
Internat. J. Math. & Math. Sci.
VOL. 20 NO. (1997) 47-50

47

ON X-VALUED SEQUENCE SPACES

S. PEHLIVAN

Depa.rtmen! of Ma.thema.tics

S.D. Ilniversity, lsparta, Turkey.

(Received January ii, 1995 and in revised form October 7, 1995)

ABSTRACT. Certain spaces of X-valued se(luences are introduced and some of their properties are

investigated. KSthe- Toeplitz duals of these spaces are exanfined.

KEY WORDS AND PHRASES: Seninomed vector space, linear operators, X-valued sequence

spaces, dual spaces, infinite matrices.

1991 AMS SUBJECT CLASSIFICATION CODES: 40A05, 46A45.

1. INTRODUCTION AND BACKGROUND.

Let co, c, lo0 and .., respectively denote the spaces of null sequences, convergent sequences, bo,nded

sequences and all sequences. Let X be a. complex linear space with zero eiement and X (X,].[)
be a seminorme(l space. We may define co(X) the null X-valued sequences, c(X) the convergent

X-valued sequences, l(X) the bounded X-cabled sequences nd s(X) the vector spce of all X-

valued sequences. If we take X C the set of complex numbers these spaces reduce to the already

familiar spaces co, c, l and s respectively. These spaces of X-valued sequences have been studied by

Maddox[2,3], Ra.th[5], Pehlivan[4] and others. We take X and )" to be complete seminormed spces

and (A) to be a sequence of linear operators from X into Y. We denote by B(X, Y) the space

bounded linear operators on X into Y. Throughout the paper S denotes the unit ball in X, that

s { x I111 ) is the closed unit sphere in X.

The o and -(1.als of KSthe have beeu generalized by Rol)inson [6] who replaced scalar seque.(’es

by sequences of linear operators. Act’ordingly, we deline a and duxls of a subspace E of s(X by

E= ((A)" IIA,II converges for all x (x..)e El,

E {(A,,) A,,,x,,, converges in Y, for ]l :r (x,,) e El.

Clearly E C E if )" is complete and the inclusion may be strict. X* will denote the continuous dua

of X, this is B(X, C).
2. MAIN RESULTS

Before proving the main results we give some definitions. We consider a set D of sequences d (d,,

of non-negative real nunbers with the following properties"

(i) For each positive integer n there exists d D with d, > 0,

(ii) D is directed in the sense that for d,h D there exists u q D such that u,, d,,b, for all n.

For d (d,,) D and X a. seminorme(i vector space, we define the following sequence spaces"

L(X,d) {x (x,,) ])(.T)= t, Pll:,,lld,, < , :t’,, e X for a.lt,,, d

PROPOSITION 2.1 Co(X,d)is a. closed sl)spa(’e of L,,(A,d).
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PROOF. IJ’l..T E C0(X,d) a.,(I d (d,,) E I). (;ive. > 0 ther(, exists z’ (m’,,) E (.’o(X,d)
tha.t I)d(x- x’) < . If N is s,,ch that d.ll",,ll < f, ,, >_ N, then for ,, _> N we e,a.ve

which proves lhal z (’o(X,d).
PROPOSITION 2.2 If X is complete then (’()(X,d) a.d L(X.d) a.ro FI" spa.ces.

PROOF. Let X l)e a complete seminormed sl)a,ce. We show that L(X,d) is col)lete. Let

x () be a (a..chy sequence in L(X.d). The. [lz,- z7,.ll d ])u(’ ) therefore (x)is

Cauchy in X. Let x,, lim..v,. Now we will show that x () L(X,d) and z’--:r.

let h G D and > 0. Choose N su(’h tlt l)h(x’--J) < if i, 3 N. it follows from this that, we

ha,v II ,,llh,, fo ,, ,, .a N. Lot n ])(:=). f I1,,11 IIll then Itllh.
.N

N N N

which shows tha.t L(X, d) is complete. The coml)lete.ess of Co(X, d) follows from the completeness

of L(X.d)and the Proposition 2.1.

THEOREM 2.3 C0(X.d) L(X,d) if a..d only if for each d (d,) fi D there exists h

(h,) D and a. sequence (t,) of non-.egative real ..ml)ers s.t.h tha.t u, 0 a..d d,, .,.h, for all

PROOF. Let z fi L(X,d). Given d (d,) D there exist h. (h) D a.d a seq.ent’e (u)
of non-negative real numbers such that v, 0 and d. tnhn for all n. Now, for L(X, d), we

hve

This concludes the proof of the theorem with the Proposition 2.1.

LEMMA 2.4 In order for Co(X,d) C Co(X,h) it is necessary a.d sufficient tha.t lira inf,, > 0.

POOF. S.ppose that lira inf. e > 0. The. since d,,. > eh,,, the i.ci.sion Co(X,d) C

Co(X,h) is obvious. Now we suppose lin inf, 0. Then there exists a. subsequence (n(p)) of

such that h,() > pd,,() for p l. 2 Now deli.e a sequence (xn) by p=tting x.() vd,,( )p-
or p 1,2 and , e othrw wh ,, X .,,0 I1"11 . T, wh (:) Co(X,@

<LEMMA 2.5 ]u order for (o( X. h) C (To(X. d)il. is .ecessary a.nd s=flicie.t that lira sp,, ..
POOF Suppose that lira sup,, < . Then there is h" > 0 such that d,= < h’h,= for all large. The.values of n. The inclusion Co(X, h) C C0(X, d) is obvio.s. Now we s,ppose lira sp,, h.

there exists a subseq.ence (n(p)) of (n) such tha.t d,=() > ph(,) for p 1,2 We define a. sequence

z (x) by putting x,=() vh(=p)p- for p 1,2,3 a.d x,, 8 otherwise where v E X and

Ilvll 1. Then we iave x E Co(X,h) but z Co(X, d) i,,,:o IId,,(r).(,,)ll IId.(,,)/,-’.)’-’"ll > . Th
concludes the proof of the ienma.

Combining Lenma 2.4. nd 2.5. w have following theorem.

THEOREM 2.6 C0(X, h,) Co(X, d) if and o, ly if 0 < lira inf,, < lira s,p,, <hn h,,

THEOREM .7 Let lira inf > 0. The identity mapping of C0(X, d) into Co(X, h) is

IIOHS.

PROOF. Let lira infn > 0. The,, Co(X,d) C Co(X,h). There exists > 0 such that d,, > h.,

for all n. Thus for z Co(X,d) we hve Oh(=:) Da(z) Hence the identity mappi.g is

3. GENERALIZED KTHE-TOEPLITZ DUALS

Now we determine K6the-]beplitz duals in the operator case [or the sequence space Co(X, d). For

the more interesting sequence spces gnerlizd N6the-Toeplitz d.als were determined by Maddox [3].
In the followi.K theorems we s.pposo in Konoral that A. is seq.enre of li.ear operators
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complete semi.ort.ed sprite .\" i.l. a otplelo so,i.or.ed slmco Y. l,el (A,,) (A.A )1.,

seq,ence in B(X, Y). ’!’1, t,h gtop norm of (A,,) is defi,el by

I1( )11 ..
where the supremu]n is tken over M! ’ N nd all .;,, .S’. This argu,el ws introduced by

Robinson[6]. This concept was teed s gro,p norm by l,orcntz nd Ma,cphil [l]. We start with l,le

proposition given by Maddox [3].
PROPOSITION [M][8] If (A,,)is a seqmnce in B(X, Y) nd we write R (A,A+,...)then

=+ ,,m,ll I111. mx{ll,ll : ,,, ’+ p}, for any z, a,nd all k e N, and all p > 0 integers.

THEOREM 8.1 Let (d,,) D. Then (A,) C(X,d) if and only if there exists an integer

such that

(i) A,, B(X, Y) for ca,oh n k k and

(ii) ,,>k IlA.,lld’ < .
PROOF. For the suciency, let (z,,) C0(X,d) and (i), (ii) hold. Then there exists

integer n such that llz,ld,, < 2 for all n, n and there exists an integer n, k such tha.t

for a given > 0. Put H max(n,n) so that

llA,,II llAlllz,,l IIAll2d < e,
n>ll .,>1t

and therefore (A,.) C(X, d).
Conversely, suppose that (A,,) C(X, d). If (i) does not hold then there exists a strictly increasing

sequence (n,) of nat,ral numbers such that A,,, is not bounded for each and a sequence (v,,) in

such that IlA,,,v,ll > d.i, for each > Defi,e the sequence z (z,) I,y p.tting z v,.d--for each and z 0 otherwise. We have (,’o(X,d) but lA,,xn, > for each and so

E I1.11 divg. ,hich gi . o,,tditio,,.

Now wesuppose (A) C(X,d) anti ,>kllAnlld’ . We choose k n, < n2 < ha... such

that ’+’- ]Alld > for N Moreover for each n > k there exists a. sequence (v) in S such

that 211Avll IIAII. Define the seq,,ence (z,,) by ],utting ,, vnd’ - for n,, n n.,+

for 1,2 and z 0 otherwise so that z Co(X,d) since

]’hen we ha.re

which contradicts our assumption that , IIA,,.,,II < oo. This completes the proof.

It is clea,r that the conditions of the theorem 3.1. are also necessary and s,fficient for (A,,) E

l(X, d) then we have C’(X, d) =/2o(X, d).
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COROLLARY 3.2 ([S].Ti,e(,r(’n, I.) L(’t p,, O(!). The,, (A,) E (.’/)’( X. p) if a,(I only if there

exists an integer k s(’h that (()n(lili()t (i) ()f’l’le()re 3.1. ll(Is an(l

L(ill)there exists an integer N > s,(h l,lat ,,> IIA,,IIN < .
COROLLARY 3.3([:]],Proposition 3.4.) (A,,) (’((X) if an(l only ir there exists

such that condition (i) of The()e 3.1. holds

(iv) ’,,Z II,,,II < .
THEOREM 3.4 l,ot (d,) (I). TIo (A,,) (’(X,d) i and only ir l,hro exists a.n integer I,"

such that condition (i) of Theoren 3.1. lol(Is and

(v) ll](Z)ll II(d’A,,A+,,---)II < .
PROOF. For the s,ciency, let (x,,) (,’o(X,d) and choose nzl > m k. Then, by the prol)osi-

tion [M] we ha,re for m k

That is , A,,x, is (’onvorgent in )" whence (A,) E Co(X,d). Conversely (i) can be proved in the way

of Theorem 3.1. For tho necessily of (v), suppose that llRk(d)l for all ,. k then there exists a.

’’+’-’strictly increain sequence (n)of natural numbers snch tha,t v S and

fori N. Define the sequencex= (z) by putting x, vndi- forn, n n,+-l, ,= 1,2

and xn otherwise. We have x O0(X, d) but for each

?,+I n,+l --]

A..II=II ’ A,v,,dS’i-’ll>

Therefore , A,,z, diverges, which gives a contradiction. This proves the th(,oret.

COROLLARY 3.5 ([3],Proposition 3.1.) d,, for all ,,, (A,) 6 (’(X)if and only if (’o,,(litio,,

(i) of Theorem 3.]. hod

THEOREM 3.6 Y C and f, X* for v then C(X,d)= C(X,d) M0(X’,d) where

Mo(X*,a) {F (f,) f, X* E, IIAItaff’ < }.
PROOF. We show that (/(X,d) C M0(X’,d), which is sufficient to prove of the theoretic. W(’

suppose F M0(X" d) then there exists a strictly increasing se(luonce

S such that IIf,,ll < 21f(v,)l and ’"+’- II/,,lldff’ > for N. Define the sequence x (x,)

by putting x ..qn(fiz(vn))dffti-v, for n, n ,,,+ 1, 1,2 and z, 0 otherwis(,.

W’’’+’- f,,(z) diverges an0 so F C(X d). "l’h,sThen x Co(X d)but f,,(x,)
C(X, d) C M0(X* d) a,,d the l)roof is complete.
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