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ABSTRACT. A general technique is developed for the solution of quadruple integral equations

involving trigonometric kernels. Four such sets are solved explicitly. Application is made to the
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1. INTRODUCTION.

Dual, Triple, Quadruple, and higher order integral equations arise in punch and crack prob-

lems in the linear theory of Elasticity and the solution of dual integral equations goes back to

Busbridge in 1938 [1]. Because of their importance in applicatons, dual integral equations have

been considered by a large number of investigators, and a thorough account is given by Sneddon

[2]. Sneddon [2] also considers a particular case of Triple integral equations and those equations

have recently been considered by Lowndes and Srivastava [3], Chakrabarti [4], Singh [5,6], and

others. A set of quadruple integral equations has been considered by Jain and Singh [7], and so

on.

In this paper we outline a general method for solving quadruple integral equations involving

trigonometric kernels and apply this method to a number of such sets. We later on discuss their

application to the problem of three collinear cracks, not all of same length, situated symmetrically

about the origin on the x-axis and evaluate a number of stress concentration factors.

2. We consider the set of equations

/tA(t)coszt dt f,(z), 0 < z < a (2.1a)

/fA(t)cosxt at g=(x), a < x < b (2.1b)

_tA(t)cosxt dt f3(x), b< x < (2.1c)

and fff A(t) coszt at g,(z), z > 1. (2.1d)

These equations are to be solved simultaneously. A(x), fz(z), g(x) and g4(x) are given and

A(t), 0 < < o is to be determined so as to satisfy all these equations.
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We notice that if we write

jfotA(t)cosxt dt f2(x), a < x < b (2.2)

and if we are able to determine f2(x), then the equations (2.1) reduce to a pair of dual integral

equations whose solution is known. We proceed to determine f2(x).

We write

F(x) A(z) A(x) f3(z), O < z < l,

where (2.3) stands for

F(x) fl(z), O < z < a (2.4a)

h(x), a<x<b (2.4b)

and f3(x), b < x < 1 (2.4c)

In terms of F(x) and g4(x), the solution of equations (2.1) is given by [8

A(t) _2 uJo(ut)F,(u)du + uJo(ut)G,(u)du

where

F(x)dz
F, v4,

(2.5b)

and

g(x)dx
Gx(u) Vf2 u2

(2.5c)

where stands for differentiation w.r.t.z.

We now notice that

f,(=) /[ fl(x)dx (2.6a)O<u<a

, . < < b (.65)

,d l,()d + + < < 1. (2.6)

Substituting from (2.5) into (2.1b) and simplifying, we get

(()g(x,()d(+ .=X a < x < b (2.7a)

where

/ udu
g(x,)

(,) u x u- (2.75)

uation (2.7) is our equation to deterne f(), a < < b. We proc to solve this

equation.
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Differentiating (2.7) w.r.t, z, we obtain

r J1-x [afl()jl_

f3(x/"-,z d-Jl-z

R(x), say a < x < b,

where P denotes the principal value of an improper integral.

Equation (2.5) can be solved easily [9]. The solution is

-2 [b X/x a X/’-- x R(x)2x dx
f2()

r2V/2 2 vZb2 2 vZl 2 P. X2 2
D

+f-a jb :’Ji-2 a< <b, (2.9)

where D is a constant of integration, teh must be deterned by requiring that f2(f) satisfy

(2.7).
This solves the equations (2.1) completely. With f2() known from (2.9), the solution of (2.1)

is gNen by (2.5).
3. We now consider the set of equations

This time we write

r.]atA(t)sinzt dt fl(z),

LA(t)sinzt dt g(z),

fotA(t)sinzt dt fz(z),

and A(t)sinxt dt

tA(t)sinztdt dt f(z),

0 < x < a (3.1a)

a < x < b (3.1b)

b < x < (3.1c)

x > 1. (3.1d)

a < x < b (3.2)

A(t) is now given by

A(t) -rr2 fo J(ut)h(u)du -r2 f uJ(ut)h2(u)du

where

(3.3a)

(3.3b)

(3.3c)

(3.3d)

as before. This time the equation to determine f(z) is found to be

’]()K{.,)d. .z>+ v/u x

,f,(,)K(x,,)d ,fa(,)K(x,)d

R(x),say a<x<b (3.4a)
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x
K(.,) o:(:,o; ,/ *:V,,: C

Differentiating equation (3.4) w.r.t x and solving for f2(x), we get

-2 [ 4’x a v/b2-x v/1-x R’(z)2x dx
h()

D
-t v/f2_a2 x/,b_ v/1. a<<b

The constant D must again be determined by substitution into (3.4).

4. We consider the set of equations

(3.4b)

(3.5)

o
tA(t) sir. zt dt gz(z),

A(t)sin xt dt

and tA(t)sinxt dt g(z), x > 1.

0<x<a

a<x<b

b<x<l

(4.1a)

(4.1b)

(4.1c)

(4.1d)

Once again we write

foA(t)sinxtdt fz(x), a < x < b (4.2)

and proceed to determine ]2(z).

This time, A(t) is given by

A(t) uJo(ut)Fz(u)du + uJo(ut)G2(u)du (4.3a)

where

(4.ab)

(4.3c)

(4.3d)

as before. The equation to determine f2(z) this time is found to be

(4.4a)

where

’M

udu

and where C is a consant of integration.

Differentiating (4.4) w.r.t, z, we obtain

(4.4b)
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Vl-z [" /(f)Vl-
2=g(=)- Jo ==

R(x),say, a<x<b. (4.5)

and the solution this time is given by

()

so that

vZx2 a2v/b2 x2R(x)2xP
x2

dx

a<<b (4.6)

(4.7)

D must again be determined by substitution into (4.4) or this time, by the requirement that

f2(b-) f({)d + f(a-)= /3(b+),

i.e. by requiring F(x) to be continuous at the points x a and at x b.

5. We consider this time the same equations as in Article 4 with sin function there replaced by
COS.

However, this time, the proper question to ask is [8];
.Find the constant C and the function A(t) such that

We again write

and this time, we get

C + A(t)cosxt dt f(x),

oo ta(t) cos xt at g(x),

and tA(t) cos xt dt

C + A(t) cos xt dt fz(x),

where

O<x<a

a<x<b

b<x<l

x>l.

a<x<b

A(t) __2tr foo’ uJo(ut)F(u)du + __2tr f uJo(ut)G,(u)du

-Ct fo’ nJo(ut)du

g(x) g,(x)dx,

and F(x) f (x) f(x) @ f3(x)

(5.1b)

(5.1c)

(5.1d)

(5.2)

(5.3)

(5.4a)

(5.4b)

(5.4c)

(5.4d)
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as before. C is now given by [8]

C
2

[F,(1)-G,(1)]

and the equation to determine f(x) is now found to be

[o f() K(,) + d -R(),

where

R()
r

D,+ g()d(- G,(u)

+ I() v’u (,a-) (

where

du

0 d (5.6b)

udu
gl(x,)

V/u, x2(u2 ,)

udu
g(x,f)

,(,,0 v"u xq’u , (5.6d)

’M

udu
and K3(x,)

z(z.O %/u x2Vu 2
(5.6e)

Simplification of equation (5.6) gives

b f() R(x)P
i- -x d l-x

and this equation may be solved as before. The constts of integration may be found by requiring

that S(x) (which denotes temperatures in a temperature problem, s ([8]) is continuous at a

and at x b.

6. AN APPLICATION.

We apply the equations in section 2 to the problem of finding stress in an elastic body in

ple elasticity, where the body has thr colinear cracks lying along (-1,-b), (-a, a) nd (b, 1).

While the problems of one crack, that of two syetfil cracks, and of an infinite row of cracks

open by the sme (equal) pressure on the surface of each crk have bn solved by Sneddon

and Lowengrub [10], the problem of thr syetrical cracks, not all of them equal, does not

seem to have mlv.

If we denote the dispBcents (u, v) in the xy-ple by the exprsions [10],

and

lfov (2 2 + ty)A(t)e-*vcoszt dt (6.1b)
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then the stresses ax(x,y), auu(x,y) and axu(x, y) are given by

d
(1 yt)A(t)e-tu sin zt dt(:l’xx

dT,

and a -y t2A(t)e-t sin xt dt

(6.2a)

(6.2b)

(6.2c)

so that if a(x,O) -a on (-1,-b), (-a,a), and (b, 1) and v 0 on t.he rest of the x-axis, the

problem in A(t) is given by equations (2.1) with fl(x) a in’0 < x < a, f3() a in b < z < 1,

g2(x) 0 in a < x < b and g4(x) 0 in x > 1. Because the problem is linear, we shall take a 1.

f2(), which is equal to -a in a < < b, in this case, is found to be

(a + b 22) DA()
22 a2x/b2 v +

V2 a2V,b2 2v/1 2
a < < b (6.3)

where D must be found from

v/1 z + V/1 ; fo’ 41 z + V/1 fIn df In df

(a + b 2) 41 x + 41 {aIn d (6.4)

It is ey to double-check (by differentiating (6.4), for example) that D as given by (6.4) is

independent of x in a < x < b.

Since f() is -a(, 0) in a < < b, the stress intensity factors k and k at the points (a, 0)

and (b, O) are given by

k, -lim 2(x-a) f(z) (6.5a)

and

ka -lim 2(b-x) (6.5b)

Also the stress intensity factor k3 at (1,0) is easily found to be ;F12 (1), where after a substitution,

F1 (1) is given by

fo fo dO
F,(1)

r b2-a cos 20
d0+D (6.6)

2 2 a cos 0 b sin 0 a cos 0 b sin 0

NUMERICAL RESULTS.

Values of stress concentration factors k, k, and k3 for various values of a and b are given in

Table 1. It is to be seen that for a given value of b, i.e. for a given position of the crack b < x < 1,

as a increases, the concentration factor k which is less than k: in the beginning overtakes k2. This

happens for b >_ -3. If b << .3, i.e. if the outlying crack in b < x < is quite large, then the stress

concentration factor k2 in it can be quite large indeed. The stress concentration factor k3 at (1,0)

in the crack b < x < is relatively less affected by the presence of the crack in 0 < x < a. The

stress concentration factor for two equal cracks (a 0) and for three equal cracks (2a b)

are given in Tables 2 and 3 respectively. If 2l is the length of a crack, then in the case of a single
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crack, the stress concentration factor in it is proportional to v/. To account for this effect, the

factors in Table 2 and Table 3 have been divided by Vq where 21 is the length of the crack. It is

to be seen from Table 2 that, as r lb-’-- which is the distance between the cracks divided by

the length of the crack, gets larger, the effect on stress concentration factors, due to the presence

of other cracks, decreases. At r 2, this effect is less than 2% while at r the effect on k2 is

about 6%, and at r the effect on k2 is about 47%. The effect on k3 is relatively smaller.

kl 0 in this case. These observations are in accordance with the remarks made by Sneddon

and Lowengrub [10, p. 44]. In the case of three equal cracks as r (3b- 1)/(2 2b) distance

between cracks/length of each crack, gets smaller, the effect on the stress concentration factors

kl is about 45% higher than what it would be without the twois more pronounced. At r g

neighbouring cracks, ks is about 41% higher and k3 is only about 14% higher. In the case of three

equal cracks, ka > k2 in every case, so that the middle crack has a higher stress concentration

factor than its neighbour on either side. In each case, the effect on k3, the stress concentration

factor on the outer edge of the outlying crack, is relatively small.

Table 4 gives the values of k/v/-, where k is the largest stress-concentration factor, for 2, 3

and an infinite number of equal length cracks for various values of r, the ratio of the distance

between cracks to the length of each crack. It is to be noted that k as r oo and k oo

as r 0, so that the relationship k k(r) is hyperbolic in nature. On a log-log graph, however,

this relationship becomes extremely close to linear (see Fig. 1) and we get the simple relationship

where
a .6070, .3591 for the case of 2 cracks;

a .6515, .3776 for the case of 3 cracks;

and a .6939, .4885 for an infinite number of cracks.

These formulae give results very close to the computed values, for 0 < r < .1. For large values of

, /vq - 1.
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.01

.05

0 .01 .05 .I .3 .5 .7 .9 .95 .99
0 .1670 .3737 .5301 .9510 1.3311 1.8516 3.1905 4’.3624 8.8717

1.6685 1.6686 1.6703 1.6756 1.7355 1.8816 2.2124 3.3626 4.4754 8.9163
8331 .8331 .8331 .8332 .8344 .8370 .8420 .8534 .8602 .8742

0 .1025 .2294 .3254 .5820 .8094 1.1125 1.8677 2.5162 4.9704
1.0151 1.0152 1.0161 1.0191 1.0532 1.1360 1.3226 1.9643 2.5784 4.9940
7718 .7718 .7718 .7720 .7742 .7790

0 .0869 .1946 .2759 "A922 .6805
.8417 .8420 .8428 .8452 .8724 .9386
7287 .7287 .7288 .7291 .7321 .7389

0 .0762 .1704 .2415 .4265 .5771
3 .6264 .6264 .6269 .6287 .6487 .6968

6109 .6109 .6111 .6116 .6175 .6306
0 .0794 .1776 .2515 .4402 .5837

5 .5088 .5088 .5093 .5108 .5281 .5694
5062 .5062 .5065 .5073 .5157 .5343

0 .0863 .1931 .2732 .4750 .6199
7 .3890 .3890 .3894 .3907 .4051 .4397

3887 .3887 .3890 .3899 .3998 .4222
0 .0951 .2127 .3008 .5213 .6739

9 .2237 .2237 .2240 .2248 .2339 .2563
2237 .2237 .2239 .2246 .2328 .2523

0 .0973 .2181 .3084 .5343 .6900
95 .1581 .1581 .1583 .1589 .1656 .1819

1581 .1581 .1583 .1589 .1652 .1804
0 .0995 .2225 .3147 .5450 .7036

99 .0707 .0707 .0708 .0711 .0741 .0816
.0707 .0707 0708 .0711 .0741 .0814

Table 1

.7880 .8081 .8197 .8423

.9260 1.5234 2.b307 3.9354
1.0870 1.5935 2.0746 3.9511
.7516 .7785 .7937 .8228
.7561 1.1575 1.4917 2.7406
.8032 1.1564 1.4840 2.7329
.6544 .7040 .7304 .7779
.7360 1.0410 1.2917 2.2460
.6600 .9535 1.2191 2.2072
.5687 .6407 .6783 .7433
.7550 .9750 I.485 1.8439
.5158 .7601 .9762 1.7551
.4657 .5626 .6147 .7032
.8008 .9367 1.0132 1.3610
.3065 .4745 .6252 1.1484
.2939 .4087 .4834 .6216
8174 .9364 .9833 1.1894
.2189 .3469 .4655 .8825
.2141 .3179 .3961 .5619
.8325 .9445 .9720 1.0208
.0788 .1606 .2217 .4586
.0983 .1573 2125 .3864

Values of kl, k2 and k3 at (a,O), (b,O) and (1,0) respectively for three cracks situated along
(-1,-b), (-a,a) and (b, 1). kl, k2 and k3 are listed in the first, second and third row respectively.
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b .01 .05 .1 .3 .5 .7 .9 .95 .99

k2]v 2.3716 1.4729 1.2551 1.0587 1.0176 1.0043 1.000’4 1.0001 1.0000
3/V/ 1.1841 1.1200 1.0863 1.0326 1.0125 1.0036 1.0003 1.0001 1.0060

Table 2
Value of k2/v/ and k3/v for two equal cracks 2t b is the length of each crack
and s 2b is the distance between the cracks, kl 0 in this case.

99 1.00003 1.00002 1.00001
95 1.0007 1.0004 1.0004
.9 1.0028 1.0018 1.017

’ 1.0343 1.0249 1.0179
5 1.1675 1.086
.4
.34

1.1388
i.4070
3.0126

1.4481
3.0435
73369

1.1371
1.2862

.334 7.3232 1.3852
Table 3

Values of kl/V/’, k21v/’ and k3/v for three equal cracks. 2t b is the length of each crack.
s (3b- I)/2 is the distance between the cracks. The ratio of the length of each crack divided
by the distance between the cracks goes up from .0101 to 666 as we go down the table.

of
cracks

5.0
1.0
.5
.1
.05
.01
.005
.001
.0005
.0001

1.0038
1.0480
1.1125
1.4914
1.7950
3.0044
3.8419
7.0404
9.2417
17.7159

1.0"071
1.0766
1.1675
1.6539
2.0323
3.5387
4.5884
8.6332
11.4377
22.3166

1.0117
1.1284
1.2861
2.2069
2.9866
6.4296
9.0481
20.1518
28.4847
63.6683

Table 4

Values of k//’ for two, three and an infinite number of cracks for various values of r.
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0 5

3.5

3

2.5
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1.5

-s -’z -6 -s -, -3"

1. Linear regression of F in the equation ln(/Vff) F(lnr) for the case of two cracksFigure
(top), 3 cracks (middle), and an infinite number of cracks (bottom), for r < .1. k is the largest
stress concentration factor.
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