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ABSTRACT. Let n and rn be infinite cardinals with n < rn and n be a regular cardinal. We prove
certain implications of [n,m]-strongly paracompact, [n,m]-paracompact and [n,m]-metacompact
spaces Let X be In, oo]-compact and Y be a [n, m]-paracompact (resp. [n, oo]-paracompact), P,-space

(resp. wP,-space). If rn mk we prove that X x Y is [n, m]-paracompact (resp In, c]-
k<n

paracompact)
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1. INTRODUCTION
Throughout this paper rn and n will denote infinite cardinals with n < m and n will be a regular

cardinal. A space X is called [n, m]-compact (see Alexandroff [1]) if every open cover o of X with

Icl < m has a subcover of cardinality < n. For a set A, we denote by IAI, the cardinality of A. A

family of subsets of X is a locally-n (point-n) family (Mansfield [2]) if for every x 6 X, there is an

open neighborhood of x in X which meets < n members of c (resp x ,belongs to < n members of a)
An open refinement of a cover a of a space X is an open cover/ such that each member of B is

contained in some member of c. A space X is [n, m]-paracompact (resp. [n, m]-metacompact) if every
open cover of X with I1 < m has a locally-n (resp. point-n) open refinement. X is [n, m]-strongly
paracompact if every open cover of X with Ic, <_ m, has an open refinement such that for each

Bs#,

Originally, Singal and Singal introduced the concept of (m, k)-paracompactness in [3]. Our notation is

slightly different than theirs. However, we note that a space X is (m, k)-paracompact, as defined in [3],
if and only if X is [k+,m]-paracompact. A space X is [n, oo]-compact (resp. [n, oo]-paracompact,
[n, oo]-metacompact, In, oo]-strongly paracompact) if X is In, m]-compact (resp. [n, m]-paracompact,
[n, m]-metacompact, In, m]-strongly paracompact for each cardinal rn > n). A space X is a Pn-space
[4] if for every family a of open subsets ofX with I1 < n, is open in x. We observe that the class

of Pro-spaces is the class of all topological spaces, where w0 denotes the first infinite cardinal number

Also we observe that if P is any of "compact", "paracompact", or "metacompact", then the class of

[w0, oo] P spaces is the same as the class ofP spaces in the ordinary sense.
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Morita [5] studied m-paracompact spaces. A space X is m-paracompact if and only ifX is [w0, m]-
paracompact. Morita proved that if Y is an m-paracompact space and X is a compact space, then

X x Y is m-paracompact. In case m mk, we generalize Morita’s result by showing that ifX is an
k<rt

[n, c]-compact space and Y is [n, m]-paracompact, P,-space, then X x Y is In, m]-paracompact. We

note that for n w0 this result implies Morita’s result. A subset W of a topological space Y is called
n-open (Hdeib [6]) if for each /E W there exists an open set V in Y such that t/E V and IV\Wl < n.

A subset F of Y is called n-closed if Y\F is n-open. A space Y is called a weak P -space [6] or

wP,-space if N a is n-open for every family a of open subsets of Y with I1 < n. We prove that if X
is a [n, oo]-compact space and Y is an In, oo]-paracompact, wP,-space, then X x Y is [n, c]-
paracompact. This result is a variation of our generalization ofMorita’s result.

It is well known (Dungundji [7]) that if a space X is locally compact and Hausdorff, then X is

paracompact if and only if X is a disjoint topological sum of r-compact spaces. We prove that if
n > w0, then a locally [n, o]-compact, regular space X is In, oo]-paracompact if and only if X is a

disjoint topological sum of In, oo]-compact spaces. A space X is, by definition, locally [n, oo]-compact if

for each point z X and an open neighborhood G ofz, there exists an [n, oo]-compact neighborhood H
ofz such that H C G.

In this paper we also prove certain implications concerning [n, m]-paracompact, metacompact,
strongly paracompact spaces.

For a space X, the density d(X) ofX is defined as the smallest cardinal number that is the cardinal
number ofa dense subset ofX. For terminology not defined here see Engelking [8].

2. [n, rn]-PARACOMPACT SPACES
It is clear that each [n, m]-strongly paracompact space is [n, m]-paracompact which in turn is [n, m]-

metacompact. However, in general, the converses ofthese implications do not hold.

The following two theorems are interesting in this respect.
THEOREM 2.1. Let 9’ be an open cover of a space X such that 171 -< rn and d(A) < n for each

A 7. Then X is [n, m]-strongly paracompact if and only ifX is In, m]-metacompact.
PROOF. We only need to prove "if’ pan. Let X be In, m]-metacompact. Let a be an open cover

ofX with It -< m. Let/ {A n W A E 7 and W 6 a}. Then I1 _< m, is an open refinement of
a and d(B) < n for each B E/3. Since X is [n, m]-metacompaet, then there exists a point-n open
refinement , of/. Each L 6 , is contained in some BL 6/3. Since L is open and d(Bz,) < n, then

d(L) < n. Let L 6 , and D be a dense set in L such that D! < n. Let (A ,X :A C L :/: }.
Since D is dense in L, then A 6/ if and only if A n D b. Thus/ {A 6 ,X A D :/: }. For
d E D let us set/,/= {K E , d 6 K}. Then I/dl < n since ) is point-n. Hence

I/1 _< I/x <
dED

Since IDI < n and n is a regular cardinal, it follows that X is [n, m]-strongly paracompact.
COROLLARY 2.1 (Traylor [9]). Let X be a regular space with an open cover 7 such that

d(G) < ,;o for all G E 9’. Then X is strongly paracompact if and only ifX is metalindelOf.

PROOF. The prooffollows from Theorem 2.1 and Theorem 3, page 229 in [8].
THEOREM 2.3. Let X be a locally [n, oo]-compact space. Then X is In, oo]-paracompact if and

only ifX is In, oo]-strongly paracompact.

PROOF. We only need to prove "only if’ pan. Let X be [n, oo]-paracompact. Let a be an open
cover ofX. Since X is locally In, oo]-compact then there exists a cover cr ofX such that

(i) a refines a

(ii)/ {int H :H E or} is a cover ofX,
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(iii) ifH E a, then H is In, oo]-compact
Since X is [n, oo]-paracompact, then has a locally-n open refinement 7 Now, let G E 7 and

{L ’), GNL : }.

Since "), refines , then G c_ int H C_ H for some H a For each x H, there is an open set Wx
containing x such that W meets < n members of’)’ We have

H U{W I-IH’x e g}.

Since H is In, cx]-compact, then there exists a subset T ofH such that ITI < n and

H= u{WxnH’zeT}.

For x E T. Let us set

We see that

Hence

/:={LET"W:NL#}.

I1 I1 < n.
sET

Since ITI < n, I/x < n for each x T and n is a regular cardinal.

COROLLARY 2.4. Let X be a regular, locally Lindel0f space. Then X is strongly paracompact if

and only ifX is paralindel0f
PROOF. The prooffollows from Theorem 2.3 and Theorem 3, page 229 in [8].
It is well known in [7] that ifX is a locally compact Hausdorff space, then X is paracompact if and

only if X is a disjoint topological sum of a-compact spaces. It is natural to ask when X is a locally

In, oo]-compact, [n, oo]-paracompact space, whether X is a disjoint topological sum of a-[n, oo]-
compact spaces. The result above is the answer to the case when n w0 and X is Hausdorff. So we are

only interested in the case when n > too. The following theorem provides the answer to this question

TIIEOREM 2.5. Let n > w0 and X be a locally [n, oo]-compact regular space. Then X is In, oo]-
paracompact if and only ifX is a disjoint topological sum of In, oo]-compa’ct spaces

PROOF. It is obvious that if X is a disjoint topological sum of [n, oo]-compact spaces, then X is

[n, oo]-paracompact. Thus let us assume that X is [n, oo]-paracompact Let

c {U" U c_ X and U is In, oo]-compact}.

Then/ {int U U a} is an open cover ofX since X is locally [n, oo]-compact Since X is regular,

then there is an open cover 7 ofX such that q {c eG G e 7} refines . Since X is a locally [n, oo]-
compact, In, ]-paracompact space, then by Theorem 2.3, X is In, oo]-strongly paracompact Hence
there exists an open refinement a of 7 such that for each L a the set/XL {H cr L H - } has

cardinality n. For a positive integer t, a chain of length t in a is a sequence L1,..., Lt in a such that

L A L,+I for 1 < < t 1. If 1 we simply require L1 : . For x, y E X we define x y if

there is a chain L1,..., Lt in a such that x L1 and y Lt. Clearly is an equivalence relation since

a is an open cover of X. Let R be an equivalence class and a R. If y E R, then there is a chain

L1,..., L in a such that a E L1 and y ELt. Clearly each point in Lt is equivalent to a with respect to

", hence Lt C R. So R is open. Let z E ceR. There exists L E a such that z E L Since z ceR,
then L fq R :/: Thus if w E L n R, then z w, i.e, z E R. This shows that R is also closed Let
a E L and L E a. We know that L C_ R For a positive integer t, let
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there is a chain L1, Lt in r such that L L1 and Lt H}.

Clearly #1 {L}. Thus [#1[ < n. Assume that [#t[ < n If K E #t.1, then there is a chain

LI,L2, ...,Lt, Lt+I in r such that L L and K Lt+l Then Lt #t Thus

Hence

#/l C_ {/x,n H E

HE#t

since [#l[ < n and n is a regular cardinal. This inductive argument shows that ]#t[ < n for all _> 1 We
show that R to {P _> 1) where Rt U {c.H H #t }. If H #t, then by the definition of

" we get H _C R Since R is closed, then c.H C_ R. So R _D [3 P Conversely let V E R Then

there is a chain L1, Lt in r such that a L1 and V Lt. Since a L1 A L, then L, Li, Lt is a

chain in r Thus Lt C #t+l" and consequently V E t2 P. This proves the result

Now, ifH r, then H C_ cE C_ U for some G 7 and U q a. Thus c.G and consequently c.H
is In, oo]-compact. Since [#t[ < n when is a positive integer, then Rt is also In, oo]-compact Since
n > w0, then R to P is also In, oo]-compact. This proves the theorem since X is the disjoint
topological sum ofthe equivalence classes of ".

3. PRODUCT THEOREMS
In this section we prove theorems concerning [, ]-paracompact of a product space X Y Our

first theorem is a generalization of a result by Morita [5] which states that ifX is a compact space and
is an -paracompact space, then X Y is an -paracompact space.

THEOREM 3.1. Let the cardinal rn satisfy rn l{rnk k is a cardinal and k < n} Let X be an

[n, oo]-compact space and Y be an [n, m]-paracompact P,-space. Then X x Y is [n, rn]-paracompact
PROOF. Let c be an open cover ofX x Y with [ct[ <_ m. For each subset/ ofa with [/3[ < n, let

W={vY-Xx{v} C_ t3/}. Let / C_ a and [/3[<n. Then W is open in X For letvEW.
Then X x {V} is contained in G U/3. For each z X, there exists a basic open set B x Cz in

X x Y such that (z, V) Bz x C c_ (7. Now {B z X} is an open cover of X. Thus there is a

subcover {Bz "z S} where IS[ < n. (7 A {C "z S} is open in Y, since Y is a P,-space and

VEG Moreover, XxCc U{BxC’zS} c_(7. It follows thatvCC_W. SoWisopen
Let us set

A {W -/ C_ a and [/3[ < n}.

Let V Y. For each z X, there exists A a such that (z, V) A There is a basic open set

DxE inXxY such that (z,v)DxEC_A. Now, {D-zX} is an open cover of X
Thus it has a subcover {D z E T} such that IT[ < n.

Let/={A’:rT}. Then [/3[ <nandXx{v} c_U D x{v} c_ to/. ThusvWa This
zET

shows that A is an open cover ofY. Further notice that

IAI _< ’ rn rn.
k<n

Thus there exists a locally-n open refinement # ofA since Y is In, m]-paracompact. For each M e > we

pick/3m C_ c, such that 131 < n and M C_ Wu. For A e 3m we define G(M, A) (X x M) A
Let p {G(M,A)" M >,A 3m} If (:r,V) X x Y, then !1 M C_ WOu for some M #

Since V Wou, then X x {} C_ tO/3. Thus (z,V) e A for some A /3 Hence (z,!/) E G(M,A)
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This shows that p is an open cover ofX x Y Clearly p refines a Let (z, ) E X x Y There exists an

open set N in Y such that E N and N meets < n members of/. Let #’ {M # N N M 4: 4}
Thus we have I’1 < n. If M #’, then (X x N) N G(M, A) for all A SM Thus the open
neighborhood X x N of (z, /) can only meet those G(M, A) with M #’ and A /M The cardinality

of such G(M, A)’s is at most IMI which is less than n since I’1 < n, IMI < n for each M E #’
ME/.t’

and n is a regular cardinal Hence p is a locally-n family

In Theorem 3.1 if we assume the stronger condition that Y is In, oo]-paracompact then we can show

that X Y" is [n, oo]-paracompact if we only assume that is a wP,-space Before we prove this result

we first prove two theorems which are interesting in their own rights
Let A and/3 be topological spaces and f" A --o B be a function f is called n-closed if for every

closed subset F ofA, f(F) is an n-closed subset of B.
TIIEOREM 3.2. Let Xbe an [n, oo]-compact space and Y be a wPn-space. Then the projection

mapping P X x Y Y is an n-closed map
PROOF. Let F be closed in X x Y and i/be in U Y\P(F) Then (z, /) F for each z X

Hence there are open sets Ux in X and Vx in Y, for each z X, such that (z, /) Ux x V and

F I’1 (U x V) . a {U z X} is an open cover ofX Since X is In, oo]-compact, then there

exists a subset T ofX such that ITI < n and 5 {U z T} covers X. W 91 V z E T} is n-

open in Y since Y is a wP,-space and W Hence there exists an open set V in Y such that V
and IV\Wl < n. Now, we have X x W 91F b Hence W C_ U. Thus Iw\uI < n. It follows that

U is n-open. Thus P is n-closed.

TNEOREM 3.3. Let f" Z Y be a continuous, n-closed mapping such that f-1 (/) is In, oo]-
compact for such Y. If Y is [n, oo]-paracompact (resp. [n, oo]-compact) then Z is also In, oo]-
paracompact (resp. [n, oo]-compact).

PROOF. We will only prove the case when Y is In, oo]-paracompact. The In, oo]-compact case

can be proved similarly.
Let a be an open cover ofX For each i/ Y let au be a subcollection ofa such that I,1 < r and

f-l(/) c_ L.jau. Such a subcollection exists since f-l(!/) is [n, oo]-compact. For Y, let

G U au, and Wu Y\f(X\Gu). Then i/ W and Wu is n-open since f is an n-closed map Thus

for each / Y, there is an open set Vu in Y such that /E V and Vu\Wu] < n. 7 { Vu U Y} is an

open cover of Y and Y is In, oo]-paracompact. Hence there existg a locally-n open refinement

{T I} of 7. For each I, pick / Y such that T, C_ V,. For/ Y let

u u (,, .t v\w)).

Then

II <_ I,I + (I,I t v\w) < ,
since n is a regular cardinal. Moreover f-1 (Ti) C_ U/, since T, C_ V,. Let

Then clearly a is an open refinement of c. Let :r X and i/= f(z). There is an open set N in Y and

a subset 3 of I such that Jl < n, N and N n T for all /3. Let M f- (N) and

A {H l-! f- (T) H /u,, 3}. Then z E M and IAI _< Itu, < n since n is a regular cardinal

Moreover, if L E or\A, then L r3 M or. Hence cr is a locally-n family.

As a corollary ofTheorem 3 2 and Theorem 3 3 we obtain the following variation ofTheorem 3
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TIIEOREM 3.4. Let X be an [n, oo]-compact space and Y be an [n, oo]-paracompact (resp

In, oo]-compact) wP,-space, then X x Y is In, oo]-paracompact (resp In, oo]-compact)
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