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ABSTRACT. Certain spaces of X-valued sequences arc introduced and some of their properties are
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1. INTRODUCTION AND BACKGROUND.

Let cg,c.lo and s respectively denote the spaces of null sequences, convergent sequences. bounded
sequences and all sequences. Let X be a complex linear space with zero element 8 and X = (X, ||.||)
be a seminormed space. We may define co(X) the null X-valued sequences, ¢(X) the convergent
X-valued sequences, lo(X) the bounded X-valued sequences and s(X) the vector space of all X-
valued sequences. If we take X = (' the set of complex numbers these spaces reduce to the already
familiar spaces cq, ¢, [, and s respectively. These spaces of X-valued sequences have been studied by
Maddox[2,3], Rath[5], Pehlivan[4] and others. We take X and )" to be complete seminormed spaces
and (A,) to be a sequence of linear operators from X into Y. We denote by B(X.Y) the space ol
bounded linear operators on X into Y. Throughout the paper S denotes the unit ball in X, that is
S={z € X : ||lz|| <1} is the closed unit sphere in X.

The o and B-duals of Kéthe have been generalized by Robinson [6] who replaced scalar sequences

by sequences of linear operators. Accordingly, we define a and 8 duals of a subspace E of s(X) by

E* = {(A,): E"An:cn" converges for all z = (z,) € £},

EP = {(Ap): Z Az, convergesin Y, forall z = (z,) € F}.

Clearly £ C EP if Y is complete and the inclusion may be strict. X* will denote the continuous duai
of X, this is B(X,C).
2. MAIN RESULTS
Before proving the main results we give some definitions. We consider a set D of sequences d = (d,)
of non-negative real numbers with the following properties:
(i) For each positive integer n there cxists d € D with d, > 0,
(ii) D is directed in the sense that for d,h € D there exists w € D such that u, > dy, hy for all n.
For d = (d,) € D and X a seminormed vector space, we define the following sequecuce spaces:

Loo(X,d) = {& = (xn) : Da(7) =sup||zalldy < o0, z, € X foralln, de D},
Co(X,d) = {z = (2.) : li}ln laulldn = 0. x, € X foralln, de¢ D}.

PROPOSITION 2.1 Co(X,d) is a closed subspace of Ly(X,d).
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PROOF. Lot 7 € Co(X,d) and d = (d,,) € 1. Given ¢ > 0 there exists 7 = (z/) € Co( X, d) such
that Dy(x — 2') < 5. I N is such that dy|l=}]| < 5 for n > N, then for n > N we have

dullznll = dullzn — 25, + 2L < do((lon = a1 + ol < €

which proves that = € ('o( X, d).

PROPOSITION 2.2 If X is complete then (‘o( X,d) and Ly (X.d) are 'R spaces.

PROOF. Let X be a complete seminormed space. We show that Le(.X.d) is complete. Let
z = (z1,) be a Cauchy sequence in Lo(X.d). Then ||z}, — z3|| < d7'Dg(z* — 77) therefore (z}) is
Cauchy in X. Let z,, = lim, z},. Now we will show that z = (z,) € Loo(X,d) and ' — x. In fact.
let h € D and ¢ > 0. Choose N such that Dy(z' — 27) < cil 1,7 > N. It follows from this that, we
have ||zt — @, ||k, < € for all n and 2 > N. Let I = Dp(zn). H ||zl < lzl|| then ||zallh, < 1. 1
lzall > llzI| then

lzall = |7 — '7‘1]:/ + I!x\,”hn <lwn ~ ”’ﬁ”hn + ”"’7:/”"'11 <ct+H

which shows that L..(.X,d) is complete. The completeness of Co( X, d) follows from the completeness
of Loo(X.d) and the Proposition 2.1.

THEOREM 2.3 (y(X.d) = Leo(X.d) if and only if for each d = (d,,) € D there exists h =
(hy) € D and a sequence (1, ) of non-negative real numbers such that u,, — 0 and d,, < u,h,, for all n.

PROOF. Let = € Loo(X,d). Given d = (d,)) € D there exist h = (h,) € D and a sequence (uy)
of non-negative real numbers such that u, — 0 and d, < u,h, for all n. Now, for z € Loo(X,d), we
have

Azl < wphnllmn ]l < w, Di(z).

This concludes the proof of the theorem with the Proposition 2.1.

LEMMA 2.4 In order for Co(X,d) C Co(X,h) it is necessary and sufficicnt that liminf, %{f > 0.

PROOF. Suppose that lim inl'n%:l = a > 0. Then since d,, > ah, the inclusion Co(X,d) C
Co(X, h) is obvious. Now we suppose lim inf,, %’: = 0. Then there exists a subsequence (n(p)) of (n)
such that h, ) > pd,(,) for p = 1.2.... Now deline a sequence r = (z,) by putling z(,) = ml;('r)p“
for p=1,2,...and z, = 6 otherwisc where » € X and ||v|]] = 1. Then we have z = (2,) € Co(X,d)
but = & Co( X, h) since |[|hpynmll = Hh"(p)d,‘l&))p"v" > 1. The coucludes the proof of the theorcem.

LEMMA 2.5 Iu order for Cp(X.h) C Co(X.d) it is necessary and sullicient that limsup,, %f'l < .

PROOF. Suppose that limsup,, %ﬁ < co. Then there is &' > 0 such that d,, < Kh, for all large
values of n. The inclusion Co(X,h) C Co(X,d) is obvious. Now we suppose lim sup, i—ﬁ» = 00. Then
there exists a subsequence (n(p)) of (1) such that d,,) > phay) for p = 1,2,.... We define a sequence
z = (zn) by putting z,(,) = vh;('p)p" for p = 1,2,3,...and z,, = 0 otherwise where v € X and
[lvoll = 1. Then we have z € Co(X, k) but = g Co(X,d) since [|d,,(n)Tnpll = lldn(,,)h;('p)p"v|| > 1. The
concludes the proof of the lemma.

Combining Lemma 2.4. and 2.5. we have following theorem.

THEOREM 2.6 Co(X,h) = Co(X.d) if and only if 0 < liminf,, £ < lim sup, & < co.

THEOREM 2.7 Let liminf, %‘: > 0. The identity mapping of Co(X,d) into Co(X, h) is contin-
uous.

PROOF. Let liminf, %’: > 0. Then Co(X,d) C Co(X, ). There exists a > 0 such that d,, > «h,,
for all n. Thus for z € Cy(X,d) we have aDy(z) < Dy(x) Hence the identity mapping is continuous.
3. GENERALIZED KOTHE-TOEPLITZ DUALS

Now we determine Kéthe-Toeplitz duals in the operator case for the sequence space Co(X,d). lor
the more interesting sequence spaces generalized Kéthe-Toeplitz duals were determined by Maddox [3].

In the following theorems we suppose in general that (A, ) is a sequence of linear operators A, mapping
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a complete seminormed space X into a complete seminormed space Y. Let (A,) = (A Az ...) bea

sequence in B(X.Y). Then the group norm of (A,) is defined by

h
ICADN = sup |l Z Anzal|

n=1

where the supremum is taken over all & € N and all 2, € . This argument was introduced by
Robinson([6]. This concept was termed as group norm by Lorentz and Macphail [1]. We start with the
proposition given by Maddox [3].

PROPOSITION [M][3] If (A,,) is a sequence in B(X.Y)and we write Ry = (Ax. Aky1,...) then
Il Zﬁ:i Anoll < |R|l. max{||z.|] : £ < n < k+p}, forany 7, and all k € N.and all p > 0 integers.

THEOREM 3.1 Let (d,,) € D. Then (A,) € C§(X,d) if and ouly if there exists an integer k
such that

(i) A, € B(X.Y) for each n > k and

(if) ank lAnlldy " < oo.

PROOF. For the sufficiency. let # = (x,) € Co(X,d) and (i), (ii) hold. Then there exists an
integer ny such that ||z,||d, < 2¢ for all n > ny and there exists an integer ny > k such that

— (4
Z ”An”dn < 92

n>ny

for a given ¢ > 0. Put /1 = max(ny,ny) so that

Z lAnzall = Z fAnllizall < Z llAnll2ed; < e,
n>1 w>H n>H
and therefore (A,) € C§(X,d).

Conversely, suppose that (A, ) € C§(X,d). I (i) does not hold then there exists a strictly increasing
sequence (n,) of natural numbers such that A, is not bounded for each i and a sequence (v,) in §
such that || A, vn,|| > dn i, for each i > 1. Define the sequence = = (z,,) by putting o, = v, d;'1~!
for each 7 > 1 and = = 6 otherwise. We have 7 € Co(X,d) but ||4,, z,, | > 1 for each i > 1 and so
Y Az, diverges. which gives a contradiction.

Now we suppose (A,) € C§(X,d) and T,,54 [|Anlld;! = 00. We choose k = ny < nz < ng...such
that ZZ:,L" Anlld;t > i forie N. Moreov;r for each n > k there exists a sequence (v,) in .S such
that 2||Anvn|| > || An||. Define the sequence = = (z,,) by putting z, = v,d;'i"" for m, < n < nyy — |

fori=1,2,... and z,, = 0 otherwise so that = € Cy(X,d) since
)
"z'n“dn = ”—;—L” — (0 asn — oo.

Then we have

0o M1 —1

Z Z | Anvnd; i1

=1 n=n,

Z ”Anzn”
n
oo M=l

533 fAuldgti!

=1 n=n,
1 &
> - |

which contradicts our assumption that 3, ||An7,|| < co. This completes the proof.
It is clear that the conditions of the theorem 3.1. are also necessary and sufficient for (A,) €
13,(X,d) then we have C§(X,d) = I (X,d).

v
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COROLLARY 3.2 (|5).Theorem 1.) Let p, = O(1). Then (A,) € C§(X.p) il and only il there
exists an integer k such that condition (i) of Theorem 3.1. holds and

(iii)there exists an integer N > | such that Y, 5, HA,,“N'T’LT < 0.

COROLLARY 3.3([3].Proposition 3.4.) (A,,; € ('§(.X) if and only il there exists an integer b
such that condition (i) of Theorem 3.1. holds and

(V) T lall < oc.

THEOREM 3.4 Let (d,) € D. Then (A,) € (',’:(X.rl) if and only il there exists an integer &
such that condition (i) of T'heorem 3.1. holds and

(v) RN = I(dg Ak diyy Aprs -l < 0.

PROOF. For the sufficiency, let (z,,) € C'o( X.d) and choose my > m > k. Then, by the proposi-

tion [M] we have for m > k

my my
Il Z Ayl = || Z A7 Andy )l < max{d,||z.]l : m < v < mg Y| Re(d)]]-
n=m n=mn

That is 3_,, A, x, is convergent in Y whence (A,) € (_,'{,’(/\',d). Conversely (i) can be proved in the way
of Theorem 3.1. For the necessity of (v), suppose that ||Ri(d)|| = oo for all » > k then there exists a
strictly increasing sequence (n,) of natural numbers such that v, € S and || Z::‘___*,}"' d, " Apv] > 2
for i € N. Define the sequence z = (z,,) by putting =, = vad; i7" forn, <n <ny—1, 1=12,...

and z, = 6 otherwise. We have z € C'o(X, d) but for each 7 > 1

nygr—1 N1
I Z Anza|l = || Z Anvnd;Ii_IH >1
n=n, n=n,

Therefore 3, A,z diverges, which gives a contradiction. This proves the theorem.

COROLLARY 3.5 ([3],Proposition 3.1.) d,, = | for all n, (A} € ('g(X) il and only il condition
(i) of Theorem 3.1. holds and || R|| < oo.

THEOREM 3.6 Y = C and f,, € X" for n > | then C§(X,d) = (}?(X.rl) = Mo(X*,d) where
Mo(X*,d) = {F = (fu) © fu€ X", S0 I fulldy’ < o0}

PROOF. We show that (,'{;(X.d) C My(X*.d). which is suflicient to prove of the theorem. We
suppose I & Mo(X*,d) then there exists a strictly increasing sequence (n,) and a sequence (v,) in
S such that || f,l] < 2|[fa(v.)] and z;;g,;“‘ (I fulld;" > 7 for i € N. Define the sequence = = (x,)
by putting z, = sgn(fu(ve))d;li~ v, forn, <m < mypp =1, = 12,...and z, = f otherwise.
Then z € Co(X.d) but 3, fu(z,) = 3724 2;;;,;"‘ fn(zy,) diverges and so I' ¢ Cg(/\'.d). Thus
Cg(/\',d) C Mo(X ™, d) and the proolis complete.
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