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We prove a fixed-point theorem for a class of maps that satisfy generalized (ψ, ϕ)-weak
contractions depending on a given function. An example is given to illustrate our extensions.

1. Introduction

Because fixed-point theory has a wide array of applications in many areas such as economics,
computer science, and engineering, it plays evidently a crucial role in nonlinear analysis. One
of the cornerstones of this theory is the Banach fixed-point theorem, also known as the Banach
contraction mapping theorem [1], which can be stated as follows.

Let T : X → X be a contraction on a compete metric space (X;d); that is, there is a
nonnegative real number k < 1 such that d(T(x), T(y)) ≤ kd(x, y) for all x, y ∈ X. Then the
map T admits one and only one point x∗ ∈ X such that Tx∗ = x∗. Moreover, this fixed point
is the limit of the iterative sequence xn+1 = T(xn) for n = 0, 1, 2, . . ., where x0 is an arbitrary
starting point in X. This theorem attracted a lot of attention because of its importance in
the field. Many authors have started studying on fixed-point theory to explore some new
contraction mappings to generalize the Banach contraction mapping theorem. In particular,
Boyd and Wong [2] introduced the notion of Φ-contractions. In 1997 Alber and Guerre-
Delabriere [3] defined the ϕ-weak contraction which is a generalization of Φ-contractions
(see also [4–8]).

On the other hand, the notion of T -contractions introduced and studied by the authors
of the interesting papers in [9–11]. Following this trend, we explore in this paper another
extension of (ψ, ϕ)-weak contractions in the context of T -contractions.
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2. Preliminaries

Let (X, d) be a metric space. Boyd and Wong [2] introduced the notion of Φ-contraction as
follows. A map T : X → X is called a Φ-contraction if there exists an upper semicontinuous
function Φ : [0,+∞) → [0,+∞) such that

d
(
Tx, Ty

) ≤ Φ
(
d
(
x, y

))
(2.1)

for all x, y ∈ X. The concept of the ϕ-weak contraction was defined by Alber and Guerre-
Delabriere [3] as a generalization of Φ-contraction under the setting of Hilbert spaces and
obtained fixed-point results. A map T : X → X is a ϕ-weak contraction, if there exists a
function ϕ : [0,+∞) → [0,+∞) such that

d
(
Tx, Ty

) ≤ d(x, y) − ϕ(d(x, y)) (2.2)

for all x, y ∈ X provided that the function ϕ satisfies the following condition:

ϕ(t) = 0 iff t = 0. (2.3)

Later Rhoades [7] proved analogs of the result in [3] in the context of metric spaces.

Theorem 2.1. Let (X, d) be a complete metric space. Let ϕ : [0,+∞) → [0,+∞) be a continuous and
nondecreasing function such that ϕ(t) = 0 if and only if t = 0. If T : X → X is a ϕ weak contraction,
then T has a unique fixed point.

In [12], Dutta and Choudhury proved an extension of Rhoades.

Theorem 2.2. Let (X, d) be a complete metric space, and let T : X → X be a self-mapping satisfying

ψ
(
d
(
Tx, Ty

)) ≤ ψ(d(x, y)) − ϕ(d(x, y)), ∀x, y ∈ X, (2.4)

where ψ, ϕ : [0,+∞) → [0,+∞) are continuous and nondecreasing functions with ϕ(t) = ψ(t) = 0
if and only if t = 0. Then T has a unique fixed point.

Zhang and Song [8] improved Theorem 2.1 and gave the following result which states
the existence of common fixed points of certain maps in metric spaces.

Theorem 2.3. Let (X, d) be a complete metric space, and let f, g : X → X be self-mappings
satisfying

d
(
fx, gy

) ≤M(
x, y

) − ϕ(M(
x, y

))
, ∀x, y ∈ X, (2.5)
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where

M
(
x, y

)
= max

{

d
(
x, y

)
, d

(
x, fx

)
, d

(
y, gy

)
,
d
(
x, fy

)
+ d

(
y, gx

)

2

}

(2.6)

and ϕ : [0,+∞) → [0,+∞) are lower semicontinuous functions with ϕ(t) = 0 if and only if t = 0.
Then f, g have a unique common fixed point.

Combining the theorems above with the results of Dutta and Choudhury [12],
D− oricorić [13] obtained the following theorem.

Theorem 2.4. Let (X, d) be a complete metric space, and let T, S : X → X be self-mappings
satisfying

ψ
(
d
(
fx, gy

)) ≤ ψ(M(
x, y

)) − ϕ(M(
x, y

))
, ∀x, y ∈ X, (2.7)

where

M
(
x, y

)
= max

{

d
(
x, y

)
, d

(
x, fx

)
, d

(
y, gy

)
,
d
(
x, gy

)
+ d

(
y, fx

)

2

}

, (2.8)

ψ : [0,+∞) → [0,+∞) is a continuous and nondecreasing function with ψ(t) = 0 if and only if
t = 0, and ϕ : [0,+∞) → [0,+∞) is a lower semicontinuous function with ϕ(t) = 0 if and only if
t = 0. Then f, g have a unique common fixed point.

The notion of the T -contraction is defined in ([10, 11]) as follows.

Definition 2.5. Let T and S be two self-mappings on a metric space (X, d). The mapping S is
said to be a T -contraction if there exists k ∈ (0, 1) such that

d
(
TSx, TSy

) ≤ kd(Tx, Ty), ∀x, y ∈ X. (2.9)

It can be easily seen that if T is the identity map, then the T -contraction coincides with
the usual contraction.

Example 2.6. Let X = (0,∞) with the usual metric d(x, y) = |x − y| induced by (R, d).
Consider the following self-mappings T(x) = 1/x and Sx = 3x on X. It is clear that S is
not a contraction. On the contrary,

d
(
TSx, TSy

)
=
∣∣∣∣
1
3x

− 1
3y

∣∣∣∣ =
1
3

∣∣∣∣
1
y
− 1
x

∣∣∣∣ ≤
1
3
d
(
Tx, Ty

)
, ∀x, y ∈ X. (2.10)

Definition 2.7 (see, e.g., [9, 11]). Let (X, d) be a metric space. If {yn} is a convergent sequence
whenever {Tyn} is convergent, then T : X → X is called sequentially convergent.
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The aim of this work is to give a proper extension of D− oricorić’s result of using the
concept of T -contraction, that is, the contraction depending on a given function. Wewill show
the existence of a common fixed point for a class of certain maps.

3. Main Results

We start this section by recalling the following two classes of functions.
Let Ψ denote the set of all functions ψ : [0,∞) → [0,∞) which satisfy

(i) ψ is continuous and nondecreasing,

(ii) ψ(t) = 0 if and only if t = 0.

Similarly Φ denotes the set of all functions ϕ : [0,∞) → [0,∞)which satisfy

(i) ϕ is lower semi continuous,

(ii) ϕ(t) = 0 if and only if t = 0.

It is easy to see that ψ1(t) = t, ψ2(t) = t/(t + 1), ψ3(t) = t2 belong to Ψ and ϕ1(t) =
min{t, 1}, ϕ2(t) = ln(1 + t) belong to Φ.

We are ready to state our main theorem that is a proper extension of Theorem 2.4.

Theorem 3.1. Let (X, d) be a complete metric space and T : X → X an injective, continuous, and
sequentially convergent mapping. Let f, g : X → X be self-mappings. If there exist ψ ∈ Ψ and ϕ ∈ Φ
such that

ψ
(
d
(
Tfx, Tgy

)) ≤ ψ(M(
Tx, Ty

)) − ϕ(M(
Tx, Ty

))
, (3.1)

for all x, y ∈ X, where

M
(
Tx, Ty

)
= max

{

d
(
Tx, Ty

)
, d

(
Tx, Tfx

)
, d

(
Ty, Tgy

)
,
d
(
Tx, Tgy

)
+ d

(
Ty, Tfx

)

2

}

, (3.2)

then f, g have a unique common fixed point.

Proof. We will follow the lines in the proof of the main result in [13]. By injection of T , we
easily check thatM(Tx, Ty) = 0 if and only if x = y is a common fixed point of f and g. Let
x0 ∈ X. We define two iterative sequences {xn} and {yn} in the following way:

x2n+2 = fx2n+1, x2n+1 = gx2n , yn = Txn, ∀ n = 0, 1, 2, . . . . (3.3)

We prove {yn} is a Cauchy sequence. For this purpose, we first claim that
limn→∞d(yn+1, yn) = 0. It follows from property of ϕ that if n is odd

ψ
(
d
(
yn+1, yn

))
= ψ(d(Txn+1, Txn)) = ψ

(
d
(
Tfxn, Tgxn−1

))

≤ ψ(M(Txn, Txn−1)) − ϕ(M(Txn, Txn−1))

≤ ψ(M(Txn, Txn−1)),

(3.4)
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where

M(Txn, Txn−1) = max

{

d(Txn, Txn−1), d
(
Tfxn, Txn

)
, d

(
Tgxn−1, Txn−1

)
,

d
(
Tgxn−1, Txn

)
+ d

(
Tfxn, Txn−1

)

2

}

= max

{

d
(
yn, yn−1

)
, d

(
yn+1, yn

)
, d

(
yn, yn−1

)
,
d
(
yn−1, yn+1

)

2

}

≤ max

{

d
(
yn, yn−1

)
, d

(
yn+1, yn

)
,
d
(
yn−1, yn

)
+ d

(
yn, yn+1

)

2

}

.

(3.5)

Hence, we have

ψ
(
d
(
yn+1, yn

)) ≤ ψ
(

max

{

d
(
yn, yn−1

)
, d

(
yn+1, yn

)
,
d
(
yn−1, yn

)
+ d

(
yn, yn+1

)

2

})

. (3.6)

If d(yn, yn+1) > d(yn−1, yn) ≥ 0 thenM(Txn, Txn−1) = d(yn, yn+1), hence

ψ
(
d
(
yn, yn+1

)) ≤ ψ(d(yn, yn+1
)) − ϕ(d(yn, yn+1

))
(3.7)

and which contradicts with d(yn, yn+1) > 0 and the property of ϕ. Thus, it follows from (3.5)
that

d
(
yn+1, yn

) ≤M(Txn, Txn−1) = d
(
yn, yn−1

)
. (3.8)

If n is even then by the same argument above, we obtain

d
(
yn+1, yn

) ≤M(Txn−1, Txn) = d
(
yn, yn−1

)
. (3.9)

Therefore,

d
(
yn+1, yn

) ≤M(Txn, Txn−1) = d
(
yn, yn−1

)
(3.10)

for all n and {d(yn, yn+1)} is a nonincreasing sequence of nonnegative real numbers. Hence,
there exists r ≥ 0 such that

lim
n→∞

d
(
yn, yn+1

)
= lim

n→∞
M(Txn, Txn−1) = r. (3.11)

By the lower semicontinuity of ϕ, we have

ϕ(r) ≤ lim
n→∞

inf ϕ(M(Txn, Txn−1)). (3.12)
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Taking the upper limits as n → ∞ on either side of

ψ
(
d
(
yn, yn+1

)) ≤ ψ(M(Txn, Txn−1)) − ϕ(M(Txn, Txn−1)), (3.13)

we get

ψ(r) ≤ ψ(r) − lim
n→∞

infϕ(M(Txn, Txn−1)) ≤ ψ(r) − ϕ(r), (3.14)

that is, ϕ(r) ≤ 0. By the property of ϕ, this implies that ϕ(r) = 0. It follows that r = 0 and

lim
n→∞

d
(
yn, yn+1

)
= 0. (3.15)

It is implied from (3.10) that

lim
n→∞

M(Txn, Txn−1) = 0. (3.16)

Now, we claim that {yn} is a Cauchy sequence. Since limn→∞d(yn, yn+1) = 0, it is sufficient
to prove that {y2n} is a Cauchy sequence. Suppose on the contrary that {y2n} is not a Cauchy
sequence. Then, there exist ε > 0 and subsequences {y2n(k)} and {y2m(k)} of {y2n} such that
n(k) is the smallest index for which

n(k) > m(k) > k, d
(
y2m(k), y2n(k)

)
> ε. (3.17)

This means that

d
(
y2m(k), y2n(k)−2

)
< ε. (3.18)

From (3.18) and the triangle inequality, we get

ε ≤ d
(
y2m(k), y2n(k)

)

≤ d
(
y2m(k), y2n(k)−2

)
+ d

(
y2n(k)−2, y2n(k)−1

)
+ d

(
y2n(k)−1, y2n(k)

)

< ε + d
(
y2n(k)−2, y2n(k)−1

)
+ d

(
y2n(k)−1, y2n(k)

)
.

(3.19)

Letting k → ∞ and using (3.15), we get

lim
k→∞

d
(
y2m(k), y2n(k)

)
= ε. (3.20)

By the fact

∣∣d
(
y2m(k), y2n(k)+1

) − d(y2m(k), y2n(k)
)∣∣ ≤ d(y2n(k), y2n(k)+1

)

∣∣d
(
y2m(k)−1, y2n(k)

) − d(y2m(k), y2n(k)
)∣∣ ≤ d(y2m(k)−1, y2m(k)

) (3.21)
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and using (3.15) and (3.20), we obtain

lim
k→∞

d
(
y2m(k)−1, y2n(k)

)
= lim

k→∞
d
(
y2m(k), y2n(k)+1

)
= ε. (3.22)

Moreover, from

∣
∣d
(
y2m(k)−1, y2n(k)+1

) − d(y2m(k)−1, y2n(k)
)∣∣ ≤ d(y2n(k), y2n(k)+1

)
(3.23)

and combining with (3.15) and (3.22), we conclude that

lim
k→∞

d
(
y2m(k)−1, y2n(k)+1

)
= ε. (3.24)

Now, by the definition ofM(Tx, Ty) and from (3.10), (3.15), and (3.20)–(3.24), we can deduce
that

lim
k→∞

M
(
Tx2m(k)−1, Tx2n(k)

)
= ε. (3.25)

Due to (3.1), we have

ψ
(
d
(
y2m(k), y2n(k)+1

))
= ψ

(
d
(
Tx2m(k) , Tx2n(k)+1

))
= ψ

(
d
(
Tfx2m(k)−1, Tgx2n(k)

))

≤ ψ
(
M

(
Tx2m(k)−1, Tx2n(k)

)) − ϕ(M(
Tx2m(k)−1, Tx2n(k)

))
.

(3.26)

Letting k → ∞ and using (3.22) and (3.25), we have

ψ(ε) ≤ ψ(ε) − ϕ(ε). (3.27)

It is a contradiction to ϕ(t) > 0 for every t > 0. This proves that {yn} is a Cauchy sequence.
Since X is a complete metric space, there exists u ∈ X such that limn→∞yn = u. Since T

is sequentially convergent, we can deduce that {xn} converges to v ∈ X. By the continuity of
T , we infer that

u = lim
n→∞

yn = lim
n→∞

Txn = Tv. (3.28)

We will show that v = fv = gv. Indeed, suppose that v /= fv, since T is injective, we
have u = Tv /= Tfv. Hence, d(Tv, Tfv) > 0. Since

lim
n→∞

y2n+1 = lim
n→∞

y2n = u,

lim
n→∞

d
(
y2n, y2n+1

)
= 0,

(3.29)
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we can seekN0 ∈ N such that for any n ≥N0

d
(
y2n+1, u

)
<
d
(
Tv, Tfv

)

4
, d

(
y2n, u

)
<
d(Tv, T fv)

4
, d

(
y2n, y2n+1

)
<
d
(
Tv, Tfv

)

4
.

(3.30)

Then, we have

d
(
Tv, Tfv

) ≤M(Tv, Tx2n) = max

{

d(Tv, Tx2n), d
(
Tv, Tfv

)
, d

(
Tx2n, Tgx2n

)
,

d
(
Tv, Tgx2n

)
+ d

(
Tx2n, Tfv

)

2

}

= max

{

d
(
u, y2n

)
, d

(
Tv, Tfv

)
, d

(
y2n, y2n+1

)
,

d
(
u, y2n+1

)
+ d

(
y2n, Tfv

)

2

}

≤ max

{

d
(
u, y2n

)
, d

(
Tv, Tfv

)
, d

(
y2n, y2n+1

)
,

d
(
u, y2n+1

)
+ d

(
y2n, Tv

)
+ d

(
Tv, Tfv

)

2

}

≤ max

{
d
(
Tv, Tfv

)

4
, d

(
Tv, Tfv

)
,
d
(
Tv, Tfv

)

4
,

d
(
Tv, Tfv

)
/4 + d

(
Tv, Tfv

)
/4 + d

(
Tv, Tfv

)

2

}

≤ max
{
d
(
Tv, Tfv

)
,
3
4
d
(
Tv, Tfv

)
}

= d
(
Tv, Tfv

)
.

(3.31)

Therefore,M(Tv, Tx2n) = d(Tv, Tfv) for every n ≥N0. Since

ψ
(
d
(
Tfv, y2n+1

))
= ψ

(
d
(
Tfv, Tx2n+1

))
= ψ

(
d
(
Tfv, Tgx2n

))

≤ ψ(M(Tv, Tx2n)) − ϕ(M(Tv, Tx2n))

= ψ
(
d
(
Tv, Tfv

)) − ϕ(d(Tv, Tfv))
(3.32)

and letting n → ∞, we arrive at

ψ
(
d
(
Tfv, Tv

)) ≤ ψ(d(Tv, Tfv)) − ϕ(d(Tv, Tfv)). (3.33)

We get a contradiction. Hence, v = fv. By the same argument, we get v = gv.
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Let w ∈ X such that w = fw = gw. Then, we have

M(Tv, Tw) = max

{

d(Tv, Tw), d
(
Tv, Tfv

)
, d

(
Tw, Tgw

)
,
d
(
Tv, Tgw

)
+ d

(
Tfv, Tw

)

2

}

= max
{
d(Tv, Tw),

d(Tv, Tw) + d(Tv, Tw)
2

}
= d(Tw, Tv).

(3.34)

Thus

ψ(d(Tv, Tw)) = ψ
(
d
(
Tfv, Tgw

)) ≤ ψ(M(Tv, Tw)) − ϕ(M(Tv, Tw))

= ψ(d(Tv, Tw)) − ϕ(d(Tv, Tw)).
(3.35)

This implies that d(Tv, Tw) = 0, or Tv = Tw. Since T is injective, we havew = v. The theorem
is proved.

Remark 3.2. (1) In Theorem 3.1, if we choose Tx = x for all x ∈ X, then we get Theorem 2.4.
(2) In Theorem 3.1, if we fix ψ(t) = t for all t, then we obtain another extension of

Theorem 2.3.
(3) In Theorem 3.1, if we choose f = g, then we get the uniqueness and existence of

fixed point of generalized ϕ-weak T -contractions.
The following example shows that Theorem 3.1 is a proper extension of Theorem 2.4.

Example 3.3. LetX = [1,+∞) and d be the usual metric inX. Consider the maps f(x) = g(x) =
4
√
x. It is easy to see that 16 is the unique fixed point of f and g. We claim that f and g are

not generalized ϕ-weak contraction. Indeed, if there exist lower semicontinuous functions
ψ, ϕ : [0,∞) → [0,∞)with ψ(t) > 0, ϕ(t) > 0 for t ∈ (0,∞) and ϕ(0) = ψ(0) = 0, such that

ψ
(
d
(
fx, gy

)) ≤ ψ(M(
x, y

)) − ϕ(M(
x, y

))
, ∀x, y ∈ X, (3.36)

then

ψ
(
4
∣∣√x −√

y
∣∣) ≤ ψ(M(

x, y
)) − ϕ(M(

x, y
))
, ∀x, y ∈ X, (3.37)

where M(x, y) = max{d(x, y), d(fx, x), d(gy, y), (1/2)[d(gx, y) + d(fy, x)]}. For x = 4 and
y = 1, we obtain

M
(
x, y

)
= max

{
3, 4, 3,

7
2

}
= 4. (3.38)

It follows from (3.37) that

ψ(4) ≤ ψ(4) − ϕ(4). (3.39)

Hence, ϕ(4) ≤ 0. We arrive at a contradiction with ϕ(t) > 0 for t ∈ (0,∞).
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Consider the map Tx = lnx + 1, for all x ∈ X. It is easy to see that T is injective,
continuous, and sequentially convergent. Let ψ(t) = t and ϕ(t) = t/3, for all t ∈ [0,+∞).
Now, we show that f and g are generalized ϕ-weak T -contractions. It reduces to check the
following inequality:

∣
∣ln 4

√
x − ln 4

√
y
∣
∣ ≤ 2

3
M

(
Tx, Ty

)
, ∀x, y ∈ [1,+∞). (3.40)

We have

∣
∣ln 4

√
x − ln 4

√
y
∣
∣ =

1
2

∣
∣
∣
∣ln

x

y

∣
∣
∣
∣ (3.41)

M
(
Tx, Ty

)
= max

{
∣
∣lnx − lny

∣
∣,
∣
∣ln 4

√
x − lnx

∣
∣,
∣
∣ln 4

√
y − lny

∣
∣

∣∣ln 4√y − lnx
∣∣ +

∣∣ln 4
√
x − lny

∣∣

2

}

≥ ∣∣lnx − lny
∣∣ =

∣∣∣∣ln
x

y

∣∣∣∣.

(3.42)

It follows from (3.41) and (3.42) that

∣∣ln 4
√
x − ln 4

√
y
∣∣ ≤ 1

2
M

(
Tx, Ty

)
(3.43)

for every x, y ∈ X. This proves that (3.40) is true.

By the same method used in the proof of Theorem 3.1, we get the following theorem.

Theorem 3.4. Let (X, d) be a complete metric space and T : X → X an injective, continuous, and
sequentially convergent mapping. Let f, g : X → X be self-mappings. If there exist ψ ∈ Ψ and ϕ ∈ Φ
such that

ψ
(
d
(
fTx, gTy

)) ≤ ψ(d(Tx, Ty)) − ϕ(d(Tx, Ty)) (3.44)

for all x, y ∈ X, then f, g have a unique common fixed point.

Proof. It follows from the proof of Theorem 3.1 with necessary modifications.
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