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ABSTRACT. Steckin proved an inequality on Fejér means of Fourier series He said, "Proving
similar inequality for other summability method is an interesting problem." We generalize Steckin's
inequality and give various applications to summability methods.
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1. INTRODUCTION

Let Csy, be space of 2m-periodic continuous functions, || f|| := max ) [f(z)|. Let f € Can, its
Y

0<z<

Fourier series is given by

a = . .
f(z) ~ - +; (a, cosiz + b, siniz) .

Denote MM, to be the set of trigonometric polynomials of order at most ., and
En(f) = En(f)ep, =, min ||If —tall-

T t.€ N,

For a triangular matrix A := {A mn)} With Agmn) =1(n =0,1,...) we consider the linear
summability method

m(n)

Ao,m(n) + Z Aum(n) (@, cOS iz + b, siniz),

=1

a
Un(n) (f,2) = =

m(n)

D Amim Ai(T) - tB))
=1

v|8

If\,=1- n—‘H-(O < i < n) we obtain Fejér means o,.

By M, and C, we denote positive constants independent of n, and f.
S. B. Steckin proved in [1].

THEOREM A. Let f € Cy,, then we have

M &
If = on(f)ll < = +1§E,(f)- (12)

Let N be the set of natural numbers.
IfkeNand )\, =1- (;)k, (1 € i < n), we obtain Zygmund typical means Z*

n+1
The following generalization is obtained by M. F Timan (see [2]).
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THEOREM B. Let f € C5,, then we have

If = Z2Hll < oo +1k2<z+1>'° 'E(f)- (13)

In §2 we establish lemmas of comparison of summability methods with Zygmund typical means Z*
The generalization of Steckin's inequality is proved in §3 Using the results of §2 and §3 some
applications on various summability methods are given in §4-§5
2. LEMMA OF COMPARISON

Favard and Trigub [3] investigated comparison of linear summability methods of Fourier series.
Butzer, Nessel, and Trebels investigated comparison of summability methods in Banach spaces

Let A be a linear operator mapping C2, to C, and ||A|| be its norm

LEMMA 1. Suppose that A, is a sequence of linear operators mapping Cs, to Co, with
||An]l = O(1), and B, is a sequence of linear operators mapping Ca, to M, with ||B,|| = O(1) In
order that for any f € Co,

”.f - An.f" < M3.”f - an” ’ (21)

it is sufficient and necessary that for any t € M,

It — An(Ea)ll < Meo|ltn — Bn(tn)" . 22)

PROOF. Necessity Obviously from (2.1) we obtain (2.2).

Sufficiency. Let f € Cy, and ¢, be polynomial of nth best approximation, i.e., ||f — t.|| = E.(f).
Then by the boundness of || A,|| and || B, ||, one gets

If = Anfll < IIf = ol + 1IE7 — AN + 1A (2L = DI
< En(f) + Mye|it;, — Ba(t2)ll + Ms*En(f)
< 1+ My)En(f) + Mge||t;, — fll + Mye||f = Bufll + Mao|| Ba(f — t7)l
< (1 + Ms)*Eo(f) + MyEn(f) + Mge|| f = Bofl| + Ma*MgEr(f)
< (14 Ms + Mg+ My*Mg)E.(f) + Mgl f — Baf| -
It is clear that if A, are also mapping Cy, to My, then converse inequality holds, this is

COROLLARY 1. In Lemma 1 if in addition: A, is a sequence of linear operators mapping Cj, to
My, then for any f € Car

Mze||f — Bafll < |If — Anfll < Mse||f — Baf|l -

Corollary 1 (case in (2.2): Ap(t,) = Bn(t,),Vi, € My,) is also obtained by Berman in [4]

LEMMA 2. Let k € N and A, be a sequence of linear operators mapping Cs, to Co,, in order that
for every f € Cyr

If = Aafll < Moe||f = ZX()]], (2.3)

it is sufficient and necessary that
@ Al = 0(1),
(ii) A, satisfies (by) (if k is even) and (b;) (if k is odd), here

Condition (b;)" for some k € N
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If = Anfll < 172N, vf, f* € Con.

—(+1k

Condition (b;) for some k € N

My,

< M| v P eon

If - A.fll <

Here f(z) is a conjugate function of f(z) € Cyy,

Necessity It is evident (see [5]), | Z¥|| = O(1), hence by (2.3) we have ||A,|| = O(1) The state-
ment (ii) follows from the following Zygmund's inequalities (see [5]) in Chap. VIII, § 8.7, problem 27

(iii) For f € Cy, and fF) € Oy,

M, . .
lf = zE(H)|l < mrIF JIF®|, if k iseven, (2.4)
- +(k)
(iv)For f € Cyr and f* € Cyr
M;
f=zEn)| < CF 13 Hf(k)“ if k isodd, 25)
Sufficiency We note that for ¢, € M, we have
@)
iy = =22l (k even) @6)
£
i lta = ZE(ta)||,  (k odd) @7

Combining these with (ii) we get

”tn - An(tn)” < Ml4'”tn - Z:(tn)” ) (k € N) ’

the inequality (2.3) follows from this estimate and Lemma 1
3. STECKIN'S PROBLEM

THEOREM 1. Suppose that A, is a sequence of linear operators mapping Cy, to Cor, A, satisfies
| A,|| = O(1) and condition (b ) for some k € N, then for any f € C5, we have

M;s

S g G DTRE). 31

If — Anfll <

PROOF. If k is odd, then (3.1) follows from Lemma 2 and Theorem B. If k is even, and we
choose T}, € M, such that || f — T,|| = E.(f), since (bx) and (2.7) (Z}! = o,,) we have

MIG MIG
1T = 4Tl < 55 |72 = el
~~/
- (nﬁli) @ 1))‘ (n fqek TITEY —an (D), (32
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we have by Theorem A

M
(k=1) _ (k-Dy|| « 21 (k-1)
170 = o@D < g2 BT,

(€3]

to estimate the sum of (3.3), we apply the inequality (see [5]) in Chap V §5636 Ifr € Nand g € Cs-

o0
and 5 i""1*E,(g) < oo, then ¢!’ € Cy, and
1=1

E(f) < Min{v + 1B, () + 3 7 EL(9)},

1=v+1

takingr = k — 1(k > 2), g = T,,, since E,(T,,) = 0(: > n) we obtainfor 0 < v < n

EJ(TD) € Min{(v + ¥ 1B, (T) + 30 # 5 E(T)}

i=v

for 0 < i < n from definition we have

E(9)<llg—0l=lgll, Vge€Cor,

and we have (see [5]) in Chap II, §2.5
(1) for gand h € Cyr, E,(9+ k) < E,(g) + E,(h);
() E.(f) < E(f)

hence

Ez(Tn) S Et(Tn - f) +E1(f) S "Tn - f” +Et(f) = En(f) +Et(f) S 2E1(.f) )

from (3.5) we have
E,(T¢V) < 2Mye{(v + D E () + Y _ & 7+E(f)}

i=v

S B(TY) < zMn-{fj R+ i"‘2°E,(f)} ,

hence

v=0 v=0 v=0 1=v
we have

znj Z"jz*—?-a(f) = Z ﬁjik“"-E,(f) = Z"jz"‘*-(i +1)E,(f) < Zj (+1)*E(f),

v=0 1=v 1=0 v=0 1=0 1=0
combining (3.2), (3.3), (3.6), (3.7) we have

4Myge My My7 &

T, — An(T)|l < i+ 1) EL(f),
I (Tl < e 2 G+ DB

since ||An|| = O(1) (]| An]] £ Mis) we have

1f = Anfll S 1f = Tall + T = An(To)l| + 1 4n (T2 = £
4Mie" M1 M7 ¢~ - .
SEN+ g G DB + Mg Ea(f).

since E,(f) < E,(f)(0 < i < n) we have

G4

(3.5)

(3.6)

G.7

(3.8)

(39
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En(f) < +1>k Z(z+1>k “Ea(f)

< (n+1 Z(z+1 LE(f), (3.10)
combining (3 9) and (3.10) we get
I = 4f1 S o DG4 D),

REMARK 1. Let k € N and A, be a sequence of linear operators mapping Cs, to Co, In order
that for any f € Cy,

If = Anfll < Mlg'wk(f, %) ,

it is sufficient and necessary that A, satisfies conditions || A,]| = O(1) and (b)) (see [6]) on page 182
We have (see [5]) in Chap. VI, 6.11, for f € Co,

w(r2) < 2y G im0,

n =0

from Remark 1 we also obtain
If - Anfll_(n+1k2(z+l""E(f)

Let f € Cor and wy(f,6) be the modulus of continuity of f. Classes of functions Lip(1, M) :
= {flw1(f,6) < Mé6},andLipl: = { U Lip(l,M)}
M>0

LEMMA 3. Let A, be a sequence of linear operators mapping Ca. to Cox, An(1,z) = 1, if for
(k-1)

f Velipl
1
1 - Anfi=0( ). @1
then for f € Co, and f(k) € Caor We have
Mp, 3(k)
17 = 4l < o [179)] (312

PROOF. If f € Cy, and }* € Cay we have

F(k= 1)

e - F @) < |7 @20,

if D: = H}“"” >0 then F*™V/D € Lip(1,1), from (3.11) we obtain “g —A,,(g)” =0(&),

hence

If = Anfl < 7] (3.13)

*m +1) D= (n+1

if ||}(k)” = 0, then f = const (see [5]) in §5.9 1, since A,(1,z) = 1, obviously (3.12) holds



98 J-D CAO

Sequence of Fejér mean o, is saturated with order (n~!) and saturation class S(L,) := {f|f € Lip
1}, using Lema 3 we obtain that o, satisfies (), since ||o,,|| = 1 and Theorem 1, we obtain Theorem A

PROBLEM 1. Let A, be a sequence of linear operators mapping Cs, to Ca,, finding sufficient and
necessary conditions on A, such that Timan type inequality (1 3) holds

4. APPLICATIONS

We give applications on linear summability method |J,,.,, of Fourier series Firstly we have
Um(n)(l'z) =1

EXAMPLE 1. (C,a) means 0%(a > 0). A\, = %(0 <i<n), Ag: = lexlle? (atn

Trigub proved [3].

LEMMA 4. Let a > 0 and f € Cy,, then

Caellf =an(AI < Nf = om(DI < Coe |l f = on(Il-

THEOREM 2. Let o > 0 and f € Cy,, then we have

17 - o2 < 2 ZE(f) @n

PROOF. Obviously from Theorem A and Lemma 4 we obtain Theorem 2.

Let w(6) be a modulus of continuity and w(6) >0(0< é<m). Class of functions
H,: ={flwi(f,6) <w(6),0 <6 <}

Let wi*(6) be a modified function of first order of w(é) (see [1])

wi*(6): =6 o <ix’;f< 6{17'1 » inf w(&)}, we have w}*(§) < w(é).

n<€&EL
Leta, >0, b, > 0, a, = b, means that there are Cy > 0, C5 > 0 such that Ca, < b, < Csa,..
COROLLARY 2. Let a > 0, we have

ey~ LS~ (1
s lf =t~ 1Y () 2)

1=1
sup [If —o%(F} ~ + 3 w(l) @3)
fe ]IJ;“ n n < i)’ '

o),

- (4.4)

1
su — o5 -
e W=t~ L f

PROOF. For (4.2) (a > 1) see Sun [7]. For (4.3) (o = 1) see Devore [8] on page 227 For (4.4)
(a > 1) see Mazhar and Totik [9]. Using Lemma 4 we have Corollary 2.
Steckin also proved (see [1])

LEMMA S. For f and } € Cyr, we have

31m

)

1 = oIl = O(EA(F)) +0(wl (7

Lemma 4 implies
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COROLLARY 3. Leta > 0, for f and f € C,, we have

I =020l = 0E() +0(wn (7. 1)) @5)

(4 2) and (4 5) answer two problems of Sun [7] on 02(0 < @ < 1)
EXAMPLE 2. M Riesz means R\Y X, = A(2)(0 < i < n), A(uw) = (1-w*)P(Ae N,6>0)
B Nagy proved that (see [S]) in Chap VIII, §8 7, problem 13, ”Rn 6)” O(1) G Sunouchi

proved that [6] on page 72, R is saturated with order (n™*) and the saturation class is
SR ={f| f(A Ve Lip1 (X odd) and f*~1 € Lip1 () even)}, using Theorem 1 and Remark 1
we obtain that for any f € Co,

I~ RO < IR Y G PR, (e,

EXAMPLE 3. Operators L, determined by convolution with kernels of Korovkin (see [8]) on page
107 L, is saturated with order (n~!) and saturation class S(L,) : = {f|f € Lip1}, hence we obtain
Steckin type inequality

EXAMPLE 4. Nishishiraho and Wang Si-Lei proved (see [10])

LEMMA 6. Suppose that there exists a sequence {¢,} of positive real numbers converging to zero,
which satisfies

lim (1 - A1.,11.)

n— oo ¢n

=K, andlet Y [A%\.]=0(¢n),

1=0
where A%, = An — 2A i1 + Aisn, a0d A, = 0(i > n). If ¢, = &, then |J, is saturated with the
order (n~!) and saturation class S(U,) : = {f|f € Lip1}, using Theorem 1 and Lemma 3 we obtain
Steckin type inequality.
5. POLYNOMIALS OF INTERPOLATION AND CAO-GONSKA OPERATORS

Let f(z) €Car and |J, (f,z) be linear summability (with A = {),,}) of trigonometric polynomial

of interpolation on nodes y, = 23:1’1 (1=0,1,...,2n) [4] [S]. Berman proved [4] and [5] in 8.7, problem
7

LEMMA 7. Let K,(v) : =3+ 3 Ancosiv, [7|Kn(v)|dv = O(1), then for f € Cor
=1

Mas = ||f = Un(HI < If = Uz (Nl < Mag=||f = Un(HIl-

THEOREM 3. Let k € Nand [j|K,(v)|dv=0(1), and A = {\,,} satisfies (b), then, for any
f € CQ'K

If = Un(HI < (n kZ(z+1)* 'E(f).

PROOF. From Lemma 7 and Theorem 1 we obtain Theorem 3.

Let f € C[—- 1,1], the Picugov-Lehnhoff operators are defined by (§ = arccosz,z € [—-1,1],

m(n)
Kmim(v) : = % + 3= Aum(n)COS V)
=1

G (f(t),z): = %/_: f(cos(v+ arccos z)) Kpn(n) (v)dv. (CRY)
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Let T,(z): =cos(tarccosz) be the i-th CebySev polynomial, and z.,n,: = cos 2;,;01 ,

1 < v < Ny, the Cao and Gonska polynomials are defined by (see [11])

=1

Ny m(n)
N m(n).No (fv . Z (I'Y'No) { 1+2 Z )‘l.m(ﬂ)' T, (x'v.No )‘ T, (J:) } ) 52
=1

specifically A ,_;, are the Varma-Mills operators (see [11])
LEMMA 8. Let Ny > m(n) + 1 and [ |Km(n)(v)|dv = O(1), then for any f € C[ - 1,1]

M28'”f - Gm(n) (f)”C[—l'lj < ”f - /\m(n).Na(f)llc[_l']] < M29'”f - Gm(n)(f)”c[q_n*

PROOF. (see[12]).

THEOREM 4. Let k € N, Ny > m(n)+1,and A = {A, m(n)} satisfies fO"|Km(,,) (v)|dv=0(1)
and (by), then for any f € C[ - 1,1]

- A m{n), No(f)“c[ 11] hS (n+1 Z_;(’l-%-l)k l.E (f)c[ 11 -

PROOF. Letting ¢(t) = f(cost), using Lemma 8 and Theorem 1 we obtain Theorem 4.

ACKNOWLEDGMENT. The author expresses his thanks to Professor Heinz H Gonska from
European Business School, Germany for his support The author would like to thank the referee for
his/her helpful suggestions and comments.

REFERENCES

[1 STECKIN, S B., The approximation of periodic functions by Fejér sums (Russian), Trudy Matem
Instituta im V. A. Steklova 62 (1961), 48-60;, Amer. Math. Soc. Translations (2) 28 (1963), 269-
282.

[2] TIMAN, M F., Best approximation of functions and linear methods of summability of Fourier
series (Russian), Izv. Akad. Nauk. SSSR, Ser. Matem. 29 (1965), 587-604

[3] TRIGUB, R. M., Linear methods of summability and absolute convergence of Fourier series
(Russian), Izv. Akad. Nauk. SSSR. Ser. Matem. 32 (1968), 24-49.

[4] BERMAN, D. L, Some remarks on the problem of the degree of approximation of polynomial
operators (Russxan) Izv. Vyssh. Uchebn, Zaved. Mat. 5 (1961), 3-5.

[5] TIMAN, A. F., Theory of Approximation of Functions of a Real Variable, Macmillan, New York,
1963.

[6] BUTZER, P. L. and KOREVAAR, J., On Approximation Theory, Proceedings of the Conference
1963, Birkhauser Verlag, 1964.

[7] SUN, JUN-SEN, Uniform approximation of continuous periodic functions by Cesaro means of their
Fourier series (Chinese), Advances in Math. 6 (1963), 379-387.

[8] DEVORE, R. A., The Approximation of Continuous Functions by Positive Linear Operators,
Berlin-Heidelberg-New York. Springer, 1972.

[9] MAZHAR, S. M and TOTIK, V., Approximation of continuous functions by T-means of Fourier
series, J. Approx. Theory 60 (1990), 174-182.
[10] WANG, SI-LEI, Saturation of trigonometric polynomial operators (Chinese), J. of Hangzhou Univ.
(Nat Edition) 8 (1981), 7-13.

[11] CAO, JIA-DING and GONSKA, H H, Approximation by Boolean sums of positive linear
operators III: Estimates for some numerical approximation schemes, Numer. Funct. Anal. and
Optimiz. 10 (7 & 8) (1989), 643-672.

[12] CAO, JIA-DING and GONSKA, H. H,, Solutions of Butzer's problem (linear form) and some
linear algebraic polynomial operators with saturation order O(n~?), submitted for publication



