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ABSTRACT. The purpose of this paper is to discuss the existence of common fixed points for

mappings in general quasi-metric spaces. As applications, some common fixed point theorems for

mappings in probabilistic quasi-metric spaces are given. The results presented in this paper generalize
some recent results.
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1. INTRODUCTION
In this paper, we show the existence of common fixed points for commuting mappings in general

quasi-metric spaces. As applications, we give some fixed point theorems for commuting mappings in

probabilistic quasi-metric spaces. Our main results generalize and improve some recent results in 1], [4],
[] and [6].

Let (G, _<, < be a partial order set satisfying the following conditions:

(G-l) 0 is the minimal element in G, i.e., 0 < u for all z G,
(G-2) for any , v G, sup{u, v} exists and belongs to G,
(G-3) for any u /G, ,
(G-4) for any , v, w G, u < w and v < w = sup{z, v} < w, and < v, v

_
w = u < w.

DEFINITION 1.1 Let X be a nonempty set. (X, r) is called a general quasi-metric space if

r- X x X --, G (G, _, < satisfies the following conditions:

(QM-1) r(x, !/) 0 ifand only ifx !/,

(QM-2) r(x,l)
It follows from the definition that every general quasi-metric space includes a metric space as its

special case.
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DEFINITION 1.2 Let X be a nonempty set and let T be a self-mapping of X. A point x E X is

called a periodic point of T if there exists a positive integer k such that Tkx x. The least positive

integer satisfying this condition is called theperiodic index of x.

DEFINITION 1.3 A mappingF (- oo, oo) [0, oo) is called a distribution function if it is

nondecreasing and left-continuous with infF(t) 0 and sup F(t) 1.

In what follows we always denote by F(T) the set of all fixed points of T, P(T) the set of

all periodic points of T and /) the set of all distribution functions, respectively, and let
l)+ {F 1): F(t) 0 for all t < 0}.

DEFINITION 1.4 (X, .’) is called aprobabilistic quasi-metric space ifX is a nonempty set, " is

a mapping from X x X into 1)+ (we shall denote the distribution function .’(x, y) by F=,u(t which

represent the value ofF=,u at t oo, oo)) satisfying the following conditions:

(PQM-I) F=,u(0) 0,

(PQM-2) F=,u (t) I for all t > 0 ifand only ifx y,

(PQM-3) F,(t) Fux(t for all oo, oo).
DEFINrrION 1.5 (X, ’) is called a probabilistic metric space if (X, ’) is a probabilistic quasi-

metric space and the following condition is satisfied:

(PQM-4) if F=,(tl) 1 and F.z( 1, then F,z(tl + z) 1.

For more details on probabilistic metric spaces, refer to [3] and [7].

2. COMMON FIXED POINT TIOREMS
Now, we give our main theorems.

TitEOREM 2.1 Let (X, r) b a general quasi-metric space and let ’ and T be two commuting
self-mappings ofX. Iffor any x X and any two positive integers n, q _> 2 with

Tix T:x, O < < j <_ n -1,
(2.1)SexSJ’x, 0_<i’<._<q-1,

,(T"S"=, ST=)

< max sup r(TJz, S =), sup r(T:=, x), sup r(S =, x)
1 <_j<_n, 1 <_] <_q 1 <_j<_n 1 <_] <_q

(2.2)

for 1, 2, n 1 and j 1, 2, q 1, then S and T have a common fixed point in X if and only if

there exist integers m, n, p, q, m > n > 0, p > q > 0, and a point x X such that
Tx SP= Tnx sqx (2.3)

and either F(S) or F(T) 7 O. If this condition is satisfied, then either T"x or Sqx is a common

fixed point ofS and T.
PROOF. Let x* E X be a common fixed point ofT, i.e., x* Sx* Tx*. Then (2.3) is true in

case rn p l and n q O.
Conversely, suppose that there exist a point x X and four integers rn, n, p, q, rn > n >_ 0,

p > q > 0, such that (2.3) is satisfied. Without loss of generality, we can assume that x

_
F(S) and m

is the minimal integer satisfying Tx Tx, k > n. Putting y T"x and p rn- n, we have
T y y and Pl is the minimal integer satisfying Tky y, k > 1.

By (2.2), it follows that

r(Tx, Tix) < max{ l <_j< n
sup {r(Tx’x)}’

l <_j<_nSUp {r(Tx,x},O},
r(T"x, Tix) < sup {r(Tix, x)}. (2 4)

l<_j<_n
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Next, we prove that y is a common fixed point of S and T. Suppose the contrary. Then V is not a fixed

point ofT. Also, p _> 2 and

T’yeTy, O<_i<j<_pl-1.

By (2.4), it follows that, for 1, 2, pl 1,

r(y, TV) r(Ty, T/y) < sup {r(TJy, y)} _<
1 <_j<p

sup {r(TJY, V)}.

It follows from (G-4) that

sup {r(y,T:y)} < sup {r(T:y,y)},
l<j<p-1 l<j<_p-1

which is a contradiction. Therefore, y Tx is a fixed point of T. Further, since S and T are

commuting, we have

V T"x T"Sx ST"x Sy,

i.e., y Tx is a common fixed point of S and T. In this case, when x E F(T), we have, by

terchanging the role ofS and T, that y Sqx is a common fixed point ofS and T. This completes the

proof
On the other hand, by using Theorem 3 of [6], we have the following:
THEOREM 2.2 Let (X, r) be a general quasi-metric space and let S and T be two commuting

self-mappings of X. Assume that for any x, y E X, x - y, there exists a positive integerp(x, y) such

that

r((ST)’u)x, (ST)’U)y) < sup{r(x, y), r(x, (ST)’’)x), r(y, (ST)’)y),
r(x, (ST)")y), r(y, (ST)’’u)x)}

Then S and T have a common fixed point in X if and only if there exists a periodic poim x X ofST
with periodic index k such that for any u, v A {x, STx,...,(ST)k-x}, u v, there exist

x’, y’ A, x y’, satisfying the following conditions:

(ST)e’z’ u, (ST)’ v

and either F(S) Q P(ST) # or F(T) Q P(St) # @. If these conditions are satisfied, then the point x
is the unique common fixed point ofS and T.

PROOF. The necessity condition is obvious.

The sufficiency condition follows from Theorem 3 of [6] as follows: In Theorem 3 of [6], if we

replace T by ST, we can conclude that ST has a unique fixed point x in X. Since S and T are

commuting,

Sx S(STx) ST(Sx)

and so Sx is also a fixed point ofST. Uniqueness gives Sx x. Similarly, Tx x. This completes the

proof
The following is a special case of Theorem 2.2 by setting p(x, y) p(x):
COROLLARY 2.3 Let (X, r) be a general quasi-metric space and let S and T be two commuting

self-mappings of X. Assume that for any x X, there exists a positive integer p(x) such that every
yEX, xy,

r((ST)=)x, (ST)(=)y) < sup(r(x, y), r(x, (ST)=)x), r(y, (ST)K=)x), r(y, (ST)=)y),
r(x, (ST)’)y), r(y, (ST)=)x)}
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Then S and T has a common fixed point in X if and only if there exists a periodic point x E X of ST
with periodic index k such that for any u, v E A {x, STx,...,(ST)k-lx}, u :fi v, there exist

x’, y’ E A, x’ =f= y’, satisfying the following conditions:

(ST)()z’ u, (ST)e)y v

and either F(S) N P(ST) 0 or F(T) N P(ST) O. If these conditions are satisfied, then the point x

is the unique common fixed point ofS and T.
The following is obtained from Corollary 2.3 by setting p(x) p:

COROLLARY 2.4 Let (X, r) be a general quasi-metric space and let S and T be two commuting

self-mappings ofX. Assume that there exists a positive integer p such that for any x, y X, x - y,

r((ST)’x, (ST)y) < sup{r(x, y), r(x, (ST)"x), r(y, (ST)y), r(x, (ST)y), r(y, (ST)x)}

Then S and T have a common fixed point in X if and only if there exists a periodic point x X ofST
and either F(S) f’l P(ST) t or F(T) P(ST) : . If this condition is satisfied, then the point x is

the unique common fixed point ofS and T.
By setting p 1 in Corollary 2.4, we have the following:
COROLLARY 2.5 Let (X, r) be a general quasi-metric space and let S and T be two commuting

self-mappings ofX. Assume that for any x, y X, x :f- y,

r(STx, STy) < sup[r(x, y), r(x, STx), r(y, STy), r(x, STy), r(y, STx)}.

Then S and T have a common fixed point in X if and only if there exists a periodic point x X ofST
and either F(S) q P(ST) or F(T) P(ST) :/: . If this condition is satisfied, then the point x is

the unique common fixed point ofS and T.
By using Theorem 5 of [6], we have the following:

THEOREM 2.6 Let (X, r) be a general quasi-metric space and let S and T be two commuting

self-mappings ofX. Assume that there exist positive integers p, q such that for any x, y, E X, x t y,

r((ST)x, (ST)qy) < sup(v(x, y), r(x, (ST)"x), r(y, (ST)qy), r(x, (ST)qy), r(y,

Then S and T have a fixed point in X if and only if there exists a periodic point x 6 X of ST with

periodic index k which satisfies the following condition:

where p =/hk + P2, q ql k + q2, 0 _< P2, q2 < k and Pl, ql are non-negative integers and either

F(S) gl P(ST) or F(T) ; P(ST) - f}. If this condition is satisfied, then the point x is the unique
common fixed point ofS and T.

PROOF. The necessity condition is obvious.

To prove converse, if we use Theorem 5 of [6] by replacing T with ST, then ST has a unique
fixed point x in X. Therefore, employing the same argument as in the proof of Theorem 2.2, it follows

that the point x is the unique fixed point ofS and T. This completes the proof.
REMARK. Theorems 2.1 2.6 generalize some main results in ], [2] and [4].

3. APPLICATIONS TO PROBABILISTIC QUASI-METRIC SPACES
First of all, we define partial orders < and < " on T+ as follows, respectively: For any F1,

F2 E I)+ andt > 0,

F < F F() > F(),
F < F F (t) > F().

In the sequel, we denote G (T+, _<, < ). It is obvious that G satisfies the following conditions:
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(G-1) there exists a minimal element 0 d&f: H E G, where

g(t) { , t>0,
0, t < 0,

(G-2) for any F, F E G,

sup{Fl, Y2}(t) %r. rnin{Y (t), F(t)}

(G-3) for any F G, F F,
(G-4) for any F, F, Fs G,

F < Fs, F: < Vs sup{F, F) < Fs,
FI < F2, F2 <_ F3 = FI < F3.

THEOREM 3.1 (Embedding Theorem) Let (X, ’) be a probabilistic quasi-metric space. Then

(X, .’) is a general quasi-metric space, where G (D+, _<, < is the partial order set induced by the

way as above.
PROOF. Let r(x, y) Fx,y for all x, y e X. It is easy to see that r satisfies the conditions (QM-

2) and (QM-2) ofDefinition 1.1.

The following results are obtained from Theorems 2.1 2.6 and Theorem 3.1 immediately:
THEOREM 3.2 Let (X,.T’) be a probabilistic quasi-metric space and let S and T be two

commuting self-mappings ofX. Iffor any x X and positive integer n, q _> 2 with

TixTTx, O<_i<j<_n-1,
S’x Sx, O < < j <_ q-

FT,s,x.s,z(T) > rffm ( rain Fr,: s,, (t) rain FT, (t) nfin Fs,,.x (t) )1 <_j<_n, 1 <_j’ <_q ’1 <_j<_n 1 <_3 <_q

for 1, 2, n 1 and j 1, 2, q 1, then S and T have a common fixed point in X if and only if

there exist integers m, p, q, m > n _> 0, p, q >_ 0, and a point x E X such that

Tx Sx T"x

and either F(S) : O or F(T) :/: . If this condition is satisfied, then either T"x or Sqx is a common

fixed point ofS and T.
THEOREM 3.3 Let (X,Y’) be a probabilistic quasi-metric space and let S and T be two

commuting self-mappings of X. If there exist positive integers p, q such,that for any.x, y e X, x : y,
and for all t > 0,

F(sr),.(sr),() > min{F.(), F.(ST),(t), F.(ST),(), F.ST),(), F.(ST),() },

then S and T have a common fixed point in X if and only if there exists a periodic point x X ofST
with periodic index k which satisfies the condition (2.5) in Theorem 2.6 and either F(S) P(ST) 7 1
or F(T) P(ST) 7k $. If this condition is satisfied, then the point x is the unique common fixed point
ofS and T.

The followin is a special case ofTheorem 3.3 obtained by settin p q 1

COROLLARY 3.4 Let (X,.’) be a probabilistic quasi-metric space and let S and T be two

commuting self-mappings ofX. Iffor any x, y X, x y, and t > 0,

FST,STu(t) > min{F,u(t), F,ST(t), Fu,ST(t), F,STu(t), Fu,sr(t)}

then S and T have a common fixed point in X if and only if there exists a periodic point x G X ofST
and either F(S) Iq P(ST) :fi 0 or F(T) f3 P(ST) $. If this condition is satisfied, then the point z is

the unique common fixed point ofS and T.
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THEOREM 3.5 Let (X,.T) be a probabilistic quasi-metric space and let S and T be two

commuting self-mappings of X. If for any x X, z # y, there exists a positive integer p(z, V) such that

for all t > 0,

F(sT).),(sr)z.% t > min{F.v(t), F,(ST)., t Fv.(ST).% t

F.(sr),.%(t), F.(ST),,, (t) },

then S and T have a common fixed point in X if and only if there exists a periodic point x X of ST
with periodic index k such that for any u, v A {x, (ST)x,..., (ST)k-I}, u v, there exist x,
y A, x’ ://: y, satisfying the following conditions:

(St)(e’/)x’ u, (ST)e’V’)y v

and either F(S) n P(ST) or F(T) fq P(ST) . Ifthese conditions are satisfied, then the point x

is the unique common fixed point ofS and T.
By setting p(x, y) p(x) in Theorem 3.5, we have the following:
COROLLARY :}.6 Let (X,.T’) be a probabilistic quasi-metric space and let S and T be two

commuting self-mappings of X. If there exists a positive integer p(x) such that for every y X, x #: y,

and for all t > 0,

F(ST),)z,(ST)Z)v(t > min{F,v(t), Fz,ST),)z(t),

then S and T have a common fixed point in X if and only if there exists a periodic point x X of ST
with periodic index k such that for any u, v A {x, (ST)x (ST)-Ix}, u # v, there exist :d,
y’ e A, Z’ # y, satisfying the following conditions:

(:T)ez u, (ST)eV’ v

and either F(S) fq P(ST) -#- or F(T) f P(ST) #- t3. If these conditions are satisfied, then the point x

is the unique common fixed point ofT.
REMARK. Theorems 3.3 3.6 include Theorems 5 in [4] and Theorems 3.3 3.6 in [5] as

special cases.
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