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ABSTRACT. In this paper, a new derivation for one of the black hole line elements is given since

the basic derivation for this line element is flawed mathematically. This derivation postulates

a transformation procedure that utilizes a transformation function that is modeled by an ideal

nonstandard physical world transformation process that yields a connection between an exterior

Schwarzschild line element and distinctly different interior line element. The transformation is an

ideal transformation in that in the natural world the transformation is conceived of as occurring

at an unknown moment in the evolution of a gravitationally collapsing spherical body with radius

greater than but near to the Schwarzsclfild radius. An ideal transformation models this trans-

formation in a manner independent of the objects standard radius. It yields predicted behavior

based upon a Newtonian gravitational field prior to the transformation, predicted behavior after

the transformation for a field internal to the Schwarzschild surface and predicted behavior with

respect to field alteration processes during the transformation.
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I. INTRODUCTION.
In [I], the linear effect line element is derived and, in [2], a general llne element d$’ is derived

by considering a non-reversible P-process emanating from the center of a spherical conflguratlon
and its interaction with the substratum. This interaction is modeled by taking the Special Theory

chronotopic interval and modifying its spherical coordinate transformation by a type of damping

of the basic light-clock counts. This damping is characterized by the two expressions (i) dR"
dR" + dT" and (ii) dT" gdR" + dT’, where the , and ]9 are to be determined. From these

determinations, the following general line element is derived.

aS (cdt")’ (1/A)(dR")’ (R)’(sin’ 0(db’)’ + (dO’)’). (1.1)

The Eddington-Finkelstein transformation is the least ad hoc and is more physically justified

than others. But, in [5], the derivation and argument for using the this simple transformation (1)
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dU"’ dr" + .fM(R’)dR" to obtain a black hole line element is flawed. This flaw is caused by

the usual ad hoc logical errors in "removing infinities." Equation 57.11 in [5, p. 157], specifically

requires that R > 2GM/c2. However, in arguing for the use of the transformed Schwarzschild

line element (1.1), Lawden assumes that it is possible for R" 2GM/c. But the assumed real

valued function defined by equation 57.11 is not defined for R" such that R 2GM/c2. Since

the derivation of the Schwarzschild line element in [2] does not require the General Principle

of Relativity and, indeed, assumes that there is a privileged observer within a substratum, a

new and rigorously correct procedure is necessary. This is accomplished by showing that (1)
can be considered as a hypercontinuous and hypersmooth transformation associated with a new

non-reversible P-process that yields an alteration to the gravitational field in the vicinity of the

Schwarzschild surface during the process of gravitational collapse. This speculation is modeled

by the expression (1) which is conceived of as an alteration in the time measuring light-clock.

Further, this alteration is conceptually the same as the ultrasmooth microeffects model for fractual

behavior [4]. This transformation takes the Schwarzschild line element, which applies only to the

case where R" > 2GM/c2, and yields an NSP-world black hole line element that only applies for

the case where R" < 2GM/c. Like ultrasmooth microeffects, the nonstandard transformation

process is considered as an ideal model of behavior that approximates the actual natural world

process. Thus we have two district line dements connected by such a transformation and each

applies to a specific R’ domain.

2. THE FUNCTION f(R’).
To establish that an internal function fM(Rm) exists with the appropriate properties proceed

as follows: let be the set of all nonsingleton intervals in (at). Let " C (at lit) be the set

of all nonempty functional sets of ordered pairs. For each I , let C(I, at) C " be the set of all

real valued continuous functions (end points included as necessary) defined on I. For each a > 0,

]f. 6 C((-oo, 0], at), (-oo,0] fi 2r, such that Vz 6 (-oo,0], f.(z) 1/(z -a). Further, Bg. fi

C((0,2a], at), (0,2a] , such that Vz (0,2a], g.(z) -z/(2a) + 7z2/(4a) z/a 1/a.
Then Bh. C((2a, +cx),at), (2a, +oo) (5 ’, such that Vz (2a, +cx), h.(x) 0. Finally, it

follows that limz--.o- ft(x) lim,--.o+ ga(x), lim,_.2,- ga(x) limt.-.2,4 ha(x). Hence

’.(=);
n.(=) 9.(=);

(-oo, o]
z (0,2a]
x fii (2a, +co)

is continuous for each z E at and has the indicated properties.

Now H:(z) exists and is continuous for all x E at and

f:(); e (-oo, 0]
n:() :(); (0,2a]

:(); e (2., +oo)

All of the above can be easily expressed in a first-order language and all the statements

hold in our superstructure enlargement [4]. Let 0 < tt(0). Then there exists an internal

hypercontinuous hypersmooth H,: *at -, *t such that Vz q *(-oo,0], H,(z) 1/(z- ) and

Yz q *(-oo,0)t3 at, st(H,(z)) st(1/(z -)) 1/z; and for z 0, H,(0) exists, although

t(H,(0)) does not exist as a real number. Further, Yz q (2, +oo)t3at (0, +oo), st(H,(z)) O.

To obtain the hypercontinuous hypersmooth fM, simply let c.fM H,, x A, R" *at.
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3. MOTIVATION FOR FUNCTION SELECTION.
Recall that a function f defined on interval I is standardizable (to F) on I if ’x E I rl

lit, F(x) sv.(f(x)) r= lit. Now, consider the transformation (1) in the nonstandard form dU

dt + fM(R)dR where internal fM(R’) is a function defined on A C *lit, and A A(R’).
There are infinitely many nonstandard functions that can be standardized to produce the line

element d’2. In this line element, consider substituting for the function A A(Rm, the function

*A- e. The transformed line element then becomes, prior to standardizing the coefficient functions

(i.e. restricting them the the natural world),

T *A e)c’((dU)2 2fMdUdR + fw(dR)’) (1/( *A e))(dRm)’-
(R")2(sin’ O(d’) + (dO"))

*A e)ce(dUm)’ 2( *A e)c’fMdUmdR+

(( "A e)c’fw (1/( *A e)))d:dR"-
(R’)’(sin’ 0re(de’)’ + (dO")’). (3.1)

Following the procedure outlined in [4], first consider the partition IR (-o0, 0] U (0, 2e] U
(2e, +), where e is a positive infinitesimal. Consider the required constraints. (2) As required,

for specific real intervals, all coefficients of the terms of the transformed line element are to be

standardized and, hence, are standard functions. (3) Since any line element transformation, prior

to standardization, should retain its infinitesimal character with respect to an appropriate interval

I, then for any infinitesimal dR and for ea value R E I terms such as G(R)dR, where

G(Rm) is a coefficient function, must be of infinitesimal value.

For the important constraint (3), Deilnition 4.1.1, and theorems 4.1.1, 4.1.2 in [3] imply that

for a fixed infinitesimal dR in order to have expression b infinitesimal as R varies, the coefficient

h(R) "A-e)c’fw 1/(*A-e) must be infinitesimal on a subset A of an appropriate interval

I such that 0 E A. The simplest case would be to assume that A *( -o, 0]. Let standard

r e A t3 IR. Then it follows that h(r) C p(0). Thus st(h(r)) 0. Inleed, let x e (tg{ft(r) r <
0, r e lit}) t9 (p(0) f3 A). Then st(h(x)) 0. Since we are seeking a transformation process that

is hypercontinuous, at least on *( c, 0], this last statement suggests the simplest to consider

would be that on *(- oo,0], h 0. Thus the basic constraint yields the basic requirement

that on *(- o,0] the simplest function to choose is CfM(X) 1/(x --e). Since standardizing

is required on *(- o,0)rl lit, we have for each x e "(- o,0)f3 IR, that st(cfM(x))
cst(fM(X)) st(1/(x- e)) 1/X. This leads to the assumption that on (-o,0] the function

f(x) 1/(x a), a > 0, should be considered. After *-transferring and prior to standardizing,

this selection would satisfy (3) for both of the coefficients in which fM appears and for the

interval I *(- oo, 0]. The function ga is arbitrarily selected to satisfy the hypercontinuous

and hypersmooth property and, obviously, ha is selected to preserve the original line element for

the interval (2e, +oo). Finally, it is necessary that the resulting new coefficient functions, prior

to standarizing, all satisfy (3) at least for a fixed dR and a varying R E *( -o, 0] for the

expression (1). It is not difficult to show that IH,(x)l < 2/e for all x e *IR. Consequently, for

e (dRY)1/3 expression (1) is an infinitesimal for all R" e *IR.
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Let I v2/c2 A. For the collapse scenario R RM. If 2GM/(R’c2) < 1, substituting

2GM/R v, into (1.1) yields the so-called Schwarzschild line element. With respect to the

transformation, (A) if R" < 2GM/c, then for st(fM(R")) 1/(cA), 1- 2GM/(R’’c); for

(B) R" > 2GM/c2; s’C(fM(R")) 0, and for the case that (C) R" 2GM/c, the function fM
is defined and equal to a NSP-world value fM(R’). But, for case (C), st(fM(R’)) does not exist

as a real number. Hence, (C) has no direct effect within the natural world when R" 2GM/c2,
although the fact that fM(R")dR" is an infinitesimal implies that s’c(fM(R’)dR’) 0. Using

these NSP-world functions and (3.1), cases (A) and (C) yield

dS[ $(cdU’) 2cdU" dR"-

(n-)(i= 0-(d-) + (dO’)). (3.2)

But case (B), leads to (1.1). The two constraints are met by fM(R"), and indeed the standardized

(A) form for fM(R’) is unique if (3) is to be satisfied for a specific interval.

Since this is an ideal approximating model, in order to apply this ideal model to the natural

vorld, one most select an appropriate real a for the real valued function Ha. Finally, it is not

assumed that the function ga is unique. In any solutions for hne dement (3.2), the dU" [resp.
dR’] refers to the timing [resp. length] infinitesimal light-clock counts and does refer to universal

time [resp. length] alterations.
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