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Generalized concepts of b-completeness, b-independence, b-minimality, and b-basicity are
introduced. Corresponding concept of a space of coefficients is defined, and some of its properties
are stated.

1. Introduction

Theory of classical basis (including Schauder basis) is sufficiently well developed, and quite
a good number of monographs such as Day [1], Singer [2, 3], Young [4], Bilalov, Veliyev
[5], Ch. Heil [6], and so forth have been dedicated to it so far. There are different versions
and generalizations of the concept of classical basis (for more details see [2, 3]). One of such
generalizations is proposed in [5, 7]. In these works, the concept of bY -invariance is first
introduced and then used to obtain main results. It should be noted that the condition of
bY -invariance implies the fact that the corresponding mapping is tensorial.

In our work, we neglect the bY -invariance condition. We give more detailed consider-
ation to the space of coefficients. We also state a criterion of basicity.

2. Needful Notations and Concepts

Let X, Y , Z be some Banach spaces, and let ‖ · ‖X , ‖ · ‖Y , ‖ · ‖Z be the corresponding
norms. Assume that we are given some bounded bilinear mapping b : X × Y → Z, that
is, ‖b(x;y)‖Z ≤ c ‖x‖X‖y‖Y , for all x ∈ X, for all y ∈ Y , where c is an absolute constant. For
simplicity, we denote xy ≡ b(x;y). Let M ⊂ Y be some set. By Lb[M] we denote the b-span
of M. So, by definition, Lb[M] ≡ {z ∈ Z : ∃{xk}n1 ⊂ X, ∃{yk}n1 ⊂ M,z =

∑n
k=1 xkyk}. By (·) we

denote the closure in the corresponding space.
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System {yn}n∈N
⊂ Y is called b-linearly independent if

∑∞
n=1 xnyn = 0 in Z implies that

xn = 0, for all n ∈ N.
In the context of the above mentioned, the concept of usual completeness is stated as

follows.

Definition 2.1. System {yn}n∈N
⊂ Y is called b-complete in Z if Lb[{yn}n∈N

] ≡ Z. We will also
need the concepts of b-biorthogonal system and b-basis.

Definition 2.2. System {y∗
n}n∈N

⊂ L(Z;X) is called b-biorthogonal to the system {yn}n∈N
⊂ Y if

y∗
n(xyk) = δnkx, for all n, k ∈ N, for all x ∈ X, where δnk is the Kronecker symbol.

Definition 2.3. System {yn}n∈N
⊂ Y is called b-basis in Z if for for all z ∈ Z, ∃!{xn}n∈N

⊂ X :
z =

∑∞
n=1 xnyn.

To obtain our main results we will use the following concept.

Definition 2.4. System {yn}n∈N
⊂ Y is called nondegenerate if ∃cn > 0 : ‖x‖X ≤ cn‖xyn‖Z, for

all x ∈ X, for all n ∈ N.

3. Main Results

3.1. Space of Coefficients

Let {yn}n∈N
⊂ Y be some system. Assume that

Ky ≡
{

{xn}n∈N ⊂ X : the series
∞∑

n=1

xnyn converges in Z

}

. (3.1)

With regard to the ordinary operations of addition and multiplication by a complex number,
Ky is a linear space. We introduce a norm ‖ · ‖Ky

inKy as follows:

‖x‖Ky
= sup

m

∥
∥
∥
∥
∥

m∑

n=1

xnyn

∥
∥
∥
∥
∥
Z

, (3.2)

where x ≡ {xn}n∈N
∈ Ky. In fact, it is clear that

‖λ x‖Ky
= |λ| ‖x‖Ky

, ∀λ ∈ C;

‖x1 + x2‖Ky
≤ ‖x1‖Ky

+ ‖x2‖Ky
, ∀xk ∈ Ky, k = 1, 2.

(3.3)

Assume that ‖x‖Ky
= 0 for some x ≡ {xn}n∈N

∈ Ky . Let n0 = inf {n : xk = 0, for all k ≤
n−1}. Inwhat followswewill suppose that the system {yn}n∈N

is nondegenerate. Let n0 < +∞.
We have

sup
m

∥
∥
∥
∥
∥

m∑

n=1

xnyn

∥
∥
∥
∥
∥
Z

≥
∥
∥
∥
∥
∥

n0∑

n=1

xnyn

∥
∥
∥
∥
∥
Z

=
∥
∥xn0yn0

∥
∥
Z ≥ 1

cn
‖xn0‖X > 0. (3.4)
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But this is contrary to ‖x‖Ky
= 0. Consequently, n0 = +∞, that is, x = 0. Thus, (Ky; ‖ · ‖Ky

)
is a normed space. Let us show that it is complete. Let {xn}n∈N

⊂ Ky be some fundamental
sequence with xn ≡ {x(n)

k
}
k∈N

⊂ X. For arbitrary fixed number k ∈ N. We have

∥
∥
∥x

(n)
k

− x
(n+p)
k

∥
∥
∥
X
≤ ck

∥
∥
∥
(
x
(n)
k

− x
(n+p)
k

)
yk

∥
∥
∥
Z

= ck

∥
∥
∥
∥
∥

k∑

i=1

(
x
(n)
i − x

(n+p)
i

)
yi −

k−1∑

i=1

(
x
(n)
i − x

(n+p)
i

)
yi

∥
∥
∥
∥
∥
Z

≤ 2ck sup
m

∥
∥
∥
∥
∥

m∑

i=1

(
x
(n)
i − x

(n+p)
i

)
yi

∥
∥
∥
∥
∥

= 2ck
∥
∥xn − xn+p

∥
∥
Ky

−→ 0, as n, p −→ ∞.

(3.5)

As a result, for all fixed k ∈ N the sequence {x(n)
k

}
n∈N

is fundamental in X. Let x(n)
k

→
xk, n → ∞. Let us take arbitrary positive ε. Then ∃n0: for all n ≥ n0, for all p ∈ N, we
have ‖xn − xn+p‖Ky

< ε. Thus

∥
∥
∥
∥
∥

m∑

k=1

(
x
(n)
k

− x
(n+p)
k

)
yk

∥
∥
∥
∥
∥
Z

< ε, ∀n ≥ n0, ∀p,m ∈ N. (3.6)

Passing to the limit as p → ∞ yields

∥
∥
∥
∥
∥

m∑

k=1

(
x
(n)
k

− xk

)
yk

∥
∥
∥
∥
∥
Z

≤ ε, ∀n ≥ n0, ∀m ∈ N. (3.7)

It is easy to see that

∥
∥
∥
∥
∥

m+p∑

k=m

(
x
(n)
k

− xk

)
yk

∥
∥
∥
∥
∥
Z

≤ 2ε, ∀n ≥ n0, ∀m, p ∈ N. (3.8)

Since the series
∑∞

k=1 x
(n)
k

yk converges in Z, it is clear that ∃m(n)
0 : for allm ≥ m

(n)
0 , for all p ∈ N,

we have
∥
∥
∥
∥
∥

m+p∑

k=m

x
(n)
k yk

∥
∥
∥
∥
∥
Z

< ε. (3.9)

Then it follows from the previous inequality that

∥
∥
∥
∥

m+p∑

k=m
xkyk

∥
∥
∥
∥
Z

≤
∥
∥
∥
∥

m+p∑

k=m

(
x
(n)
k

− xk

)
yk

∥
∥
∥
∥
Z

+

∥
∥
∥
∥
∥

m+p∑

k=m

x
(n)
k

yk

∥
∥
∥
∥
∥
Z

≤ 3ε,

∀m ≥ m
(n)
0 , ∀p ∈ N.

(3.10)
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Consequently, the series
∑∞

k=1 xkyk converges in Z, and therefore x ≡ {xk}k∈N
∈ Ky. From

(3.7) it follows directly that ‖xn − x‖Ky
→ 0, n → ∞. Thus, Ky is a Banach space.

Let us consider the operator K : Ky → Z, defined by the expression

Kx =
∞∑

n=1

xnyn, x ≡ {xn}n∈N
. (3.11)

It is obvious that K is a linear operator. Let z = Kx. We have

‖K x‖Z = ‖z‖Z =

∥
∥
∥
∥
∥

∞∑

n=1

xn yn

∥
∥
∥
∥
∥
Z

≤ sup
m

∥
∥
∥
∥
∥

m∑

n=1

xn yn

∥
∥
∥
∥
∥
Z

= ‖x‖Ky
. (3.12)

It follows that K ∈ L(Ky;Z) and ‖K‖ ≤ 1. Let x0 ≡ {x; 0; · · · }, x ∈ X. It is clear that
‖Kx0‖Z = ‖x0‖Ky

. Consequently, ‖K‖ = 1. It is absolutely obvious that if the system {yn}n∈N
⊂

Y is b-linearly independent, then KerK = {0}. In this case, ∃K−1 : Z → Ky. If ImK is closed,
then, by the Banach’s theorem on the inverse operator, we obtain that K−1 ∈ L(ImK;Ky).
The same considerations are valid in the case when the system {yn}n∈N

has a b-biorthogonal
system. We will call operator K a coefficient operator. Thus, we have proved the following.

Theorem 3.1. Every nondegenerate system Sy ≡ {yn}n∈N
⊂ Y is corresponded by a Banach space

of coefficients Ky and coefficient operator K ∈ L(Ky;Z), ‖K‖ = 1. If the system Sy is b-linearly
independent or has a b-biorthogonal system, then ∃K−1. Moreover, if ImK is closed, then K−1 ∈
L(ImK;Ky).

In what follows, we will need the concept of b-basis in the space of coefficients Ky.

Definition 3.2. System {Tn}n∈N
⊂ L(X; Ky) is called b-basis in Ky if for for all x ∈

Ky, ∃!{xn}n∈N
⊂ X : x =

∑∞
n=1 Tn xn (convergence inKy).

Consider the operators En : X −→ Ky : Enx = {δnkx}k∈N
, n ∈ N. We have

‖Enx‖Ky
=
∥
∥xyn

∥
∥
Z ≤ ∥

∥yn

∥
∥
Y‖x‖X, ∀x ∈ X. (3.13)

Thus, En ∈ L(X;Ky), for all n ∈ N. Take x ≡ {xn}n∈N
∈ Ky. Then

∥
∥
∥
∥
∥
x −

m∑

n=1

Enxn

∥
∥
∥
∥
∥
Ky

=

∥
∥
∥
∥
∥
∥

⎧
⎨

⎩
0; · · · ; 0;
︸ ︷︷ ︸

m

xm+1;xm+2; · · ·
⎫
⎬

⎭

∥
∥
∥
∥
∥
∥
Ky

= sup
p

∥
∥
∥
∥
∥

m+p∑

n=m+1

xnyn

∥
∥
∥
∥
∥
z

−→ 0, (3.14)

as m → ∞, since the series
∑∞

n=1 xnyn converges in Z. As a result, we obtain that x =
∑∞

n=1 Enxn. Consider the operators Pn : Ky → X : Pn x = xn, n ∈ N. We have

‖Pnx‖X = ‖xn‖X ≤ cn
∥
∥xnyn

∥
∥
Z ≤ cn sup

m

∥
∥
∥
∥
∥

m∑

k=1

xkyk

∥
∥
∥
∥
∥
Z

= cn‖x‖Ky
. (3.15)
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Consequently, Pn ∈ L(Ky;X), n ∈ N. Let us show that the expansion x =
∑∞

n=1 Enxn is unique.
Let

∑∞
n=1 Enxn = 0. We have 0 = Pk(

∑∞
n=1 Enxn) =

∑∞
n=1 Pk(Enxn) = xk, for all k ∈ N. As a

result, we obtain that the system {En}n∈N
forms a b-basis for Ky. We will call this system a

canonical system. So we have proved the following.

Theorem 3.3. Let Ky be a space of coefficients of nondegenerate system {yn}n∈N
⊂ Y . Then the

canonical system {En}n∈N
forms a b-basis for Ky.

Let the nondegenerate system {yn}n∈N
⊂ Y form a b-basis forZ.Consider the coefficient

operator K : Ky → Z. By definition of b-basis, the equation K x = z is solvable with regard
to x ∈ Ky for for all z ∈ Z. It is absolutely clear that Ker K = {0}. Then it follows from
Theorem 3.1 and Banach theorem that K−1 ∈ L(Z;Ky). Consequently, operator K performs
isomorphism between Ky and Z.

Vice versa, let {yn}n∈N
⊂ Y be a nondegenerate system and let Ky be a corresponding

space of coefficients. Assume that a coefficient operator K ∈ L(Ky;Z) is an isomorphism.
Take for all z ∈ Z. It is clear that ∃x ≡ {xn}n∈N

∈ Ky : Kx = z, that is z =
∑∞

n=1 xnyn in Z.
Consequently, z can be expanded in a series with respect to the system {yn}n∈N

. Let us show
that such an expansion is unique. Let

∑∞
n=1 x

0
nyn = 0 for some x0 ≡ {x0

n}n∈N
∈ Ky. This means

that Kx0 = 0 ⇒ x0 = 0 ⇒ x0
n = 0, for for all n ∈ N. Thus, the system {yn}n∈N

forms a b-basis
for Z. So the following theorem is proved.

Theorem 3.4. Let Ky be a space of coefficients of nondegenerate system {yn}n∈N
and let K be a

corresponding coefficient operator. Then this system forms a b-basis for Z if and only if K is an
isomorphism in L(Ky; Z).

3.2. Criterion of Basicity

Let the systems {yn}n∈N
⊂ Y and {y∗

n}n∈N
⊂ L(Z; X) be b-biorthogonal. Take for all z ∈ Z and

consider the partial sums

Snz =
n∑

k=1

y∗
k(z)yk, n ∈ N. (3.16)

We have

Sn(Smz) =
n∑

k=1

y∗
k(Smz)yk =

n∑

k=1

y∗
k

[
m∑

i=1

y∗
i (z)yi

]

yk

=
n∑

k=1

m∑

i=1

δkiy
∗
i (z)yk =

min{n;m}∑

k=1

y∗
k(z)yk = Smin{n;m}z, ∀n,m ∈ N.

(3.17)

Hence, S2
n = Sn, for for all n ∈ N, that is, Sn is a projector in Z. It follows directly from the

estimate

∥
∥y∗

k(z)yk

∥
∥
Z
≤ c

∥
∥y∗

k(z)
∥
∥
X

∥
∥yk

∥
∥
Y ≤ c

∥
∥y∗

k

∥
∥
∥
∥yk

∥
∥
Y‖z‖Z, ∀z ∈ Z, (3.18)
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that Sn is a continuous projector. Suppose that the nondegenerate system {yn}n∈N
⊂ Y forms

a b-basis for Z. Then for for all z ∈ Z has a unique expansion z =
∑∞

n=1 xnyn in Z. We denote
the correspondence z → xn by y∗

n : y∗
n(z) = xn, for all n ∈ N. It is obvious that y∗

n : Z → X is
a linear operator. Let Ky be a space of coefficients of basis {yn}n∈N

, and let K : Ky → Z be the
corresponding coefficient operator. By Theorem 3.4, K is an isomorphism. We have

∥
∥y∗

n(z)
∥
∥
X = ‖xn‖X ≤ cn

∥
∥xnyn

∥
∥ ≤ cnsup

m

∥
∥
∥
∥
∥

m∑

k=1

xkyk

∥
∥
∥
∥
∥
Z

= cn‖x‖Ky

= cn
∥
∥
∥K−1z

∥
∥
∥
Ky

≤ cn
∥
∥
∥K−1

∥
∥
∥‖z‖Z,

(3.19)

where x ≡ {xn}n∈N
. Consequently, {y∗

n}n∈N
⊂ L(Z;X). It follows directly from the uniqueness

of the expansion that y∗
n(xyk) = δnkx; for all n, k ∈ N, for for all x ∈ X. As a result, we obtain

that the system {y∗
n}n∈N

is b-biorthogonal to {yn}n∈N
. Let us consider the projectors Sm ∈ L(Z)

for for all z ∈ Z:

Smz =
m∑

n=1

y∗
n(z)yn, m ∈ N. (3.20)

As the series (3.20) converges for for all z ∈ Z, it follows from Banach-Steinhaus theorem that

M = sup
m

‖Sm‖ < +∞. (3.21)

It is absolutely obvious that the system {yn}n∈N
is b-complete in Z. Thus, if the system {yn}n∈N

forms a b-basis for Z, then (1) it is b-complete in Z; (2) it has a b-biorthogonal system; (3) the
corresponding family of projectors is uniformly bounded.

Vice versa, let the system {yn}n∈N
be b-complete in Z and have a b-biorthogonal system

{y∗
n}n∈N

. Assume that the corresponding family of projectors {Sm}m∈N
is uniformly bounded,

that is, relation (3.21) holds. Let z ∈ Z be an arbitrary element. Let us take arbitrary positive
ε. It is clear that ∃{xn}m0

n=1 ⊂ X : ‖z −∑m0
n=1 xnyn‖Z < ε. Let z0 =

∑m0
n=1 xnyn. We have

y∗
n(z0) =

m0∑

k=1

y∗
n

(
xkyk

)
= xn, n = 1, m0; y∗

n(z0) = 0, ∀n > m0. (3.22)

As a result, we obtain form ≥ m0 that

‖z − Smz‖Z ≤ ‖z − z0‖Z + ‖z0 − Smz‖Z ≤ ε +

∥
∥
∥
∥
∥

m∑

n=1

y∗
n(z − z0)yn

∥
∥
∥
∥
∥
Z

≤ (M + 1) ε. (3.23)

From the arbitrariness of ε we get limm→∞Smz = z. Consequently, for for all z ∈ Z can
be expanded in a series with respect to the system {yn}n∈N

. The existence of b-biorthogonal
system implies the uniqueness of the expansion. Thus, the following theorem is valid.
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Theorem 3.5. Nondegenerate system {yn}n∈N
⊂ Y forms a b-basis for Z if and only if the following

conditions are satisfied:

(1) the system is b-complete in Z;

(2) it has a b-biorthogonal system {y∗
n}n∈N

⊂ L(Z;X);

(3) the family of projectors (3.21) is uniformly bounded.
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