) H +K � M if and only if H � M and K � M;

(b) if K � N, then K � M;

(c) if N is a direct summand ofM, then K � M if and only if K � N;

(d) if M = M1 ⊕ M2 and Ki ≤ Mi for i = 1, 2, then K1 ⊕ K2 � M1 ⊕ M2 if and only if
K1 � M1 andK1 � M1.

Lemma 3.2 (see [9]). Let μ, ν ∈ F(M). Then μ + ν ∈ F(M).

Lemma 3.3 (see [9]). Let μi ∈ F(M), for each i ∈ I, where |I| > 1. Then
∑

i∈I μi ∈ F(M) and
〈⋃i∈I μi〉 =

∑
i∈I μi.

Lemma 3.4 (see [5]). Let μ ∈ [0, 1]M. Then the level subset μt = {x ∈ M : μ(x) ≥ t}, t ∈ Im(μ) is
a submodule of M if and only if μ is a fuzzy submodule of M.

Corollary 3.5. μ∗ is a submodule ofM if and only if μ is a fuzzy submodule of M.

In the next two sections we present our main results.

4. Fuzzy Small Submodule

Definition 4.1. LetM be a module over a ring R and let μ ∈ L(M). Then μ is said to be a Small
L-Submodule of M, if for any ν ∈ L(M) satisfying ν /=χM implies μ + ν /=χM. The notation
μ�LM indicates that μ is a small L-submodule of M.

If L = [0, 1], then μ is called a fuzzy small submodule of M and it is indicated by the
notation μ�fM. It is obvious that χ{θ} is always a fuzzy small submodule of M.
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Definition 4.2. Let μ ∈ F(M). If μ�fM, then we say χM (or M) is a fuzzy small cover of
χM/μ∗ or M/μ.

Definition 4.3. Let M and L be any two modules over a ring R. Then an ephimorphism f :
M → L is called a fuzzy small ephimorphism, if f−1(χ{θ})�fM.

It is obvious thatM is a fuzzy small cover ofM/μ if and only if the canonical projection
M → M/μ∗ is a fuzzy small ephimorphism.

Definition 4.4. A fuzzy ideal μ of R with μ(0) = 1 is called a fuzzy small ideal of R if it is a
fuzzy small submodule of RR.

Let μ and σ be any two fuzzy submodules ofM such that μ ⊆ σ, then μ is called a fuzzy
submodule of σ. And μ is called a fuzzy small submodule in σ, denoted by μ�fσ, if μ�fσ∗

in the sense that for every submodule γ in M satisfying γ|σ∗ /=χσ∗ implies μ|σ∗ + γ|σ∗ /=χσ∗ (by
μ|σ∗ , γ|σ∗ we mean the restriction mapping of μ, γ on σ∗ resp.).

Definition 4.5. Let M be a module over a ring R and suppose that μ, ν ∈ F(M) with μ ⊆ ν.
Then we say ν lies above μ in M or μ is a coessential extension of ν if M/μ is a fuzzy small
cover of M/ν, that is, ν/μ�fM/μ(=χM/μ∗).

Example 4.6. Consider M = Z8 = {0, 1, 2, 3, 4, 5, 6, 7} under addition modulo 8. Then M is a
module over the ring Z. Let S = {0, 2, 4, 6}. Define μ ∈ [0, 1]M as follows:

μ(x) =

⎧
⎨

⎩

1 if x ∈ S,

α otherwise.
(4.1)

where 0 ≤ α < 1. Then μ is a fuzzy small submodule of M.

Remark 4.7. Let K = {0, 4}. Clearly S,K are the only proper submodules of M and S + K =
{0, 2, 4, 6}+ {0, 4}/=M. Therefore S � M. Also μ∗ = {0, 2, 4, 6} = S. Moreover, if we take α = 0
then μ becomes the characteristic function of S.

The above remark inspires us to state the following two theorems.

Theorem 4.8. LetM be a module andN ≤ M. Then N � M if and only if χN �fM.

Proof. Let N � M. We assume χN is not a fuzzy small submodule of M. Thus there exists,
ν ∈ F(M), ν /=χM such that χN + ν = χM. Let x ∈ M. Then

1 =
(
χN + ν

)
(x) = ∨{χN

(
y
) ∧ ν(z) | y, z ∈ M, y + z = x

}
. (4.2)

So, there exist y0, z0 ∈ M with y0 + z0 = x such that χN(y0) ∧ ν(z0) = 1. Thus we have
χN(y0) = 1 and ν(z0) = 1, and so y0 ∈ N, z0 ∈ ν∗. This implies that x = y0 + z0 ∈ N + ν∗. Since
x ∈ M is arbitrary, so this implies M = N + ν∗. But N � M. So, we must have M = ν∗ and
this implies ν = χM, a contradiction. Therefore, χN �fM.

Conversely, we assume χN �fM. If possible let N be not a small submodule of M.
Thus there exists T ≤ M, T /=M, but N + T = M. Thus χN, χT ∈ F(M) and χN /=χM,
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χT /=χM. Let x ∈ M. Since N + T = M, so there exist, n ∈ N, l ∈ T such that x = n + l.
Now,

(
χN + χT

)
(x) = ∨{χN

(
y
) ∧ χT(z) | y, z ∈ M, y + z = x

} ≥ χN(n) ∧ χT(l) = 1. (4.3)

This implies χN + χT = χM and it contradicts the fact that χN �fM. HenceN � M.

Here we present an alternative proof of the following theorem.

Theorem 4.9 (see [8]). Let μ ∈ F(M). Then μ�fM if and only if μ∗ � M.

Proof. Suppose, μ�fM. Let N ≤ M and N/=M. We claim μ∗ +N/=M. Now, N/=M implies
χN /=χM. Since μ�fM, so we must have μ + χN /=χM.

⇒ there exists x0 ∈ M such that (μ + χN)(x0) < 1,

⇒ ∨{μ(y) ∧ χN(z) | y, z ∈ M, y + z = x0} < 1,

⇒ either μ(y) < 1 or z /∈ N, for all y, z ∈ M, y + z = x0,

⇒ either y /∈ μ∗ or z /∈ N, for all y, z ∈ M, y + z = x0,

⇒ x0 = y + z /∈ μ∗ +N,

⇒ μ∗ +N/=M,

⇒ μ∗ � M.

Conversely, we assume μ∗ � M. Let ν ∈ F(M) be such that ν /=χM. This implies that ν∗ /=M.
Thus μ∗ + ν∗ /=M (since μ∗ � M). This implies that there exists x0 ∈ M such that x /∈ μ∗ + ν∗.
Thus for every y, z ∈ M with y + z = x0 implies either y /∈ μ∗ or z /∈ ν∗ otherwise x0 ∈ μ∗ + ν∗.
Therefore,

μ(y) < 1 or ν(z) < 1 for every y, z ∈ M and y + z = x0,

⇒ μ(y) ∧ ν(z) < 1, for every y, z ∈ M and y + z = x0,

⇒ ∨{μ(y) ∧ ν(z) | y, z ∈ M,y + z = x0} < 1,

⇒ (μ + ν)(x0) < 1,

⇒ μ + ν /=χM,

⇒ μ�fM.

Corollary 4.10. Let μ, σ ∈ F(M). Then μ�fσ if and only if μ∗ � σ∗.

Proof. Let μ�fσ ⇒ μ�fσ∗. So, by above theorem we get μ∗ � σ∗. Conversely if μ∗ � σ∗.
So, by above theorem μ�fσ

∗. Hence μ�fσ.

Theorem 4.11 (see [8]). Let μ, ν ∈ F(M). Then μ�fM, ν�fM if and only if μ + ν�fM.

As a consequence, we obtain the following.

Theorem 4.12. Any finite sum of fuzzy small submodules of M is also a fuzzy small submodule in
M.

Theorem 4.13. Let N ≤ M and μ ∈ F(M) be such that μ ⊆ χN . If μ|N �fN, then μ�fM.
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Proof. Let ν ∈ F(M) be such that μ + ν = χM. Let x ∈ N. Then

(μ|N + (ν|N ∩ χN))(x),

= ∨{μ(y) ∧ (ν|N ∩ χN)(z) | y, z ∈ N, y + z = x},
= ∨{μ(y) ∧ ν(z) | y, z ∈ N, y + z = x},
= (μ + ν)(x) = 1 (since μ + ν = χM).

Therefore, (μ|N + (ν|N ∩ χN)) = χN . Since μ|N �fN, so ν|N ∩χN = χN . This implies that χN ⊆ ν
and μ ⊆ χN ⊆ ν. Thus μ + ν ⊆ ν ⇒ χM ⊆ ν ⇒ χM = ν. Hence μ�fM.

Corollary 4.14. Let μ, ν ∈ F(M) and μ ⊆ ν. If μ�fν, then μ�fM.

Proof. By definition, μ�fνmeans μ�fν∗. Therefore, from above theoremwe get μ�fM.

Theorem 4.15. Let μ, ν ∈ F(M). Then μ�fν if and only if μ∗ � ν∗.

Proof. Suppose, μ�fν. Let N ≤ ν∗ and N/= ν∗. This implies χN /=χν∗ . Since μ�fν, so μ +
χN /=χν∗ . This ensures that there exists x0 in ν∗ such that x0 /∈ μ∗ + N. Thus μ∗ +N/= ν∗ and
hence μ∗ � ν∗.

Conversely, we assume μ∗ � ν∗. This implies μ∗ � ν∗ ≤ ν∗. Therefore, μ∗ � ν∗

(Lemma 3.1(b)). So, by Corollary 4.10 we have μ�fν.

Definition 4.16. A fuzzy submodule σ in M is called a fuzzy direct sum of two fuzzy
submodules μ and ν if σ = μ + ν and μ ∩ ν = χθ.

Definition 4.17. Any μ ∈ F(M) is called a fuzzy direct summand ofM if there exists ν ∈ F(M)
such that χM is a fuzzy direct sum of μ, ν.

Theorem 4.18. Let μ, ν be fuzzy submodules of M with μ ⊆ ν and ν be a direct summand ofM. Then
μ�fM if and only if μ�fν.

Proof. Suppose, μ�fM. Since ν is a direct summand ofM, so there exists γ ∈ F(M) such that

χM = ν + γ, ν ∩ γ = χθ. (4.4)

First we prove M = ν∗ ⊕ γ ∗. Now, ν ∩ γ = χθ implies ν∗ ∩ γ ∗ = θ. Also, from χM = ν + γ we
have M = (ν + γ)∗. We claim (ν + γ)∗ = ν∗ + γ ∗. For this let x ∈ (ν + γ)∗. Then

(ν + γ)(x) = ∨{ν(y) ∧ γ(z) | y, z ∈ M,y + z = x} > 0,

⇒ ν(y) > 0 and γ(z) > 0 for some y, z ∈ M, y + z = x,

⇒ x = y + z, for some y ∈ ν∗, z ∈ γ ∗,

⇒ x ∈ ν∗ + γ ∗,

⇒ (ν + γ)∗ ⊆ ν∗ + γ ∗,

On the other hand if x ∈ ν∗ + γ ∗, then x = y + z for some y, z ∈ M with ν(y) > 0, γ(z) > 0.
This implies 0 < ∨{ν(y) ∧ γ(z) | y, z ∈ M, y + z = x} = (ν + γ)(x). Thus x ∈ (ν + γ)∗ and so,
we have (ν + γ)∗ = ν∗ + γ ∗ and henceM = (ν + γ)∗ = ν∗ + γ ∗. Therefore, ν∗ is a direct summand
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ofM. But, we know μ�fM if and only if μ∗ � M. Thus μ∗ � ν∗ and ν∗ is a direct summand
of M and so, by Lemma 3.1(c) we get μ∗ � ν∗. Hence, by Corollary 4.10 we have μ�fν.

The proof of the converse part follows from Corollary 4.14.

Theorem 4.19. Let σ1, σ2 ∈ F(M) and χM = σ1 ⊕ σ2. Also, let μ1, μ2 ∈ F(M) be such that μ1 ⊆ σ1

and μ2 ⊆ σ2. Then μ1 �fσ1 and μ2 �fσ2 if and only if μ1 ⊕ μ2 �fσ1 ⊕ σ2, that is, if and only if
μ1 ⊕ μ2 �fM.

Proof. Suppose, μ1 �fσ1 and μ2 �fσ2. Then μ1∗ �fσ
∗
1 and μ2∗ �fσ

∗
2 (Corollary 4.10). There-

fore, we get μ1∗ ⊕ μ2∗ � σ∗
1 ⊕ σ∗

2 (Lemma 3.1(d)). Now, χM = σ1 ⊕ σ2 implies M = (σ1 ⊕ σ2)
∗ =

σ∗
1 ⊕ σ∗

2 and since μ1∗ ⊕ μ2∗ = (μ1 ⊕ μ2)∗, therefore we get (μ1 ⊕ μ2)∗ � (σ1 ⊕ σ2)
∗. Hence

μ1 ⊕ μ2�fσ1 ⊕ σ2 (Corollary 4.10).
Conversely, we assume μ1 ⊕μ2 � σ1 ⊕ σ2 if and only if μ1 ⊕μ2 �fM. Now, μ1 ≤ μ1 ⊕μ2

and μ1⊕μ2 �fM imply μ1 �fM. Again, since σ1 is a fuzzy direct summand ofM and μ1 ⊆ σ1,
so by Theorem 4.18 we get μ1 �fσ1. Similarly, it can be proved that μ2 �fσ2.

Corollary 4.20. LetM1 ≤ M,M2 ≤ M andM = M1 ⊕M2. Let μ1 ∈ F(M1), μ2 ∈ F(M2). Define

μi(x) =

⎧
⎨

⎩

μi(x) if x ∈ Mi,

0 otherwise.
(4.5)

for all x ∈ M, i = 1, 2. Then μ1 ⊕ μ2 �fM if and only if μ1 �fM1 and μ2 �fM2.

Theorem 4.21 (see [8]). Let M, M be any two modules over the same ring R and let f : M → M

be a module homomorphism. If μ�fM, then f(μ)�fM.

Theorem 4.22. Let μ, ν ∈ F(M) be such that μ ⊆ ν. Then ν�fM if and only if μ�fM and
ν/μ�fχM/μ, that is, if and only if μ�fM and ν/μ�fM/μ∗.

Proof. It is obvious that, χM/μ = χM/μ∗ . So, it is sufficient to show ν�fM if and only if
μ�fM and ν/μ�fM/μ∗.

Suppose, ν�fM. Then since μ ⊆ ν, so μ�fM. Next, we will prove ν/μ�fM/μ∗.
Consider, the natural homomorphism, f : M → M/μ∗, defined by f(x) = [x], where [x]
denotes the coset x + μ∗. Since ν�fM, so by Theorem 4.21 we get, f(ν)�fM/μ∗. Now,
f(ν)([x])

= ∨{ν(y) | y ∈ M, f(y) = [x]},
= ∨{ν(y) | y ∈ M, [y] = [x]},
= ∨{ν(y) | y ∈ M, y − x ∈ μ∗},
= ∨{ν(y) | y ∈ M, y − x = m, m ∈ μ∗},
= ∨{ν(x +m) | m ∈ μ∗},
= ∨{ν(u) | u = x +m, m ∈ μ∗},
= ∨{ν(y) | u ∈ [x]},
= ν/μ([x]) for all x ∈ ν∗.

Thus ν/μ = f(ν) on ν∗ and f(ν)�fM/μ∗. Therefore, ν/μ�fM/μ∗.
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Conversely, we assume μ�fM and ν/μ�fM/μ∗. To show ν�fM, let σ ∈ F(M)
be such that σ /=χM. Since μ�fM and σ /=χM, so we have μ + σ /=χM. This implies (μ +
σ)/μ/=χM/μ(=χM/μ∗ ). Again, since ν/μ�fM/μ∗ and (μ + σ)/μ/=χM/μ∗ , so we must have

(ν/μ) + (μ + σ)/μ/=χM/μ∗ ,

⇒ (ν + μ + σ)/μ/=χM/μ∗ ,

⇒ (μ + ν + σ)/μ/=χM/μ∗ ,

⇒ (ν + σ)/(μ ∩ (ν + σ))/=χM/μ∗ , (see [9, Theorem 4.2.5])

⇒ (ν + σ)/μ/=χM/μ∗ , (since μ ⊆ ν)

⇒ ν + σ /=χM, (since χM/μ = χM/μ∗).

Therefore, ν�fM.

Corollary 4.23. Let μ, ν ∈ F(M) be such that μ ⊆ ν. If ν�fM, then μ is a coessential extension of
ν in M.

Theorem 4.24. Let μ, ν ∈ F(M) be such that μ ⊆ ν. Then μ is a coessential extension of ν in M if
and only if μ + σ = χM holds for all σ ∈ F(M) with ν + σ = χM.

Proof. Suppose, μ is a coessential extension of ν, that is, ν/μ�fχM/μ. If for all σ ∈ F(M)
with ν + σ = χM, then

χM

μ
=
(ν + σ)

μ
=

(
ν + σ + μ

)

μ
=

ν

μ
+

(
σ + μ

)

μ
. (4.6)

So, χM/μ = (σ + μ)/μ (since ν/μ�fχM/μ). Thus μ + σ = χM.
Conversely, we assume μ + σ = χM holds for all σ ∈ F(M) with ν + σ = χM. If there

exists σ ∈ F(M) containing μ such that ν/μ + σ/μ = χM/μ, then χM = ν + σ. This yields
χM = μ + σ = σ, (since μ ⊆ σ) and so ν/μ�fχM/μ. Hence μ is a coessential extension of
ν.

As a consequence, we obtain the following.

Theorem 4.25. Let γ, μ, ν ∈ F(M) be such that γ ⊆ μ ⊆ ν. Then γ is a coessential extension of ν in
M if and only if μ is a coessential extension of ν in M and γ is a coessential extension of μ in M.

5. Jacobson L-Radical

Definition 5.1. Let μ ∈ L(M). Then μ is called a maximal L-submodule of M if μ/=χM (i.e.,
μ is proper L-submodule of M) and if σ any other proper L-submodules of M containing μ,
then μ = σ. Equivalently μ is a maximal element in the set of all nonconstant L-submodules
of M under point wise partial ordering.

The intersection of all maximal L-submodules of M is known as Jacobson L-radical of
M and is denoted by JLR(M).
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Theorem 5.2. Let μ ∈ LM. Then μ is a maximal L-submodule of M if and only if μ can be expressed
as μ = χμ∗ ∪ αM, where μ∗ is a maximal submodule of M and α is a maximal element of L-{1}.

Proof. Proof is similar to the proof of Theorem 3.4.3 of [9] and so it is omitted.

Lemma 5.3. Let M be a module over R and let x ∈ M. Then χR  χ{x} �LM if and only if χ{x} is in
the sum of all small L-submodules of M.

Proof. Suppose, χR  χ{x} �LM. Then by Theorem 4.9 we have, (χR  χ{x})∗ � M. But, from
Remark 2.10(b) we have

χR  χ{x} =
〈
χ{x}

〉
= χ〈{x}〉 = χRx. (5.1)

Therefore, χ{x} ⊆ χR  χ{x} as χ{x} ⊆ χRx. This implies χ{x} is in the sum of all small L-
submodules of M.

Conversely, we assume χ{x} is in the sum of all small L-submodules ofM. Then χ{x} ⊆∑
μi (finite), where μi �LM and so, x ∈ ∑

(μi)∗(finite), (μi)∗ � M ⇒ x =
∑

xi(finite), where
xi ∈ (μi)∗. Now,

(
χR  χ{xi}

)

∗ =
(
χRxi

)

∗ = Rxi ≤
(
μi

)

∗ (5.2)

for all i. Therefore, (χR  χ{xi})∗ � M (since (μi)∗ � M). Therefore, by Theorem 4.9 we have
χR  χ{xi} �LM. This implies

∑
χR  χ{xi}(finite)�LM. But, χ{x} ⊆ ∑

χR  χ{xi}(finite), and
so, we must have, χR  χ{x} ⊆

∑
χR  χ{xi}(finite). Since

∑
χR  χ{xi}(finite)�LM. Therefore,

we have χR  χ{x} �LM.

Definition 5.4 (see [9]). Let L be a complete Heyting algebra. Then a ∈ L-{1} is called a
maximal element, if there does not exist c ∈ L-{1} such that a < c < 1.

Theorem 5.5. For any module M, JLR(M) (the Jacobson L-radical of M), is the sum of all small
L-submodules of M.

Proof. In view of Lemma 5.3, it is sufficient to show that χR  χ{x} �LM if and only if χ{x} ⊆
JLR(M); or equivalently: χ{x} is not a subset of JLR(M) if and only if χR  χ{x} is not a small
L-submodule of M. We will proof the later one.

Suppose, χ{x} is not a subset of JLR(M). Then there exists a maximal L-submodule
ν of M such that χ{x} is not a subset of ν. This implies χR  χ{x} = 〈χ{x}〉 which is not a
submodule of ν. Since ν is maximal, so ν /=χM. Therefore, ν is a maximal L-submodule of M
which is properly contained in χR χ{x} +ν. This implies χR χ{x} +ν = χM. Thus ν /=χM and
χR  χ{x} + ν = χM. So, by definition we have, χR  χ{x} is not a small L-submodule of M.

Conversely, we assume χR  χ{x} is not a small L-submodule ofM. Then there exists a
ν ∈ L(M)with ν /=χM such that χR  χ{x} + ν = χM. Let S be the collection of all such ν. Then
S/=Φ because, ν ∈ S. Now, for each σ ∈ S, σ /=χM and χ{x} is not a subset of σ. Moreover, any
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proper fuzzy submodule containing ν is also in S. Also, (S,⊆) forms a poset and the union of
members of a chain in S is again a member of S. Therefore, by Zorn’s lemma, S has a maximal
element, (say) μ. Since μ ∈ S so, χ{x} is not a subset of μ. Now, let γ ∈ L(M) be such that μ ⊆ γ .
If γ /=χM, then γ is also in S. So, by maximality of μ, we have μ = γ . This shows that μ is a
maximal L-submodule of M. Since χ{x} is not a subset of μ, so we must have χ{x} is not a
subset of JLR(M).

Corollary 5.6. If JLR(M) is a small L-submodule of M, then it is the largest small L-submodule of
M.

Corollary 5.7. Let M be finitely generated module, then JLR(M) exists and is a small L-submodule
of M provided L-{1} has a maximal element.

Remark 5.8. However, if we take L = [0, 1], then L-{1} does not possess any maximal element,
and so by Theorem 5.2, maximal L-submodule of M does not exist. Since the existence of the
JLR(M) depends on the existence of maximal L-submodule of M, therefore, the assumption
of the existence of a maximal element of L-{1} in corollary 5.5 is necessary.

Example 5.9. Let L = {0, 0.25, 0.5, 0.75, 1}. Then L is a Complete Heyting algebra together
with the operations minimum(meet), maximum(join) and ≤(partial ordering), then 0.75 is a
maximal element of L-{1}. Consider M = Z8 = {0, 1, 2, 3, 4, 5, 6, 7} under addition modulo 8.
Then M is a module over the ring Z. Let S = {0, 2, 4, 6}. Define μ ∈ [0, 1]M as follows:

μ(x) =

⎧
⎨

⎩

1 if x ∈ S,

0.75, otherwise.
(5.3)

Then μ∗ = {0, 2, 4, 6} = S, which is a maximal submodule of Z8. Also, μ = χμ∗ ∪ 0.75M, where
0.75 is a maximal element of L-{1}. So, by Theorem 5.2 we have μ as a maximal L-submodule
of Z8. In fact, μ is the only maximal L-submodule of Z8 and so JLR(M) = μ. Since μ∗ � Z8

and hence by Theorem 4.9, we get μ�LZ8. Thus JLR(M)�LZ8. However, if we consider
L = [0, 1], then [0,1) does not have a maximal element and so by Theorem 5.2 there does
not exist any maximal L-submodule(maximal fuzzy submodule). So, JLR(M) does not exist
when L = [0, 1].

6. Conclusion

In this paper some aspects and properties of fuzzy small submodules have been introduced
which dualize the notion of fuzzy essential submodules. This concept has opened a new
avenue toward the study of fuzzy Goldie dimension, for example using the notion of fuzzy
small submodules one can define hollow submodules and discrete submodules. In our future
study we may investigate various aspects of (i) spanning dimension of fuzzy submodules,
(ii) corank of fuzzy submodules, (iii) fuzzy lifting modules with chain condition on fuzzy
small submodules, and (iv)Noetherian and Artinian conditions on fuzzy Jacobson radical of
a module.
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