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We prove that ifG is a 2-connect graph of size q (the number of edges) andminimumdegree δwith
δ ≥√

2q/3 + ε/12−1/2, where ε = 11 when δ = 2 and ε = 31 when δ ≥ 3, then each longest cycle in
G is a dominating cycle. The exact analog of this theorem for Hamilton cycles follows easily from
two known results according to Dirac and Nash-Williams: each graph with δ ≥ √

q + 5/4 − 1/2 is
hamiltonian. Both results are sharp in all respects.

1. Introduction

Only finite undirected graphs without loops or multiple edges are considered. We reserve n,
q, δ, and κ to denote the number of vertices (order), the number of edges (size), the minimum
degree, and the connectivity of a graph, respectively. A graph G is hamiltonian if G contains
a hamiltonian cycle, that is, a cycle of length n. Further, a cycle C in G is called a dominating
cycle if the vertices in G\C are mutually nonadjacent. A good reference for any undefined
terms is [1].

The following two well-known theorems provide two classic sufficient conditions for
Hamilton and dominating cycles by linking the minimum degree δ and order n.

Theorem A (see [2]). Every graph with δ ≥ (1/2)n is hamiltonian.

Theorem B (see [3]). If G is a 2-connect graph with δ ≥ (1/3)(n + 2), then each longest cycle in G
is a dominating cycle.

The exact analog of Theorem A that links the minimum degree δ and size q easily
follows from Theorem A and a particular result according to Nash-Williams [4] (see Theo-
rem 1.1 below).
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Theorem 1.1. Every graph is hamiltonian if

δ ≥
√

q +
5
4
− 1
2
. (1.1)

The hypothesis in Theorem 1.1 is equivalent to q ≤ δ2 + δ − 1 and cannot be relaxed to
q ≤ δ2 + δ due to the graphK1 + 2Kδ consisting of two copies ofKδ+1 and having exactly one
vertex in common. Hence, Theorem 1.1 is best possible.

The main goal of this paper is to prove the exact analog of Theorem B for dominating
cycles based on another similar relation between δ and q.

Theorem 1.2. Let G be a 2-connect graph with

δ ≥
√

2q
3

+
ε

12
− 1
2
, (1.2)

where ε = 11 when δ = 2 and ε = 31 when δ ≥ 3. Then each longest cycle in G is a dominating cycle.

To show that Theorem 1.2 is sharp, suppose first that δ = 2, implying that the
hypothesis in Theorem 1.2 is equivalent to q ≤ 8. The graph K1 + 2K2 shows that the
connectivity condition κ ≥ 2 in Theorem 1.2 cannot be relaxed by replacing it with κ ≥ 1.
The graph with vertex set {v1, v2, . . . , v8} and edge set

{v1v2, v2v3, v3v4, v4v5, v5v6, v6v1, v1v7, v7v8, v8v4} (1.3)

shows that the size bound q ≤ 8 cannot be relaxed by replacing it with q ≤ 9. Finally, the graph
K2 + 3K1 shows that the conclusion “each longest cycle in G is a dominating cycle” cannot
be strengthened by replacing it with “G is hamiltonian.” Analogously, we can use K1 + 2Kδ,
K2 + 3Kδ−1, and Kδ + (δ + 1)K1, respectively, to show that Theorem 1.2 is sharp when δ ≥ 3.
So, Theorem 1.2 is best possible in all respects.

To prove Theorems 1.1 and 1.2, we need two known results, the first of which is
belongs Nash-Williams [4].

Theorem C (see [4]). If δ = (n − 1)/2, then either G is hamiltonian or G = K1 + 2Kδ, or G =
Kδ+1 +Gδ, where Gδ denote an arbitrary graph on δ vertices.

The next theorem provides a lower bound for the length of a longest cycle in 2-
connected graphs according to Dirac [2].

TheoremD (see [2]). Every 2-connected graph either has a hamiltonian cycle or has a cycle of length
at least 2δ.

2. Notations and Preliminaries

The set of vertices of a graph G is denoted by V (G) and the set of edges by E(G). For S,
a subset of V (G), we denote by G\S the maximum subgraph of G with vertex set V (G)\S.
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We writeG[S] for the subgraph ofG induced by S. For a subgraphH ofG, we useG\H short
for G\V (H). The neighborhood of a vertex x ∈ V (G) will be denoted by N(x). Set d(x) =
|N(x)|. Furthermore, for a subgraphH of G and x ∈ V (G), we defineNH(x) = N(x) ∩ V (H)
and dH(x) = |NH(x)|.

A simple cycle (or just a cycle) C of length t is a sequence v1v2 · · ·vtv1 of distinct
vertices v1, . . . , vt with vivi+1 ∈ E(G) for each i ∈ {1, . . . , t}, where vt+1 = v1. When t = 2, the
cycle C = v1v2v1 on two vertices v1, v2 coincides with the edge v1v2, and when t = 1, the cycle
C = v1 coincides with the vertex v1. So, all vertices and edges in a graph can be considered as
cycles of lengths 1 and 2, respectively.

Paths and cycles in a graph G are considered as subgraphs of G. If Q is a path or a
cycle, then the length of Q, denoted by |Q|, is |E(Q)|. We write Q with a given orientation by
�Q. For x, y ∈ V (Q), we denote by x �Qy the subpath of Q in the chosen direction from x to y.
For x ∈ V (Q), we denote the hth successor and the hth predecessor of x on �Q by x+h and x−h,
respectively. We abbreviate x+1 and x−1 by x+ and x−, respectively.

Special Definitions

Let G be a graph, C a longest cycle in G, and P = x �Py a longest path in G\C of length p ≥ 0.
Let ξ1, ξ2, . . . , ξs be the elements of NC(x) ∪NC(y) occurring on C in a consecutive order. Set

Ii = ξi �Cξi+1, I∗i = ξ+i
�Cξ−i+1 (i = 1, 2, . . . , s), (2.1)

where ξs+1 = ξ1.

(∗1) We call I1, I2, . . . , Is elementary segments on C created by NC(x) ∪NC(y).

(∗2) We call a path L = z�Lw an intermediate path between two distinct elementary
segments Ia and Ib if

z ∈ V (I∗a), w ∈ V
(
I∗b
)
, V (L) ∩ V (C ∪ P) = {z,w}. (2.2)

(∗3) The set of all intermediate paths between elementary segments Ii1 , Ii2 , . . . , Iit will be
denoted by Υ(Ii1 , Ii2 , . . . , Iit).

Lemma 2.1. Let G be a graph, C a longest cycle in G, and P = x �Py a longest path in G\C of length
p ≥ 1. If |NC(x)| ≥ 2, |NC(y)| ≥ 2 and NC(x)/=NC(y), then

|C| ≥

⎧
⎪⎨

⎪⎩

3δ +max{σ1, σ2} − 1 ≥ 3δ, if p = 1,

max
{
2p + 8, 4δ − 2p}, if p ≥ 2,

(2.3)

where σ1 = |NC(x)\NC(y)| and σ2 = |NC(y)\NC(x)|.
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Lemma 2.2. Let G be a graph, C a longest cycle in G, and P = x �Py a longest path in G\C of
length p ≥ 0. If NC(x) = NC(y), |NC(x)| ≥ 2 and Ia, Ib are elementary segments induced by
NC(x) ∪NC(y), then

(a1) if L is an intermediate path between Ia and Ib, then

|Ia| + |Ib| ≥ 2p + 2|L| + 4, (2.4)

(a2) if Υ(Ia, Ib) ⊆ E(G) and |Υ(Ia, Ib)| = i for some i ∈ {1, 2, 3}, then

|Ia| + |Ib| ≥ 2p + i + 5. (2.5)

Lemma 2.3. Let G be a graph, S a cut set in G, and H a connected component of G\S of order h.
Then

qH ≥ h(2δ − h + 1)
2

, (2.6)

where qH = |{xy ∈ E(G) : {x, y} ∩ V (H)/= ∅}|.

Lemma 2.4. Let G be a 2-connect graph. If δ ≥ (n − 2)/3, then either

q ≥

⎧
⎪⎪⎨

⎪⎪⎩

9 when δ = 2,

3(δ − 1)(δ + 2)
2

when δ ≥ 3,
(2.7)

or each longest cycle in G is a dominating cycle.

3. Proofs

Proof of Lemma 2.1. Put

A1 = NC(x)\NC

(
y
)
, A2 = NC

(
y
)\NC(x), M = NC(x) ∩NC

(
y
)
. (3.1)

By the hypothesis, NC(x)/=NC(y), implying that

max{|A1|, |A2|} ≥ 1. (3.2)

Let ξ1, ξ2, . . . , ξs be the elements of NC(x) ∪NC(y) occuring on C in a consecutive order. Put
Ii = ξi �Cξi+1(i = 1, 2, . . . , s), where ξs+1 = ξ1. Clearly, s = |A1| + |A2| + |M|. Since C is extreme,
|Ii| ≥ 2(i = 1, 2, . . . , s). Next, if {ξi, ξi+1} ∩M/= ∅ for some i ∈ {1, 2, . . . , s}, then |Ii| ≥ p + 2.
Further, if either ξi ∈ A1, ξi+1 ∈ A2 or ξi ∈ A2, ξi+1 ∈ A1, then again |Ii| ≥ p + 2.

Case 1. (p = 1).



International Journal of Mathematics and Mathematical Sciences 5

Case 1.1 (|Ai| ≥ 1(i = 1, 2)). It follows that among I1, I2, . . . , Is there are |M| + 2 segments of
length at least p + 2. Observing also that each of the remaining s − (|M| + 2) segments has a
length at least 2, we have

|C| ≥ (p + 2
)
(|M| + 2) + 2(s − |M| − 2)

= 3(|M| + 2) + 2(|A1| + |A2| − 2)
= 2|A1| + 2|A2| + 3|M| + 2. (3.3)

Since |A1| = d(x) − |M| − 1 and |A2| = d(y) − |M| − 1,

|C| ≥ 2d(x) + 2d
(
y
) − |M| − 2 ≥ 3δ + d(x) − |M| − 2. (3.4)

Recalling that d(x) = |M| + |A1| + 1, we get

|C| ≥ 3δ + |A1| − 1 = 3δ + σ1 − 1. (3.5)

Analogously, |C| ≥ 3δ + σ2 − 1. So,

|C| ≥ 3δ +max{σ1, σ2} − 1 ≥ 3δ. (3.6)

Case 1.2 (either |A1| ≥ 1, |A2| = 0 or |A1| = 0, |A2| ≥ 1). Assume without loss of generality that
|A1| ≥ 1 and |A2| = 0, that is, |NC(y)| = |M| ≥ 2 and s = |A1| + |M|. Hence, among I1, I2, . . . , Is
there are |M| + 1 segments of length at least p + 2 = 3. Taking into account that each of the
remaining s − (|M| + 1) segments has a length at least 2 and |M| + 1 = d(y), we get

|C| ≥3(|M| + 1) + 2(s − |M| − 1) = 3d
(
y
)
+ 2(|A1| − 1)

≥3δ + |A1| − 1 = 3δ +max{σ1, σ2} − 1 ≥ 3δ.
(3.7)

Case 2 (p ≥ 2). We first prove that |C| ≥ 2p + 8. Since |NC(x)| ≥ 2 and |NC(y)| ≥ 2, there are
at least two segments among I1, I2, . . . , Is of length at least p + 2. If |M| = 0, then clearly s ≥ 4
and

|C| ≥ 2
(
p + 2

)
+ 2(s − 2) ≥ 2p + 8. (3.8)

Otherwise, since max{|A1|, |A2|} ≥ 1, there are at least three elementary segments of length at
least p + 2, that is,

|C| ≥ 3
(
p + 2

) ≥ 2p + 8. (3.9)

So, in any case, |C| ≥ 2p + 8.
To prove that |C| ≥ 4δ − 2p, we distinguish two main cases.
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Case 2.1 (|Ai| ≥ 1(i = 1, 2)). It follows that among I1, I2, . . . , Is there are |M| + 2 segments of
length at least p + 2. Further, since each of the remaining s − (|M| + 2) segments has a length
at least 2, we get

|C| ≥ (p + 2
)
(|M| + 2) + 2(s − |M| − 2)

=
(
p − 2)|M| + (

2p + 4|M| + 4
)
+ 2(|A1| + |A2| − 2)

≥ 2|A1| + 2|A2| + 4|M| + 2p.

(3.10)

Observing also that

|A1| + |M| + p ≥ d(x), |A2| + |M| + p ≥ d
(
y
)
, (3.11)

we have

2|A1| + 2|A2| + 4|M| + 2p ≥ 2d(x) + 2d
(
y
) − 2p ≥ 4δ − 2p, (3.12)

implying that |C| ≥ 4δ − 2p.

Case 2.2 (either |A1| ≥ 1, |A2| = 0 or |A1| = 0, |A2| ≥ 1). Assume without loss of generality
that |A1| ≥ 1 and |A2| = 0, that is, |NC(y)| = |M| ≥ 2 and s = |A1| + |M|. It follows that
among I1, I2, . . . , Is there are |M| + 1 segments of length at least p + 2. Observing also that
|M| + p ≥ d(y) ≥ δ, that is, 2p + 4|M| ≥ 4δ − 2p, we get

|C| ≥ (p + 2
)
(|M| + 1) ≥ (

p − 2)(|M| − 1) + 2p + 4|M|

≥ 2p + 4|M| ≥ 4δ − 2p.

(3.13)

Proof of Lemma 2.2. Let ξ1, ξ2, . . . , ξs be the elements of NC(x) occuring on C in a consecutive
order. Put Ii = ξi �Cξi+1(i = 1, 2, . . . , s), where ξs+1 = ξ1. To prove (a1), let L = z�Lw be an
intermediate path between elementary segments Ia and Ib with z ∈ V (I∗a) andw ∈ V (I∗

b
). Put

∣∣∣ξa �Cz
∣∣∣ = d1,

∣∣∣z �Cξa+1
∣∣∣ = d2,

∣∣∣ξb �Cw
∣∣∣ = d3,

∣∣∣w�Cξb+1
∣∣∣ = d4,

C′ = ξax �Pyξb
←
Cz�Lw �Cξa.

(3.14)

Clearly,

∣∣C′
∣∣ = |C| − d1 − d3 + |L| + |P | + 2. (3.15)
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Since C is extreme, we have |C| ≥ |C′|, implying that d1 + d3 ≥ p + |L| + 2. By a symmetric
argument, d2 + d4 ≥ p + |L| + 2. Hence

|Ia| + |Ib| =
4∑

i=1

di ≥ 2p + 2|L| + 4. (3.16)

The proof of (a1) is complete. To prove (a2), let Υ(Ia, Ib) ⊆ E(G) and |Υ(Ia, Ib)| = i for
some i ∈ {1, 2, 3}.

Case 1 (i = 1). It follows that Υ(Ia, Ib) consists of a unique intermediate edge L = zw. By (a1),

|Ia| + |Ib| ≥ 2p + 2|L| + 4 = 2p + 6. (3.17)

Case 2 (i = 2). It follows thatΥ(Ia, Ib) consists of two edges e1, e2. Put e1 = z1w1 and e2 = z2w2,
where {z1, z2} ⊆ V (I∗a) and {w1, w2} ⊆ V (I∗

b
).

Case 2.1 (z1 /= z2 and w1 /=w2). Assume without loss of generality that z1 and z2 occur in this
order on Ia.

Case 2.1.1. w2 and w1 occur in this order on Ib.
Put

∣∣∣ξa �Cz1
∣∣∣ = d1,

∣∣∣z1 �Cz2
∣∣∣ = d2,

∣∣∣z2 �Cξa+1
∣∣∣ = d3,

∣∣∣ξb �Cw2

∣∣∣ = d4,
∣∣∣w2 �Cw1

∣∣∣ = d5,
∣∣∣w1 �Cξb+1

∣∣∣ = d6,

C′ = ξa �Cz1w1
←
Cw2z2 �Cξbx �Pyξb+1 �Cξa.

(3.18)

Clearly,
∣∣C′

∣∣ =|C| − d2 − d4 − d6 + |{e1}| + |{e2}| + |P | + 2

=|C| − d2 − d4 − d6 + p + 4.
(3.19)

Since C is extreme, |C| ≥ |C′|, implying that d2 + d4 + d6 ≥ p + 4. By a symmetric argument,
d1 + d3 + d5 ≥ p + 4. Hence

|Ia| + |Ib| =
6∑

i=1

di ≥ 2p + 8. (3.20)

Case 2.1.2. w1 and w2 occur in this order on Ib.
Putting

C′ = ξa �Cz1w1 �Cw2z2 �Cξbx �Pyξb+1 �Cξa, (3.21)

we can argue as in Case 2.1.1.
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Case 2.2 (either z1 = z2, w1 /=w2 or z1 /= z2, w1 = w2). Assume without loss of generality that
z1 /= z2, w1 = w2 and z1, z2 occur in this order on Ia. Put

∣
∣
∣ξa �Cz1

∣
∣
∣ = d1,

∣
∣
∣z1 �Cz2

∣
∣
∣ = d2,

∣
∣
∣z2 �Cξa+1

∣
∣
∣ = d3,

∣
∣
∣ξb �Cw1

∣
∣
∣ = d4,

∣
∣
∣w1 �Cξb+1

∣
∣
∣ = d5,

C′ = ξax �Pyξb
←
Cz1w1 �Cξa,

C′′ = ξa �Cz2w1
←
Cξa+1x �Pyξb+1 �Cξa.

(3.22)

Clearly,

∣∣C′
∣∣ = |C| − d1 − d4 + |{e1}| + |P | + 2 = |C| − d1 − d4 + p + 3,

∣∣C′′
∣∣ = |C| − d3 − d5 + |{e2}| + |P | + 2 = |C| − d3 − d5 + p + 3.

(3.23)

Since C is extreme, |C| ≥ |C′| and |C| ≥ |C′′|, implying that

d1 + d4 ≥ p + 3, d3 + d5 ≥ p + 3. (3.24)

Hence,

|Ia| + |Ib| =
5∑

i=1

di ≥ d1 + d3 + d4 + d5 + 1 ≥ 2p + 7. (3.25)

Case 3 (i = 3). It follows that Υ(Ia, Ib) consists of three edges e1, e2, e3. Let ei = ziwi (i =
1, 2, 3), where {z1, z2, z3} ⊆ V (I∗a) and {w1, w2, w3} ⊆ V (I∗

b
). If there are two independent

edges among e1, e2, e3, then we can argue as in Case 2.1. Otherwise, we can assume without
loss of generality that w1 = w2 = w3 and z1, z2, z3 occur in this order on Ia. Put

∣∣∣ξa �Cz1
∣∣∣ = d1,

∣∣∣z1 �Cz2
∣∣∣ = d2,

∣∣∣z2 �Cz3
∣∣∣ = d3,

∣∣∣z3 �Cξa+1
∣∣∣ = d4,

∣∣∣ξb �Cw1

∣∣∣ = d5,
∣∣∣w1 �Cξb+1

∣∣∣ = d6,

C′ = ξax �Pyξb
←
Cz1w1 �Cξa,

C′′ = ξa �Cz3w1
←
Cξa+1x �Pyξb+1 �Cξa.

(3.26)

Clearly,

∣∣C′
∣∣ = |C| − d1 − d5 + |{e1}| + p + 2,

∣∣C′′
∣∣ = |C| − d4 − d6 + |{e3}| + p + 2.

(3.27)
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Since C is extreme, we have |C| ≥ |C′| and |C| ≥ |C′′|, implying that

d1 + d5 ≥ p + 3, d4 + d6 ≥ p + 3. (3.28)

Hence,

|Ia| + |Ib| =
6∑

i=1

di ≥ d1 + d4 + d5 + d6 + 2 ≥ 2p + 8. (3.29)

Proof of Lemma 2.3. Put

V (H) = {v1, . . . , vh}, |N(vi) ∩ S| = βi (i = 1, . . . , h). (3.30)

Observing that h ≥ d(vi) − βi + 1 ≥ δ − βi + 1 for each i ∈ {1, 2, . . . , h}, we have βi ≥
δ − h + 1 (i = 1, 2, . . . , h). Therefore,

qH =q(H) +
h∑

i=1

βi =
1
2

h∑

i=1

dH(vi) +
h∑

i=1

βi,

=
1
2

h∑

i=1

(
dH(vi) + βi

)
+
1
2

h∑

i=1

βi =
1
2

h∑

i=1

d(vi) +
1
2

h∑

i=1

(δ − h + 1),

≥1
2
hδ +

1
2
h(δ − h + 1) =

h(2δ − h + 1)
2

.

(3.31)

Proof of Lemma 2.4. Let C be a longest cycle in G and P = x1 �Px2 a longest path in G\C of
length p. If |V (P)| ≤ 1, then C is a dominating cycle and we are done. Let |V (P)| ≥ 2, that is,
p ≥ 1. By the hypothesis, |C| + p + 1 ≤ n ≤ 3δ + 2. Further, by Theorem D, |C| ≥ 2δ. From these
inequalities, we get

n ≤ 3δ + 2, |C| ≤ 3δ − p + 1, 1 ≤ p ≤ δ + 1. (3.32)

Let ξ1, ξ2, . . . , ξs be the elements of NC(x1) ∪ NC(x2) occuring on C in a consecutive
order. Put

Ii = ξi �Cξi+1, I∗i = ξ+i
�Cξ−i+1 (i = 1, 2, . . . , s), (3.33)

where ξs+1 = ξ1.
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Case 1 (δ = 2). Let Q be a longest path in G with Q = ξ �Qη and V (Q) ∩ V (C) = {ξ, η}. Since C
is extreme, we have |ξ �Cη| ≥ |Q| and |η �Cξ| ≥ |Q|, implying that

|C| =
∣
∣
∣ξ �Cη

∣
∣
∣ +

∣
∣
∣η �Cξ

∣
∣
∣ ≥ 2|Q|. (3.34)

Since κ ≥ 2 and p ≥ 1, we have |Q| ≥ 3. By (3.34), |C| ≥ 2|Q| ≥ 6, implying that q ≥ |C|+ |Q| ≥ 9.

Case 2. (δ ≥ 3).

Case 2.1 (p = 1). By (3.32),

|C| ≤ 3δ. (3.35)

Case 2.1.1 (NC(x1)/=NC(x2)). It follows that max{σ1, σ2} ≥ 1, where

σ1 = |NC(x1)\NC(x2)|, σ2 = |NC(x2)\NC(x1)|. (3.36)

By Lemma 2.1, |C| ≥ 3δ. Recalling (3.35), we get |C| = 3δ. If max{σ1, σ2} ≥ 2, then by
Lemma 2.1, |C| ≥ 3δ + 1, contradicting (3.35). Let max{σ1, σ2} = 1. Clearly, s ≥ δ and
|Ii| ≥ 3 (i = 1, 2, . . . , s). Further, if s ≥ δ + 1, then |C| ≥ 3s ≥ 3δ + 3, again contradicting
(3.35). Let s = δ, implying that |Ii| = 3 (i = 1, 2, . . . , s). By Lemma 2.2, Υ(I1, I2, . . . , Is) = ∅. Let
H1,H2, . . . ,Hs+1 be the connected components of G\{ξ1, ξ2, . . . , ξs} with V (Hi) = V (I∗i ) (i =
1, 2, . . . , s) and V (Hs+1) = {x1, x2}. For each i ∈ {1, 2, . . . , s + 1}, put

hi = |V (Hi)|, qi =
∣∣{xy ∈ E(G) :

{
x, y

} ∩ V (Hi)/= ∅
}∣∣. (3.37)

Clearly, hi = 2 (i = 1, 2, . . . , s + 1). By Lemma 2.3,

qi ≥ hi(2δ − hi + 1)
2

= 2δ − 1 (i = 1, 2, . . . , s + 1), (3.38)

implying that

q ≥
s+1∑

i=1

qi ≥ (s + 1)(2δ − 1) = (δ + 1)(2δ − 1) > 3(δ − 1)(δ + 2)
2

. (3.39)

Case 2.1.2 (NC(x1) = NC(x2)). Clearly, s ≥ δ − 1. If s ≥ δ, then we can argue as in Case 2.1.1.
Let s = δ−1. Further, if |Ii|+|Ij | ≥ 10 for some distinct i, j ∈ {1, 2, . . . , s}, then |C| ≥ 10+3(s−2) =
3δ + 1, contradicting (3.35). Hence

|Ii| +
∣∣Ij

∣∣ ≤ 9 for each distinct i, j ∈ {1, 2, . . . , s}. (3.40)
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Claim 1. Υ(I1, I2, . . . , Is) ⊆ E(G) and

(1) if maxi|Ii| ≤ 4 then |Υ(I1, I2, . . . , Is)| ≤ 3,

(2) if maxi|Ii| = 5 then |Υ(I1, I2, . . . , Is)| ≤ δ − 1,
(3) if maxi|Ii| = 6 then |Υ(I1, I2, . . . , Is)| ≤ 2(δ − 2).

Proof. If Υ(I1, I2, . . . , Is) = ∅ then we are done. Otherwise, Υ(Ia, Ib)/= ∅, for some distinct a, b ∈
{1, 2, . . . , s}. By definition, there is an intermediate path L between Ia and Ib. If |L| ≥ 2, then
by Lemma 2.2,

|Ia| + |Ib| ≥ 2p + 2|L| + 4 ≥ 10, (3.41)

contradicting (3.40). Otherwise, |L| = 1 and therefore, Υ(I1, I2, . . . , Is) ⊆ E(G). By Lemma 2.2,
|Ia| + |Ib| ≥ 2p + 6 = 8. Combining this with (3.40), we have

8 ≤ |Ia| + |Ib| ≤ 9. (3.42)

Furthermore, if |Υ(Ia, Ib)| ≥ 3, then by Lemma 2.2, |Ia|+ |Ib| ≥ 2p+ 8 = 10, contradicting (3.42).
So,

1 ≤ ∣∣Υ
(
Ii, Ij

)∣∣ ≤ 2 for each distinct i, j ∈ {1, 2, . . . , s}. (3.43)

Put r = |{i : |Ii| ≥ 4}|. If r ≥ 4, then |C| ≥ 16 + 3(s − 4) = 3δ + 1, contradicting (3.35). Further, if
r = 0, then by Lemma 2.2, Υ(I1, I2, . . . , Is) = ∅. Let 1 ≤ r ≤ 3.

Case a1 (r = 3). It follows that |Ii| ≥ 4 (i = a, b, c) for some distinct a, b, c ∈ {1, 2, . . . , s}
and |Ii| = 3 for each i ∈ {1, 2, . . . , s} \ {a, b, c}. Recalling that s = δ − 1 and |C| = 3δ, we
have |Ia| = |Ib| = |Ic| = 4, that is, maxi|Ii| = 4. By Lemma 2.2, |Υ(Ii, Ij)| ≤ 1 for each distinct
i, j ∈ {a, b, c}. Moreover, we have |Υ(Ii, Ij)| = 0 if either i /∈ {a, b, c} or j /∈ {a, b, c}. So,

|Υ(I1, I2, . . . , Is)| = |Υ(Ia, Ib, Ic)| ≤ 3. (3.44)

Case a2 (r = 2). It follows that |Ia| ≥ 4 and |Ib| ≥ 4 for some distinct a, b ∈ {1, 2, . . . , s} and
|Ii| = 3 for each i ∈ {1, 2, . . . , s}\{a, b}. By (3.42), we can assume without loss of generality
that either |Ia| = |Ib| = 4 or |Ia| = 5, |Ib| = 4.

Case a2.1 (|Ia| = |Ib| = 4). It follows that maxi|Ii| = 4. By Lemma 2.2, |Υ(Ia, Ib)| ≤ 1 and
Υ(Ii, Ij) = ∅ if {i, j}/= {a, b}, implying that |Υ(I1, I2, . . . , Is)| = |Υ(Ia, Ib)| ≤ 1.

Case a2.2 (|Ia| = 5, |Ib| = 4). It follows that maxi|Ii| = 5. By Lemma 2.2, we have |Υ(Ia, Ib)| ≤ 2
and |Υ(Ia, Ii)| ≤ 1 for each i ∈ {1, 2, . . . , s}\{a, b}. Furthermore, Υ(Ii, Ij) = ∅ if a /∈ {i, j}. Thus,
|Υ(I1, I2, . . . , Is)| ≤ δ − 1.
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Case a3 (r = 1). It follows that |Ia| ≥ 4 for some a ∈ {1, 2, . . . , s} and |Ii| = 3 for each i ∈
{1, 2, . . . , s}\{a}. By (3.42), 4 ≤ |Ia| ≤ 6.

Case a3.1 (|Ia| = 4). It follows that maxi|Ii| = 4. By Lemma 2.2, Υ(Ia, Ii) = ∅ for each i ∈
{1, 2, . . . , s}\{a}, implying that |Υ(I1, I2, . . . , Is)| = 0.

Case a3.2 (|Ia| = 5). It follows that maxi|Ii| = 5. By Lemma 2.2, |Υ(Ia, Ii)| ≤ 1 for each i ∈
{1, 2, . . . , s}\{a} and Υ(Ii, Ij) = ∅ if a /∈ {i, j}, that is, |Υ(I1, I2, . . . , Is)| ≤ δ − 2.

Case a3.3 (|Ia| = 6). It follows that maxi|Ii| = 6. By Lemma 2.2, |Υ(Ia, Ii)| ≤ 2 for each i ∈
{1, 2, . . . , s}\{a} and Υ(Ii, Ij) = ∅ if a /∈ {i, j}, that is, |Υ(I1, I2, . . . , Is)| ≤ 2(δ − 2). Claim 1 is
proved.

Let e ∈ Υ(I1, I2, . . . , Is) and let e = zw, where z ∈ V (I∗a) and w ∈ V (I∗b) for some
distinct a, b ∈ {1, 2, . . . , s}. Put G′ = G\e. Form a graph G′′ in the following way. If d(z) ≥ δ
and d(w) ≥ δ in G′ then we take G′′ = G′. Next, suppose that d(z) = δ − 1 and d(w) ≥ δ in G′.
Put

U1 = ({ξ1, ξ2, . . . , ξs} ∪ V (I∗a))\{z}, U2 =
({ξ1, ξ2, . . . , ξs} ∪ V

(
I∗b
))\{w}. (3.45)

If U1 ⊆ N(z), then clearly d(z) ≥ |U1| = δ in G′, contradicting the hypothesis. Otherwise,
zv /∈ E(G′) for some v ∈ U1 and we take G′′ = G′ + {zv}. Finally, if d(z) = d(w) = δ − 1, then
as above, zv /∈ E(G′) andwu /∈ E(G′) for some v ∈ U1, u ∈ U2 andwe takeG′′ = G′+{zv,wu}.
Clearly, δ(G′′) = δ(G) and q = q(G) ≥ q(G′′)− 1. This procedure may be repeated for all edges
of Υ(I1, I2, . . . , Is). The resulting graph G∗ satisfies the following conditions:

δ(G∗) = δ(G), q(G) ≥ q(G∗) − |Υ(I1, I2, . . . , Is)|. (3.46)

In fact,

G∗ = (G\Υ(I1, I2, . . . , Is)) + E∗, (3.47)

where E∗ consists of at most 2|Υ(I1, I2, . . . , Is)| appropriate new edges such that
G∗\{ξ1, ξ2, . . . , ξs} is disconnected. Let H1,H2, . . . ,Ht be the connected components of G∗ \
{ξ1, ξ2, . . . , ξs} with V (I∗i ) ⊆ V (Hi) (i = 1, 2, . . . , s) and V (Hs+1) = {x1, x2}. For each i ∈
{1, 2, . . . , s + 1}, put

hi = |V (Hi)|, qi =
∣∣{xy ∈ E(G∗) :

{
x, y

} ∩ V (Hi)/= ∅
}∣∣. (3.48)

Clearly, hi ≥ 2 (i = 1, 2, . . . , s + 1). If hi ≥ 6 for some i ∈ {1, 2, . . . , s}, then

n ≥
s+1∑

i=1

hi + |{ξ1, ξ2, . . . , ξs}| ≥ 6 + 3s = 3δ + 3, (3.49)
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contradicting (3.32). Otherwise, 2 ≤ hi ≤ 5 ≤ 2δ − 1 (i = 1, 2, . . . , s + 1). It follows that (hi − 2)
(2δ − hi − 1) ≥ 0 which is equivalent to

hi(2δ − hi + 1)
2

≥ 2δ − 1 (i = 1, 2, . . . , s + 1). (3.50)

Case 2.1.2.1 (maxi|Ii| ≤ 4). By (3.50) and Lemma 2.3, qi(G∗) ≥ 2δ − 1 (i = 1, 2, . . . , s + 1). Hence

q(G∗) ≥
s+1∑

i=1

qi(G∗) ≥ (s + 1)(2δ − 1) = δ(2δ − 1). (3.51)

Using (3.46) and Claim 1, we have

q ≥ q(G∗) − 3 ≥ δ(2δ − 1) − 3 ≥ 3(δ − 1)(δ + 2)
2

. (3.52)

Case 2.1.2.2 (maxi|Ii| = 5). Assume without loss of generality that maxi|Ii| = |I1| = 5, that is,
4 ≤ h1 ≤ 5. By (3.50) and Lemma 2.3, qi(G∗) ≥ 2δ − 1 (i = 2, . . . , s + 1) and

q1(G∗) ≥ h1(2δ − h1 + 1)
2

≥ 2(2δ − 3). (3.53)

Hence

q(G∗) ≥ s(2δ − 1) + 2(2δ − 3) = 2δ2 + δ − 5. (3.54)

By (3.46) and Claim 1,

q ≥ q(G∗) − (δ − 1) ≥ 2δ2 − 4 >
3(δ − 1)(δ + 2)

2
. (3.55)

Case 2.1.2.3 (maxi|Ii| = 6). Assume without loss of generality that maxi|Ii| = |I1| = 6, that is,
h1 = 5. By (3.50) and Lemma 2.3, qi(G∗) ≥ 2δ − 1 (i = 2, . . . , s + 1) and

q1(G∗) ≥ h1(2δ − h1 + 1)
2

= 5(δ − 2). (3.56)

Hence

q(G∗) ≥ s(2δ − 1) + 5(δ − 2) = 2δ2 + 2δ − 9. (3.57)

By (3.46) and Claim 1,

q ≥ q(G∗) − 2(δ − 2) ≥ 2δ2 − 5 >
3(δ − 1)(δ + 2)

2
. (3.58)
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Case 2.2 (p ≥ 2). According to (3.32), we can distinguish five main cases, namely, 2 ≤ p ≤ δ−3,
p = δ − 2, p = δ − 1, p = δ, and p = δ + 1.

Case 2.2.1 (2 ≤ p ≤ δ − 3). It follows that |NC(xi)| ≥ δ − p ≥ 3 (i = 1, 2) and

δ ≥ 5, δ − p ≥ 3. (3.59)

If NC(x1)/=NC(x2), then by (3.59) and Lemma 2.1, |C| ≥ 4δ − 2p ≥ 3δ − p + 3, contradicting
(3.32). Let NC(x1) = NC(x2). Clearly, s ≥ |NC(x1)| − (|V (P)| − 1) ≥ δ − p and |Ii| ≥ p + 2 (i =
1, 2, . . . , s). If s ≥ δ − p + 1, then

|C| ≥ s(p + 2
) ≥ (

δ − p + 1
)(
p + 2

)
,

=
(
δ − p − 1)(p − 1) + 3δ − p + 1 ≥ 3δ − p + 3,

(3.60)

again contradicting (3.32). Let s = δ − p. It means that x1x2 ∈ E(G), that is, G[V (P)] is
hamiltonian. By symmetric arguments, NC(y) = NC(x1) for each y ∈ V (P). Assume that
Υ(I1, I2, . . . , Is)/= ∅, that is, Υ(Ia, Ib)/= ∅ for some elementary segments Ia and Ib. By the defini-
tion, there is an intermediate path L between Ia and Ib. If |L| ≥ 2, then by Lemma 2.2

|Ia| + |Ib| ≥ 2p + 2|L| + 4 ≥ 2p + 8. (3.61)

Hence

|C| =|Ia| + |Ib| +
∑

i∈{1,...,s}\{a,b}
|Ii| ≥ 2p + 8 + (s − 2)(p + 2

)
,

=
(
δ − p − 2)(p − 1) + 3δ − p + 2 ≥ 3δ − p + 3,

(3.62)

contradicting (3.32). Thus, |L| = 1, that is, Υ(I1, I2, . . . , Is) ⊆ E(G). By Lemma 2.2,

|Ia| + |Ib| ≥ 2p + 2|L| + 4 = 2p + 6, (3.63)

which yields

|C| =|Ia| + |Ib| +
∑

i∈{1,...,s}\{a,b}
|Ii| ≥ 2p + 6 + (s − 2)(p + 2

)

=(s − 2)(p − 2) + 4δ − 2p − 2 ≥ 3δ − p − 2 + (
δ − p).

(3.64)

If δ − p ≥ 4, then |C| ≥ 3δ − p + 2, contradicting (3.32). Let δ − p ≤ 3. Recalling (3.59), we have
δ − p = 3, that is, p = δ − 3 and s = δ − p = 3. Hence, |C| ≥ s(p + 2) = 3(δ − 1). On the other
hand, by (3.32) and the fact that p ≥ 2, we have |C| ≤ 3δ − p + 1 ≤ 3δ − 1. Thus

3δ − 3 ≤ |C| ≤ 3δ − 1. (3.65)
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PutG′ = G\Υ(I1, I2, I3). As in Case 2.1.2, form a graphG∗ by adding at most 2|Υ(I1, I2, I3)| new
edges in G′ such that δ(G∗) = δ(G) and G∗ \{ξ1, ξ2, ξ3} are disconnected. We denote G∗ = G
immediately if Υ(I1, I2, I3) = ∅. Hence

q(G) ≥ q(G∗) − |Υ(I1, I2, I3)|. (3.66)

Let H1,H2, . . . ,Ht be the connected components of G∗ \{ξ1, ξ2, ξ3} with V (I∗i ) ⊆ V (Hi)(i =
1, 2, 3) and V (P) ⊆ V (H4). Since x1x2 ∈ E(G) (i.e., G[V (P)] is hamiltonian) and P is extreme,
we have V (H4) = V (P). Using notation (3.48) for G∗, we have hi ≥ |Ii| − 1 ≥ p + 1 = δ − 2 (i =
1, 2, 3) and h4 = δ − 2. If hi ≥ δ + 1 for some i ∈ {1, 2, 3}, then

n ≥ h1 + h2 + h3 + h4 + s ≥ 4δ − 2. (3.67)

By (3.59), δ ≥ 5, implying that 4δ − 2 ≥ 3δ + 3 and n ≥ 3δ + 3, contradicting (3.32). Let
δ − 2 ≤ hi ≤ δ (i = 1, 2, 3, 4). It follows that

hi(2δ − hi + 1)
2

≥ (δ − 2)(δ + 3)
2

(i = 1, 2, 3, 4). (3.68)

By Lemma 2.3, qi(G∗) ≥ (δ − 2)(δ + 3)/2 (i = 1, 2, 3, 4), implying that

q(G∗) ≥
4∑

i=1

qi(G∗) ≥ 2(δ − 1)(δ + 3). (3.69)

If |Υ(I1, I2, I3)| ≥ 4, then |Υ(Ia, Ib)| ≥ 2 for some distinct a, b ∈ {1, 2, 3}. By Lemma 2.2

|Ia| + |Ib| ≥ 2p + 7 = 2δ + 1 (3.70)

and hence |C| ≥ 3δ, contradicting (3.65). So, |Υ(I1, I2, I3)| ≤ 3. By (3.66) and (3.69),

q ≥ q(G∗) − 3 ≥ 2(δ − 1)(δ + 3) − 3 ≥ 3(δ − 1)(δ + 2)
2

. (3.71)

Case 2.2.2 (p = δ − 2). It follows that |NC(xi)| ≥ δ − p = 2 (i = 1, 2). By (3.32),

|C| ≤ 3δ + 1 − p = 2δ + 3. (3.72)

If NC(x1)/=NC(x2), then by Lemma 2.1, |C| ≥ 4δ − 2p = 2δ + 4, contradicting (3.72). Let
NC(x1) = NC(x2). Further, if s ≥ 3, then

|C| ≥ s
(
p + 2

) ≥ 3δ = 2δ +
(
p + 2

) ≥ 2δ + 4, (3.73)

again contradicting (3.72). Let s = 2. It follows that x1x2 ∈ E(G), that is, G[V (P)] is
hamiltonian. By symmetric arguments,NC(y) = NC(x1) = {ξ1, ξ2} for each y ∈ V (P). Clearly,
|Ii| ≥ p + 2 = δ (i = 1, 2).
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Case 2.2.2.1 (Υ(I1, I2) = ∅). It follows that G\{ξ1, ξ2} is disconnected. Let H1,H2, . . . ,Ht be
the connected components of G\{ξ1, ξ2} with V (I∗i ) ⊆ V (Hi) (i = 1, 2) and V (P) ⊆ V (H3).
Since P is extreme and G[V (P)] is hamiltonian, we have V (H3) = V (P). By notation (3.48),
hi ≥ |Ii| − 1 ≥ δ − 1 (i = 1, 2) and h3 = δ − 1. If hi ≥ δ + 3 for some i ∈ {1, 2}, then

n ≥ h1 + h2 + h3 + |{ξ1, ξ2}| ≥ 3δ + 3, (3.74)

contradicting (3.32). So, δ − 1 ≤ hi ≤ δ + 2 (i = 1, 2, 3). By Lemma 2.3,

qi ≥ hi(2δ − hi + 1)
2

≥ (δ − 1)(δ + 2)
2

(i = 1, 2, 3). (3.75)

Hence,

q ≥
3∑

i=1

qi ≥ 3(δ − 1)(δ + 2)
2

. (3.76)

Case 2.2.2.2 (Υ(I1, I2)/= ∅). By definition, there is an intermediate path L between I1 and I2. If
|L| ≥ 2, then by Lemma 2.2

|C| = |I1| + |I2| ≥ 2p + 2|L| + 4 ≥ 2δ + 4, (3.77)

contradicting (3.72). Otherwise, Υ(I1, I2) ⊆ E(G). Further, if |Υ(I1, I2)| ≥ 3, then by Lemma 2.2

|C| = |I1| + |I2| ≥ 2p + 8 = 2δ + 4, (3.78)

again contradicting (3.72). Thus |Υ(I1, I2)| ≤ 2.

Case 2.2.2.2.1 (|Υ(I1, I2)| = 1). Put G′ = G\Υ(I1, I2). As in Case 2.1.2, form a graph G∗ by
adding at most two new edges in G′ such that δ(G∗) = δ(G), G∗ \ {ξ1, ξ2} is disconnected
and q(G) ≥ q(G∗) − 1. Let H1,H2, . . . ,Ht be the connected components of G∗ \{ξ1, ξ2} with
V (I∗i ) ⊆ V (Hi) (i = 1, 2) and V (P) = V (H3). Using notation (3.48) for G∗, as in Case 2.2.2.1,
we have δ − 1 ≤ hi ≤ δ + 2 (i = 1, 2, 3). By Lemma 2.2, |I1| + |I2| ≥ 2p + 6 = 2δ + 2. It means
that maxi|Ii| ≥ δ + 1, that is, maxihi ≥ δ. Assume without loss of generality that h1 ≥ δ. By
Lemma 2.3,

q1(G∗) ≥ h1(2δ − h1 + 1)
2

≥ δ(δ + 1)
2

,

qi(G∗) ≥ hi(2δ − hi + 1)
2

≥ (δ − 1)(δ + 2)
2

(i = 2, 3),

(3.79)
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implying that

q(G∗) ≥ δ(δ + 1)
2

+ (δ − 1)(δ + 2). (3.80)

Hence

q ≥ q(G∗) − 1 ≥ δ(δ + 1)
2

+ (δ − 1)(δ + 2) − 1 ≥ 3(δ − 1)(δ + 2)
2

. (3.81)

Case 2.2.2.2.2 (|Υ(I1, I2)| = 2). By Lemma 2.2,

|C| = |I1| + |I2| ≥ 2p + 7 = 2δ + 3. (3.82)

Recalling (3.72), we get |C| = 2δ + 3 and V (G) = V (P∪C). PutG′ = G\Υ(I1, I2). As in Case 2.1.2,
form a graph G∗ by adding at most four new edges in G′ such that δ(G∗) = δ(G), G∗\{ξ1, ξ2}
is disconnected and q(G) ≥ q(G∗) − 2. Let H1,H2, and H3 be the connected components
of G∗ \{ξ1, ξ2} with V (Hi) = V (I∗i )(i = 1, 2) and V (H3) = V (P). Using notation (3.48) for
G∗, we have as in Case 2.2.2.1, δ − 1 ≤ hi ≤ δ + 2 (i = 1, 2, 3). Since |Ii| ≥ δ (i = 1, 2) and
|C| = |I1| + |I2| = 2δ + 3, we can assume without loss of generality that either |I1| = δ + 2,
|I2| = δ + 1 or |I1| = δ + 3, |I2| = δ.

Case 2.2.2.2.2.1 (|I1| = δ + 2, |I2| = δ + 1). It follows that h1 = δ + 1, h2 = δ and h3 = δ − 1. By
Lemma 2.3,

qi(G∗) ≥ hi(2δ − hi + 1)
2

=
δ(δ + 1)

2
(i = 1, 2),

q3(G∗) ≥ h3(2δ − h3 + 1)
2

=
(δ − 1)(δ + 2)

2
.

(3.83)

Hence

q ≥
3∑

i=1

qi(G∗) − 2 ≥ δ(δ + 1) − 2 + (δ − 1)(δ + 2)
2

=
3(δ − 1)(δ + 2)

2
. (3.84)

Case 2.2.2.2.2.2 (|I1| = δ + 3, |I2| = δ). Let Υ(I1, I2) = {e1, e2}, where

e1 = y1z1, e2 = y2z2,
{
y1, y2

} ⊆ V
(
I∗1
)
, {z1, z2} ⊆ V

(
I∗2
)
. (3.85)

If y1 /=y2 and z1 /= z2, then as in proof of Lemma 2.2 (Case 2.1),

|C| = |I1| + |I2| ≥ 2p + 8 = 2(δ − 2) + 8 = 2δ + 4, (3.86)

contradicting (3.72). Let either y1 /=y2 and z1 = z2 or y1 = y2 and z1 /= z2.
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Case 2.2.2.2.2.2.1 (y1 /=y2 and z1 = z2). Assume without loss of generality that y1, y2 occur on
I1 in this order. If y2 = y+

1 , then

|C| ≥
∣
∣
∣ξ1 �Cy1z1y2 �Cξ2x2

←
P x1ξ1

∣
∣
∣ = 2δ + 4, (3.87)

contradicting (3.72). Let y2 /=y+
1 , that is, |y1 �Cy2| ≥ 2. Put

C′ = ξ1 �Cy2z1
←
Cξ2x2

←
P x1ξ1,

C′′ = ξ1
←
Cz1y1 �Cξ2x2

←
P x1ξ1.

(3.88)

Clearly,

|C| ≥ ∣∣C′
∣∣ =

∣∣∣ξ1 �Cy1

∣∣∣ +
∣∣∣y1 �Cy2

∣∣∣ + |{e2}| +
∣∣∣ξ2 �Cz1

∣∣∣ +
(
p + 2

)
,

|C| ≥ ∣∣C′′
∣∣ =

∣∣∣ξ1
←
Cz1

∣∣∣ + |{e1}| +
∣∣∣y1 �Cy2

∣∣∣ +
∣∣∣y2 �Cξ2

∣∣∣ +
(
p + 2

)
.

(3.89)

By summing and observing that

∣∣∣ξ1 �Cy1

∣∣∣ +
∣∣∣y1 �Cy2

∣∣∣ +
∣∣∣y2 �Cξ2

∣∣∣ +
∣∣∣ξ2 �Cz1

∣∣∣ +
∣∣∣z1 �Cξ1

∣∣∣ = |C|, (3.90)

we get

2|C| ≥ |C| +
∣∣∣y1 �Cy2

∣∣∣ + 2
(
p + 2

)
+ 2 ≥ |C| + 2δ + 4. (3.91)

Hence |C| ≥ 2δ + 4, again contradicting (3.72).

Case 2.2.2.2.2.2.2 (y1 = y2 and z1 /= z2). Assume without loss of generality that z2, z1 occur on
I2 in this order.

Case 2.2.2.2.2.2.2.1 (δ ≥ 6). If |ξ1 �Cy1| ≥ δ − 1 and |y1 �Cξ2| ≥ δ − 1, then |I1| ≥ 2δ − 2 ≥ δ + 4,
contradicting the hypothesis. Thus, we can assume without loss of generality that |ξ1 �Cy1| ≤
δ − 2. If y−1 = ξ1, then

|C| ≥
∣∣∣ξ1

←
Cz2y1 �Cξ2x2

←
P x1ξ1

∣∣∣ ≥ 2δ + 5, (3.92)
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contradicting (3.72). Let y−1 /= ξ1, that is, y−1 ∈ V (I∗1). Since Υ(I1, I2) = {y1z1, y1z2}, we have
N(y−1 ) ⊂ V (I1). If N(y−1 ) ∩ V (y+

1
�Cξ−2 ) = ∅, then |N(y−1 )| ≤ δ − 1, a contradiction. Otherwise,

y−1w ∈ E(G) for some w ∈ V (y+
1
�Cξ−2 ). Put

R = ξ1 �Cy
−
1w

←
Cy1,

C′ = ξ1 �Ry1z1
←
Cξ2x2

←
P x1ξ1,

C′′ = ξ1
←
Cz2y1 �Cξ2x2

←
P x1ξ1.

(3.93)

Clearly,

|C| ≥ ∣
∣C′

∣
∣ = |R| + ∣

∣{y1z1
}∣∣ +

∣
∣
∣z1

←
Cξ2

∣
∣
∣ +

(
p + 2

)
,

|C| ≥ ∣∣C′′
∣∣ =

∣∣∣ξ1
←
Cz1

∣∣∣ +
∣∣∣z1

←
Cz2

∣∣∣ +
∣∣{y1z2

}∣∣ +
∣∣∣y1 �Cξ2

∣∣∣ +
(
p + 2

)
.

(3.94)

By summing and observing that |R| ≥ |ξ1 �Cy1| + 1, we get

2|C| ≥
(∣∣∣ξ1 �Cy1

∣∣∣ +
∣∣∣y1 �Cξ2

∣∣∣ +
∣∣∣ξ2 �Cz1

∣∣∣ +
∣∣∣z1 �Cξ1

∣∣∣
)
+ 2

(
p + 2

)
+ 4 = |C| + 2δ + 4. (3.95)

Hence |C| ≥ 2δ + 4, contradicting (3.72).

Case 2.2.2.2.2.2.2.2 (δ = 5). It follows that

|I1| = δ + 3 = 8, |I2| = δ = 5, |C| = 2δ + 3 = 13. (3.96)

If either |ξ1 �Cy1| ≤ δ − 2 = 3 or |y1 �Cξ2| ≤ δ − 2 = 3, then we can argue as in Case 2.2.2.2.2.2.2.1.

Otherwise, |ξ1 �Cy1| = |y1 �Cξ2| = 4. If |z1
←
Cξ2| ≥ 4, then

∣∣∣ξ1 �Cy1z1
←
Cξ2x2

←
P x1ξ1

∣∣∣ ≥ 14 > |C|, (3.97)

a contradiction. Let |z1
←
C ξ2| ≤ 3. Similarly, |ξ1

←
C z2| ≤ 3, implying that I2 = ξ2ξ

+
2z2z1z

+
1 ξ1. If

z+1z2 ∈ E(G), then

∣∣∣ξ1 �Cy1z1z
+
1z2

←
Cξ2x2

←
P x1ξ1

∣∣∣ = 14 > |C|, (3.98)

a contradiction. So,N(z+1 ) ⊆ {ξ1, ξ2, z1, ξ+2 }, again a contradiction, since |N(z+1 )| ≥ δ = 5.

Case 2.2.2.2.2.2.2.3 (δ = 4). It follows that

|I1| = δ + 3 = 7, |I2| = δ = 4, |C| = 2δ + 3 = 11. (3.99)
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Since |I1| = 7, we have either |ξ1 �Cy1| ≥ 4 or |y1 �Cξ2| ≥ 4, say |ξ1 �Cy1| ≥ 4. Put

C′ = ξ1 �Cy1z1
←
Cξ2x2

←
P x1ξ1. (3.100)

If |ξ1 �Cy1| ≥ 5, then |C′| ≥ 12 > |C|, a contradiction. This means that |ξ1 �Cy1| = 4. If |z1 �Cξ1| = 1
then |C′| ≥ 12 > |C|, a contradiction. Let |z1 �Cξ1| ≥ 2. Since |I2| = 4, we have |z1 �Cξ1| = 2, that is,
I2 = ξ2z2z1z

+
1 ξ1. Further, if z

+
1z2 ∈ E(G), then

∣
∣
∣ξ1 �Cy1z1z

+
1z2ξ2x2

←
P x1ξ1

∣
∣
∣ = 12 > |C|, (3.101)

a contradiction. Let z+1z2 /∈ E(G). Since |Υ(I1, I2)| = 2, we haveN(z+1 ) ⊆ {ξ1, ξ2, z1}, contradict-
ing the fact that |N(z+1 )| ≥ δ = 4.

Case 2.2.3 (p = δ − 1). By (3.32),

|C| ≤ 3δ + 1 − p = 2δ + 2. (3.102)

It follows that |NC(xi)| ≥ δ − p = 1 (i = 1, 2).

Case 2.2.3.1 (|NC(xi)| ≥ 2 (i = 1, 2)). If NC(x1)/=NC(x2), then by Lemma 2.1, |C| ≥ 2p + 8 =
2δ + 6, contradicting (3.102). Let NC(x1) = NC(x2). If s ≥ 3, then

|C| ≥ s
(
p + 2

) ≥ 3(δ + 1) > 2δ + 2, (3.103)

contradicting (3.102). Let s = 2. It follows that |C| ≥ s(p + 2) ≥ 2(δ + 1). Recalling (3.102), we
get

|C| = 2δ + 2, |I1| = |I2| = δ + 1, V (G) = V (C ∪ P). (3.104)

Assume that yz ∈ E(G) for some y ∈ V (P) and z ∈ V (C)\{ξ1, ξ2}. Besides, we can assume
without loss of generality that z ∈ V (I∗1). Since C is extreme, we have

∣∣∣ξ1 �Cz
∣∣∣ ≥

∣∣∣x1 �Py
∣∣∣ + 2,

∣∣∣z �Cξ2
∣∣∣ ≥

∣∣∣y �Px2

∣∣∣ + 2, (3.105)

implying that

|I1| =
∣∣∣ξ1 �Cz

∣∣∣ +
∣∣∣z �Cξ2

∣∣∣ ≥
∣∣∣x1 �Py

∣∣∣ +
∣∣∣y �Px2

∣∣∣ + 4 = p + 4 = δ + 3, (3.106)

a contradiction. So, NC(y) ⊆ {ξ1, ξ2} for each y ∈ V (P). On the other hand, by Lemma 2.2,
Υ(I1, I2) = ∅ and hence G \ {ξ1, ξ2} is disconnected. Let H1,H2, and H3 be the connected
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components of G\{ξ1, ξ2} with V (Hi) = V (I∗i ) (i = 1, 2) and V (H3) = V (P). Using notation
(3.48), we have hi = δ (i = 1, 2, 3). By Lemma 2.3,

qi ≥ hi(2δ − hi + 1)
2

=
δ(δ + 1)

2
(i = 1, 2, 3), (3.107)

implying that

q ≥
3∑

i=1

qi ≥
3
(
δ2 + δ

)

2
>

3(δ − 1)(δ + 2)
2

. (3.108)

Case 2.2.3.2 (either |NC(x1)| = 1 or |NC(x2)| = 1). Assume without loss of generality that
|NC(x1)| = 1. Put NC(x1) = {y1}.

Case 2.2.3.2.1 (NC(x2)/=NC(x1)). It follows that x2y2 ∈ E(G) for some y2 ∈ V (C)\{y1} and
we can argue as in Case 2.2.3.1.

Case 2.2.3.2.2 (NC(x2) = NC(x1) = {y1}). It follows that

N(xi) = (V (P)\{xi}) ∪
{
y1
}

(i = 1, 2). (3.109)

Since κ ≥ 2, there is an edge zw such that z ∈ V (P) and w ∈ V (C)\{y1}. Since NC(x1) =
NC(x2) = {y1}, we have z /∈ {x1, x2}. By (3.109), x2z

− ∈ E(G). Then replacing P with

x1 �Pz
−x2

←
P z, we can argue as in Case 2.2.3.1.

Case 2.2.4 (p = δ). By (3.32), |C| ≤ 3δ + 1 − p = 2δ + 1. LetQ = ξ �Qη be a longest path in Gwith
V (Q) ∩ V (C) = {ξ, η}. If |Q| ≥ δ + 1, then by (3.34), |C| ≥ 2|Q| ≥ 2δ + 2, a contradiction. Let

|Q| ≤ δ. (3.110)

Case 2.2.4.1 (x1x2 /∈ E(G)). It follows that |NC(xi)| ≥ 1 (i = 1, 2). If |NC(xi)| ≥ 2 for some

i ∈ {1, 2}, then clearly |Q| ≥ p + 2 = δ + 2, contradicting (3.110). Let |NC(x1)| = |NC(x2)| =
1. Further, if NC(x1)/=NC(x2), then again |Q| ≥ δ + 2, contradicting (3.110). Let NC(x1) =
NC(x2) = {z1} for some z1 ∈ V (C). Since κ ≥ 2, there is a path L = yz2 connecting P and C
such that y ∈ V (P) and z2 ∈ V (C)\{z1}. Clearly, y /∈ {x1, x2}. If x2y

− ∈ E(G), then

|Q| ≥
∣∣∣z1x1 �Py

−x2
←
P yz2

∣∣∣ = δ + 2, (3.111)

contradicting (3.110). Let x2y
− /∈ E(G). Further, if y− /=x1, then recalling that x2x1 /∈ E(G)

we have |NC(x2)| ≥ 2, a contradiction. Otherwise, y− = x1 and |Q| ≥ |z1x2
←
P yz2| = δ + 1,

contradicting (3.110).
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Case 2.2.4.2 (x1x2 ∈ E(G)). Put C′ = x1 �Px2x1. Since κ ≥ 2, there are two disjoint paths L1, L2

connecting C′ and C. Further, since P is extreme, we have |L1| = |L2| = 1. Let L1 = y1z1 and
L2 = y2z2, where y1, y2 ∈ V (C′) and z1, z2 ∈ V (C). Since C′ is a hamiltonian cycle in G[V (P)],

we can assume that P is chosen such that x1 = y1. If |x1 �Py2| ≤ 2, then |Q| ≥ |z1x1x2
←
P y2z2| ≥

δ + 1, contradicting (3.110). Let |x1 �Py2| ≥ 3. If x2v ∈ E(G) for some v ∈ {y−12 , y−22 }, then

|Q| ≥
∣
∣
∣z1x1 �Pvx2

←
P y2z2

∣
∣
∣ ≥ δ + 1, (3.112)

contradicting (3.110). Otherwise, |NC(x2)| ≥ 2, implying that x2z3 ∈ E(G) for some z3 ∈
V (C)\{z1}. Then

|Q| ≥
∣
∣
∣z1x1 �Px2z3

∣
∣
∣ ≥ δ + 2, (3.113)

again contradicting (3.110).

Case 2.2.5 (p = δ + 1). By (3.32), |C| ≤ 3δ + 1 − p = 2δ. On the other hand, by Theorem D,
|C| ≥ 2δ, implying that |C| = 2δ and V (G) = V (C ∪ P). Let Q = ξ �Qη be a longest path in G
with V (Q) ∩ V (C) = {ξ, η}. If |Q| ≥ δ + 1, then by (3.35), |C| ≥ 2|Q| ≥ 2δ + 2, a contradiction.
Let

|Q| ≤ δ. (3.114)

Case 2.2.5.1 (x1x2 ∈ E(G)). Put C′ = x1 �Px2x1. Since κ ≥ 2, there are two disjoint edges z1w1

and z2w2 connecting C′ and C such that z1, z2 ∈ V (C′) and w1, w2 ∈ V (C). Since C′ is a
hamiltonian cycle in G[V (P)], we can assume without loss of generality that P is chosen

such that z1 = x1. If |x1 �Pz2| ≤ 3, then |Q| ≥ |w1x1x2
←
P z2w2| ≥ δ + 1, contradicting (3.114). Let

|x1 �Pz2| ≥ 4. Further, if x2v ∈ E(G) for some v ∈ {z−12 , z−22 , z−32 }, then

|Q| ≥
∣∣∣w1x1 �Pvx2

←
P z2w2

∣∣∣ ≥ δ + 1, (3.115)

contradicting (3.114). Now let x2v /∈ E(G) for each v ∈ {z−12 , z−22 , z−32 }. It follows that
|NC(x2)| ≥ 2, that is, x2w3 ∈ E(G) for some w3 ∈ V (C)\{w1}. But then |Q| ≥ |w1x1 �Px2w3| =
δ + 3, contradicting (3.114).

Case 2.2.5.2 (x1x2 /∈ E(G)). If dP (x1) + dP (x2) ≥ |V (P)| = p + 1 = δ + 2 then by Theorem C,
G[V (P)] is hamiltonian andwe can argue as in Case 2.2.5.1. Otherwise, dP (x1)+dP (x2) ≤ δ+1,
implying that

dC(x1) + dC(x2) ≥ δ − 1 ≥ 2. (3.116)

Assume without loss of generality that dC(x1) ≥ dC(x2).
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Case 2.2.5.2.1 (dC(x2) = 0). It follows that N(x2) = V (P)\{x1, x2}. By (3.116), dC(x1) ≥ 2.
Put C′ = x+

1
�Px2x

+
1 . Since κ ≥ 2, there is a path L = z�Lw connecting C′ and C such that

z ∈ V (C′)\{x+
1} and w ∈ V (C). If x1 ∈ V (L), that is, x1z ∈ E(G), then x1 �Pz

−x2
←
P zx1 is

a hamiltonian cycle in G[V (P)] and we can argue as in Case 2.2.5.1. Let x1 /∈ V (L). Since
V (G) = V (C ∪ P), we have L = zw. Further, since dC(x1) ≥ 2, we have x1w1 ∈ E(G) for some
w1 ∈ V (C)\{w}. Hence,

|Q| ≥
∣
∣
∣w1x1 �Pz

−x2
←
P zw

∣
∣
∣ = δ + 3, (3.117)

contradicting (3.114).

Case 2.2.5.2.2 (dC(x2) = 1). Let NC(x2) = {w1}. By (3.116), dC(x1) ≥ 1. If either dC(x1) ≥ 2 or
NC(x1)/=NC(x2), then x1w ∈ E(G) for some w ∈ V (C)\{w1} and therefore

|Q| ≥
∣∣∣wx1 �Px2w1

∣∣∣ = δ + 3, (3.118)

contradicting (3.114). Otherwise, NC(x1) = NC(x2) = {w1}. Since κ ≥ 2, there is an edge zw
such that z ∈ V (P) and w ∈ V (C)\{w1}. Clearly, z /∈ {x1, x2}. Further, we can argue as in
Case 2.2.5.1.

Case 2.2.5.2.3 (dC(x2) ≥ 2). Since dC(x1) ≥ dC(x2), we have dC(x1) ≥ 2. Hence |Q| ≥ p + 2 =
δ + 3, contradicting (3.114).

Proof of Theorem 1.1. Let G be a graph satisfying the hypothesis of Theorem 1.1, which is
equivalent to

q ≤ δ2 + δ − 1. (3.119)

Since

q =
1
2

∑

u∈V (G)

d(u) ≥ δn

2
, (3.120)

we have δn/2 ≤ δ2 + δ − 1 which is equivalent to

δ ≥ n − 1
2
− 1
2
+
1
δ
. (3.121)

If n is even, that is, n = 2t for some integer t, then

δ ≥ 2t − 1
2
− 1
2
+
1
δ
= t − 1 + 1

δ
, (3.122)
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implying that δ ≥ t = n/2. By Theorem A, G is hamiltonian. Let n is odd, that is, n = 2t + 1
for some integer t. Then δ ≥ t − 1/2 + 1/δ implying that δ ≥ t ≥ (n − 1)/2. Recalling that
G is hamiltonian when δ > (n − 1)/2, we can assume that δ = (n − 1)/2. By Theorem C,
either G is hamiltonian or containers at least δ2 + δ edges, contradicting (3.119). Theorem 1.1
is proved.

Proof of Theorem 1.2. Let G be a 2-connected graph. The hypothesis of Theorem 1.2 is equiva-
lent to

q ≤
⎧
⎨

⎩

8 when δ = 2,
3(δ − 1)(δ + 2) − 1

2
when δ ≥ 3.

(3.123)

Case 1 (δ = 2 and q ≤ 8). Let C be a longest cycle inG and P = x1 �Px2 a longest path inG\C of
length p. If p = 0, then C is a dominating cycle and we are done. Let p ≥ 1. Since κ ≥ 2, there
is a path Q = ξ �Qη such that V (Q) ∩ V (C) = {ξ, η} and |Q| ≥ 3. Further, since C is extreme,
we have |C| = |ξ �Cη| + |η �Cξ| ≥ 2|Q| ≥ 6 and therefore, q ≥ |C| + |Q| ≥ 9, contradicting the
hypothesis.

Case 2 (δ ≥ 3 and q ≤ (3(δ − 1)(δ + 2) − 1)/2). Since

q =
1
2

∑

u∈V (G)

d(u) ≥ δn

2
, (3.124)

we have δn/2 ≤ (3(δ − 1)(δ + 2) − 1)/2, which is equivalent to

δ ≥ n − 2
3
− 1
3
+

7
3δ

. (3.125)

If n = 3t for some integer t, then

δ ≥ 3t − 2
3
− 1
3
+

7
3δ

= t − 1 + 7
3δ

, (3.126)

implying that δ ≥ t = n/3 > (n − 2)/3. Next, if n = 3t + 1 for some integer t, then

δ ≥ 3t − 1
3
− 1
3
+

7
3δ

= t − 2
3
+

7
3δ

, (3.127)

implying that δ ≥ t = (n − 1)/3 > (n − 2)/3. Finally, if n = 3t + 2 for some integer t, then

δ ≥ 3t
3
− 1
3
+

7
3δ

= t − 1
3
+

7
3δ

, (3.128)

implying that δ ≥ t = (n − 2)/3. So, δ ≥ (n − 2)/3, in any case. By Lemma 2.4, each longest
cycle in G is a dominating cycle.
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