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In the present paper, we have studied ¢-recurrent and concircular ¢-recurrent K-contact manifold
with respect to semisymmetric metric connection and obtained some interesting results.

1. Introduction

The idea of semisymmetric linear connection on a differentiable manifold was introduced
by Friedmann and Schouten [1]. In [2], Hayden introduced idea of metric connection with
torsion on a Riemannian manifold. Further, some properties of semisymmetric metric con-
nection has been studied by Yano [3]. In [4], Golab defined and studied quarter-symmetric
connection on a differentiable manifold with affine connection, which generalizes the idea
of semisymmetric connection. Various properties of semisymmetric metric connection and
quarter-symmetric metric connection have been studied by many geometers like Sharfuddin
and Hussain [5], Amur and Pujar [6], Rastogi [7, 8], Mishra and Pandey [9], Bagewadi et al.
[10-14], De et al. [15, 16], and many others.

The notion of local symmetry of a Riemannian manifold has been weakened by many
authors in several ways to a different extent. As a weaker version of local symmetry, Taka-
hashi [17] introduced the notion of local ¢-symmetry on a Sasakian manifold. Generalizing
the notion of ¢-symmetry, De et al. [18] introduced the notion of ¢-recurrent Sasakian
manifolds.

The paper is organized as follows. Section 2 is devoted to preliminaries. In Section 3,
we study semisymmetric metric connection in a K-contact manifold. In Section 4, it is proved
that a ¢-recurrent K-contact manifold with respect to semisymmetric metric connection is an



2 International Journal of Mathematics and Mathematical Sciences

Einstein manifold. Finally, in Section 5 it is also shown that concircular ¢-recurrent K-contact
manifold admitting semisymmetric metric connection is an Einstein manifold, and the
characteristic vector field ¢ and the vector field p associated to the 1-form A are codirectional.

2. Preliminaries

An n-dimensional differentiable manifold M is said to have an almost contact structure
(¢,¢,7n) if it carries a tensor field ¢ of type (1,1), a vector field ¢, and a 1-form 7 on M,
respectively, such that,

p*=-T+neé n@)=1 nop=0,  ¢¢=0. (2.1)

Thus a manifold M equipped with this structure (¢, ¢, 7) is called an almost contact
manifold and is denoted by (M, ¢,¢, 7). If g is a Riemannian metric on an almost contact
manifold M such that,

(X, ¢Y) = g(X,Y) - n(X)n(Y),  g(X, &) =n(X), (2.2)

where X, Y are vector fields defined on M, then, M is said to have an almost contact metric
structure (¢,¢, 7, g), and M with this structure is called an almost contact metric manifold
and is denoted by (M, ¢,¢,1, ).

If on (M, ¢, ¢, 1, g) the exterior derivative of 1-form 7 satisfies

dn(X,Y) = g(X,$Y), (2.3)

then (¢, ¢,7, g) is said to be a contact metric structure, and M equipped with a contact metric
structure is called an contact metric manifold.

If moreover ¢ is killing vector field on M, then, M is called a K-contact Riemannian
manifold [19, 20]. A K-contact Riemannian manifold is called Sasakian [19], if the relation

(Vxd)Y = g(X, V)¢ - n(V)X (2.4)

holds, where V denotes the operator of covariant differentiation with respect to g.
In a K-contact manifold M, the following relations holds:

Vxé =X, (2.5)
$(R(X,Y)Z,8) = g(Y, Z)n(X) - g(X, 2)n(Y), (2.6)
5(X,¢) = (n-1)n(X), (2.7)

for all vector fields X, Y, and Z. Here R and S are the Riemannian curvature tensor and the
Ricci tensor of M, respectively.
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Definition 2.1. A K-contact manifold M is said to be ¢-recurrent if there exists a nonzero 1-
form A such that,

$*(VwR)(X,Y)Z) = AW)R(X,Y)Z, (2.8)

where A is defined by A(W) = g(W, p), and p is a vector field associated with the 1-form A.

Definition 2.2. A K-contact manifold M is said to be concircular ¢-recurrent [12] if there exists
a non-zero 1-form A such that,

¢2(<VWE) (X, Y)z) = AW)C(X,Y)Z, (2.9)

where C is a concircular curvature tensor given by [21] as follows:

= r
CX,Y)Z=RX,Y)Z- nm=1) [s(Y, 2)X - ¢(X,Z)Y], (2.10)
where R is the Riemannian curvature tensor and r is the scalar curvature.

A linear connection V in an n-dimensional differentiable manifold M is said to be a
semisymmetric connection if its torsion tensor T is of the form

T(X,Y) = VxY - VyX - [X, Y] = n(Y)X - (X)Y, (2.11)

for all X, Y on TM. A semisymmetric connection V is called semisymmetric metric connec-
tion, if it further satisfies Vg = 0.

3. Semisymmetric Metric Connection in a K-Contact Manifold

A semisymmetric metric connection V in a K-contact manifold can be defined by
UxY = VxY +7(Y)X - g(X, V)¢, (3.1)
where V is the Levi-Civita connection on M [3].

A relation between the curvature tensor of M, with respect to the semisymmetric
metric connection V and the Levi-Civita connection, V is given by

R(X,Y)Z=R(X,Y)Z + [g(9Y, 2)X - g(¢X, Z)Y] + [g(Y, Z)9pX — g(X, Z) Y]

3.2
- 29X, $Z)Y - g(Y,$2)X] + 102V, 2) - nMgX, D]t

where R and R are the Riemannian curvatures of the connections V and V, respectively.
From (3.2), it follows that

3(v,2) = S(Y, 2) - (n-2)g(Y,Z) + (n - 2)g($Y,Z) + (n-2n(¥V)n(Z),  (33)

where S and S are the Ricci tensors of the connections V and V, respectively.



4 International Journal of Mathematics and Mathematical Sciences

Contracting (3.3), we get

r=r-(mn-1)(n-2), (3.4)

where 7 and r are the scalar curvatures of the connections V and V, respectively.

4. p-Recurrent K-Contact Manifold with respect to
Semisymmetric Metric Connection

A K-contact manifold is called ¢-recurrent with respect to the semisymmetric metric connec-
tion if its curvature tensor R satisfies the following condition:

¢2(<6Wﬁ) (X, Y)z) = AW)R(X,Y)Z. (4.1)
By virtue of (2.1) and (4.1), we have
—(ﬁwﬁ) (X,Y)Z + q((ﬁwﬁ) (X,Y)z)g = AW)R(X,Y)Z, (4.2)
from which, it follows that
—g(<6wfe) (X,Y)Z, u) + q<<6w1§) (X, Y)z) g(¢,U) = A(W) g<ﬁ(x, Y)Z, u). (4.3)

Let {e;}, i = 1,2,...,n be an orthonormal basis of the tangent space at any point of the
manifold. Then putting X = U = ¢; in (4.3) and taking summation over i, 1 <i < n, we get

~(VwS) (v, 2)+ iq«%vﬂé) (e, V)Z)1(er) = AW)S(Y, 2). (4.4)
i=1

Put Z = ¢, then the second term of (4.4) takes the following form:

g((FwR) (e, 1)8,¢) = g(VwR(ei 1)¢,¢) - 8(R(Vwei, )&, 2)

L B B (4.5)
- g(R(ei, wa>§, {3) - g(R(ei/ Y) VWér ‘;) y
On simplification, we obtain g((%wﬁ) (e;,Y)¢,¢) =0.
Now (4.4) implies that
(VwS)(r,¢) =-AW)S(Y,9). (4.6)

We know that

(Tw8)(%,0) = VS8 - 3(Vwr,¢) - 3(¥, Twe). (4.7)
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Using (3.3), (2.5), and (2.7) in the above relation, we get

(Tw8)(V,0) = S(X, W) - S, W) - (n - 1)g (Y, §W)

+(n-1)g(Y,W) +2(n-2)g(pY,pW).

(4.8)

In view of (4.6) and (4.8), we have

SO, W)=S(Y,§W) +(n-1)g (Y, W)~ (n-1)g(Y, W) ~2(n-2)g($Y, $W) = (n-1) AW)n(Y).
(4.9)

Again putting Y = ¢Y in (4.9), we get

S(PY, W) = S(9Y, ¢W) + (n - 1)g(pY, ¢W) — (n - 1)g(pY, W) +2(n - 2)g (Y, pW) =( 0. )
4.10

Interchanging Y and W in (4.10), we obtain

SPLY) = SHW.4Y) + (= D(PW4Y) = 0= Dg WD) + 2025 WT) =0
411

Adding (4.10) and (4.11) which on simplification, we have

S, W) = (n-1)g(Y,W). (4.12)

Therefore, we can state the following.

Theorem 4.1. A ¢-recurrent K-contact manifold with respect to semisymmetric metric connection is
an Einstein manifold.

5. Concircular ¢g-Recurrent K-Contact Manifold with respect to
Semisymmetric Metric Connection

Let us consider a concircular ¢-recurrent K-contact manifold with respect to the semisym-
metric metric connection defined by

¢2<<6W5> (X, Y)Z) — AW)C(X,Y)Z, (5.1)

where C is a concircular curvature tensor with respect to the semisymmetric metric connec-
tion given by

;_1) [g(Y,2)X - g(X,2)Y]. (5.2)

CXNZ=REXNZ-
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By virtue of (2.1) and (5.1), we have
- (Wé) (X,Y)Z +1 < <6W6> (X, Y)z)g — AW)C(X,Y)Z, (5.3)
from which, it follows that

—g< (%ﬁ) (X,Y)Z, u) i < <§W5> (X, Y)Z> 2@ U) = A(W) g(é(X, Y)Z, u>,
(5.4)

where
(%Wé) X, V2= ((VWwR)(X,Y)Z) + 3[g(Y, Win(2)X - g(X, W)q(Z)Y]

+3[g(Y, 2)g(W, X)—¢(X, Dg(W, V)¢

+2[n(X)g(¢W, Y -n(Y)g (W, Z)X]

+2[n(V)8g(X, 2) - n(X)g(Y, 2)|pW + [g(Y, Z)n(X) - (X, Z)n(Y)|]W
+2n(W) [n(Y)g(X, Z) - n(X)g(Y, Z)] ¢

+21(Z)n(W) [n(X)Y - n(V)X] + g(Z, W) [n(Y)X - n(X)Y]
-gW,RX,Y)Z)¢ -n(X)RW,Y)Z

- n(V)R(X, W)Z - (Z)R(X, Y)W

Vwr
- Y, Z)X - q¢(X,2)Y].
w1 8 DX - g(X, 2)Y]
(5.5)
Let {e;}, i = 1,2,..., n be an orthonormal basis of the tangent space at any point of the

manifold. Then putting X = U = e; in (5.4) and taking summation over i, 1 <i < n, we get

= Vwr Vwr = T
(FwS) 1, 2) = Tg(1,2) = =T [g(0,2) - V(D) - AW) |51, 2) - Lgv,2)].
(5.6)

Replacing Z by ¢ in (5.6), we obtain

(FwS) 0 = P00 - AW |30, 8) - (). 57)
We know that

(VwS) (&) = TwS(1,9) - 5(Vwr.¢) - 5(¥. Vwe). (58)
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Using (3.3), (2.5) and (2.7), the above relation becomes

(FwS) (1) =S(X,gW) =S(Y, W)~ (n - 1)g (Y, §W) + (n = 1)g (L, W) +2(n - 2)g (PYpW).
(5.9)

In view of (5.7) and (5.9), we obtain

S(Y,pW) = S(Y, W) ~(n - 1)g(Y,pW) +(n - 1)g (Y, W) +2(n = 2)g(Y, W) ~2(n - 2)(Y)5y(W)

Vwr
n

[— 2 f—
1) - AW) [%nm].
(5.10)

Replacing Y by ¢Y in (5.10), we have

S(PY,¢W) = S(PY, W) = (n = 1)g (Y, ¢W) + (n - 1)g (Y, W) +2(n - 2)g(¢Y, W) =( 0. :
5.11

Interchanging Y and W in (5.11), we get

S(PW,$Y) = S($W,Y) - (n - (W, $Y) + (n - 1)g (W, Y) +2(n - 2)g($W,Y) e
5.12

Adding (5.11) and (5.12), which on simplification, we have

S, W) =(n-1)gY,W). (5.13)

Thus, we obtain the following theorem.

Theorem 5.1. A Concircular ¢-recurrent K-contact manifold with respect to semisymmetric metric
connection is an Einstein manifold.

Next, from (5.3), one has
<6W5> (X,Y)Z=1 < (6W5> (X, Y)Z>§ — AWYC(X,Y)Z (5.14)

Now, using (3.2), (3.4), (5.5), and Bianchi’s identity in (5.14), one obtains

AW)(R(X,Y)Z) + AX)n(R(Y,W)Z) + AX)(R(W, X)Z)
=-AW)[g(¢Y, Z)n(X) - g(¢X, Z)n(Y)]
- AX)[g(dW, Z)n(Y) - g(9Y, Z)n(W)]
- A(Y) [g(¢X, Z)n(W) - g(¢W, Z)n(X)]
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r—(n-1)(n-2)

AW)[g(Y, Z)n(X) - g(X, Z)n(Y)]

nn-1)
_ -1 _9
: (Z(n _)(17; ) AX)[gW, Z)n(Y) - g(Y, Z)n(W)]
_ -1 -9
r (Z(n_)(;; )A(Y) [g(X, Zyn(w) - g(w, Z)H(X)].

Putting Y = Z = ¢; in (5.15) and taking summation over i, 1 <i < n, one gets

—nn-1)(n-2)+r(n-2)- (n-1)(n-2)*
n(n-1)

]A(X)TZ(W)

. [n(n—l)(n—Z) —r(n-2)+(n-1)(n-2)>2

D ]A(wmoo

= A@W)n(X) - A($X)n(W).

Replacing X by ¢ in (5.16), one gets

[[r(n —2)+2(n-1)(n-2)]*+n2(n-1)>

n(n-Dr(n-2) + 2(n -1 (n-2)] ] [AW) = A@nW)] =0,

therefore

AW) =n(W)n(p),

for any vector field W.
Hence, one states the following.

(5.15)

(5.16)

(5.17)

(5.18)

Theorem 5.2. In a concircular ¢-recurrent K-contact manifold admitting semisymmetric metric
connection the characteristic vector field & and the vector field p associated to the 1-form A are co-

directional and the 1-form A is given by (5.18).
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