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1. INTRODUCTION AND PRELIMINARIES.

In [3] an exponential law C(c(U V, G) C(c(U,C((V, G)) was proved for spaces of Coo-

functions (in the Bastiani sense [1]) defined on c-open sets in arbitrary convergence vector spaces

and taking values in L-embedded spaces. Here, convergence in C((V, G) means convergence

with respect to all derivatives, where the linear spaces are equipped with continuous convergence.

The idea in this paper is to use this exponential law in order to construct exponential laws within

other differentiability theories. We obtain such laws in three different theories; a similar theory

as that in [3] but with the continuous convergence replaced with its equable structure, the

differential calculus by Seip [13,14] for compactly generated spaces and finally the concept of

holomorphy by Bjon [5,6]; Bjon and LindstrSm [7].

A convergence space X [8] is a set, on which with each point x E X is associated a set of

filters, which are said to converge to x, such that the following conditions hold:

1) The trivial ultrafilter associated with x always converges to x;

2) If " _> and converges to x, then " converges to x;

3) If " and G converge to x, then " C { converges to x.

A convergence vector space (cvs) [8] is a convergence space with a vector structure, such that

the vector operations are continuous (a map is continuous if it preserves convergence). All vector

spaces in this paper have the scalar field ]K(= R or C).

A cvs E is said to be equable [10] if each filter which converges to zero in E contains a filter, such that V{ G and converges to zero in E. Here V denotes the zero-neighbourhood

filter of K. Clearly there exists on E a coarsest equable vector convergence structure finer than

the original structure on E. The vector space E endowed with this equable structure is denoted

E. All topological vector spaces are equable.

For X a convergence space and E a cvs C(X, E) denotes the vector space of all continuous

functions f X E endowed with continuous convergence [2]. A filter " converges to zero in
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Co(X, E) iff for each x E X and each filter g which converges to x, the filter ’({} converges to

zero in E. We write Ce(X,E) and Le(E,F) instead of (Cc(X,E)) and (Lc(E,F)).
A cvs E is said to be L.-embedded if the mapping JE: E L.LE (a c, e), jE(x)l l(x),

into the second dual is an embedding [4]. If E is L.-embedded, the same applies for the space

C.(X,E) (a c,e) by Bjon [4]. All Hausdorff locally convex topological vector spaces are

and L-embedded and all polar bornological vector spaces are L-embedded. An L.-embedded
cvs is equable. The dual LE of an L-embedded cvs E separates the points of E.

A convergence space is said to be locally compact if every convergent filter contains some

compact set. Let X be a convergence space. The inclusion mappings K X, where K
ranges over all compact subsets of X, induce a final convergence structure on X. The set X
equipped with this structure is denoted Xc. A filter " converges in X" iff " converges in X
and " contains a compact set [2,9]. Thus Xtc is the coarsest locally compact convergence space

with a finer structure than X. We can consider lc as a functor from the category of convergence

spaces to the full subcategory of locally compact convergence spaces. This functor is coreflective,
so (X x Y)= X" x Y for convergence spaces X and Y [9].

The open sets of a convergence space X define a topology t(X) on X [8]. This is a functor

between the categories of convergence and topological spaces. Let k o Ic be the idempotent

composed functor. We call a separated topological space X compactly generated if X kX. All
separated locally compact topological spaces and all metrizable spaces are compactly generated

[lS].

If is a topological space, then i" kX X is continuous, which however not always is true

when X is a convergence space. or topological spaces X nd Y one usually writes X x Y
the -prou of X and instead of( x ). Now, X x Y do not in general equal x Y,
no even if X and Y are compactly generated. If however X is compactly generated and Y is a

locally compact topological space, then X x Y X x Y [15].

A major advantage when dealing with the category of compactly generated spaces compared

to the category of topological spaces, is that the former is Cartesian closed whereas the latter

is not. By Gabriel- Zisman (see [13]) we have

f C(X, kCo(Y,Z)) .== ] 6_ C(X.xk Y, Z),

for compactly generated spaces X, Y and Z. It is mostly because of this type of universal

mapping property, that U. Seip has been able to construct his exponential law for spaces of

C-funetions in [13] and [14].

2. SPACES OF DIFFERENTIABLE FUNCTIONS.

Let E be a cvs. A set U c E is said to be c-open in E if it is a union of circled open sets in

E, or equivalently that to every x E U there exists a circled open set Uz such that x + Uz C U.
Every open set in a topological vector space is c-open.

Let E and F be cvs and U a c-open set in E. We say that a function f U F is

d(erentiable at z U if there exists a continuous linear operator D](x) E F, such that

the mapping e! S U F (S {A ]K: [A[ < 1}), defined by

e,(0, h)=0, el(s,h)-- f(x+sh)- f(X)
_Df(x)h fors#0,
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is continuous. As usual f U F is said to be differentiable if it is differentiable at every

point in O and continuously differentiable or of class C if it is differentiable and the derivative

Df U La(E,F) is continuous (a c,e). Higher order derivatives are defined recursively by

using the notations:

La(E,F)- F, La(k+IE, F) La(E, La(kE, F)) for k- 0,1,...

We say that f is of class C if DPf U La(PE, F) (p 0, 1, ...) exists and is continuous. For
p _> 1 this is equivalent by saying that Df is of class C-1. If f has derivatives of all orders it

is said to be of class C.
It is a straightforward exercise to verify that the functions fog, f xg f xg(x, y) (f(x),g(y))
and If, g] [f,g](x) (f(x),g(x)) when defined, are of the same class C as f and g are,

likewise that continuous multilinear maps are of class C. In normed spaces a function is of

class C whenever it is p times continuously Fr6chet differentiable. In locally convex topological

vector spaces the class C agrees with the one denoted by C in [11].

Let C(U, F) denote the subspace of e(u, F) consisting of all functions f U F of class

C and Ca)(U F) the set C(U, F) equipped with the initial convergence structure induced by
the fferential operators

D’C:(U,F)--.Ca(U, La(E,F)) k=0,1,...,p,

(k varies over 1N for p oo). Thus convergence in Ca)(U, F) means convergence with respect to

each existing derivative.

In order to compare the spaces C,)(U,F) and Cc)(U,F with each other, we need some

information about the spaces La(E, F). Since embeddings turn out to be useful, we briefly

skiss some general features of embeddings in function spaces.

If, for two cvs F and G, F is embedded in G (denoted F G), we identify F as a subspace

of G. Then also C(X, F) Ca(X, G) (a c,e) for every convergence space X, as well as

L,(E,F) La(E,G) (a- c,e) for each cvs E. By Bjon [6] we haveV,(X,f’) C,(X,F) for
X a convergence space and F a cvs. Obviously L(E, F’) L(E, F) for cvs E and F.

LEMMA 2.1. Let E and F be two cvs. Then there exist embeddings

L,(E, F) (Lc(E, f)), L,(E, f’) L(E, F) for k _> 1.

Moreover, if E is equable, the embeddings above are equalities

L,(E,F)- (Lc(E,F)), L(E,F) L(E,F) for k _> 1. (2.2)

PROOF. The embeddings in (2.1) can both be proven by induction, the first because of

L.(E,L.(E,F)) L(E,(Lc(E,F))) L(E,L(E,F))

and the second similarily. The very same induction procedure can be applied to (2.2), since

L,(E, F) L(E,F) for equable E.

We now have the tools needed for proving the following proposition.

PROPOSITION 2.2. Let E and F be arbitrary cvs and U a c-open subset of E. Then

C,)(U, F) C,)(U, F) (C)(U, F))’, p 0, 1, oo.
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PROOF. Since the associated equable structure is finer than the original one, we obviously

have C(0r, F’) C C’(0r, F) C C(or, F). Then the first embedding is more or less a direct conse-

quence of Ce(or, Le(E, F)) "--, C(Or, L,(E, F)), guaranteed by (2.1). The second embedding,

on the other hand, emerges from C,(U,L,(#’E, F)) C,(U,L(’E,F)), also because of (2.1).

As shown in [3], the mapping f (f, Df,...,Df) defines an embedding

C,)(U,F) HCo(U, Lo(’E,F)) (a =c,e).
k=0

By Bjon [4], the L,- as well as the L,-embedded spaces are closed under formating of arbitrary

products and subspaces. Consequently we obtain:

PROPOSITION 2.3. Let U be a c-open subset of a cvs E and F an L-embedded cvs.

Then also C,)(U,F) is L,-embedded (a c,e)for p 0,1

3. EQUABLE EXPONENTIAL LAW AND COMPLETENESS.

Let G be a cvs and let U be a c-open subset of an equable cvs E. In general C(U, G) is a

proper subset of C(U, C). However, L(E, C) L(E, C). Since the spaces C(U, G) somewhat

are between C(U, G) and L(E, F), it seems reasonable to question whether C(U, G’) C(U, G)
for some large p.

PROPOSITION 3.1. Let G be an L-embedded cvs and U a c-open subset of an equable

cvs E. Then

c,)(u,c’) c’.)(u,c) fo,- , 2,3 ,oo.

PROOF. According to Proposition 2.2, the space Ce)(U, G’) is embedded into C,)(U, G).
Thus we only have to verify that C(U, G’) C(U, G) for p 2, oo. Now E is equable, so

by (2.2) there is an equality C(U,L,(’E,G’)) C(U,L,(’E,G)) for k > I. Since C(U,G) C

C(U, G), it remains to be shown that f- U G" is differentiable for f C(U, G). This is the

case when eI S x U= G is continuous for each x U (S {A ]K-IA < 1}). Certainly

S x U= is a c-open subset of the equable space K x E. By proposition 2.3 in [6], e! S x U= G

is continuous if e! S x U= G is differentiable. As in theorem 3.4 in [6] we write

el,(,h "(t,,h)dt,

where .(t,,h) DI( + th)h- DI()h. Now, "(t,-,-) is differentiable with the derivative

continuous e function of all three variables (t,,h). Thus, by theorem . in [6], e! i

differentiable nd the proposition is proved.

PROPONI’rIoN 3.2. Let G be an -embedded evs and U a e-open subset of an equable

cvs E. Then

PROOF. Certainly the statement is true for p 0. We proceed by induction and assume

that the assertion holds for p >_ 0. Let f C’+2(U, G). We have to show that f C,’+(U, G).
By the induction hypothesis Df U L,(’E, G) exists and is continuous. Let x U. The

function Df U L,(’E, G) is differentiable at x if eV! S x U= Le(E, G) is continuous.

As in the proof of Proposition 3.1, we write

ew,/(s,h) 7(t,s,h)dt,
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where f(t,-,-) w o [D’+If o ((t),pr2] -I- D’/If(x) o pr:z, and where

"Lc(’+IE, G) E L,:(’E,G), (g,x)= g(x),

(t):S U=--* E, (t)(s,h)--x + tsh,

pr: S x U= E, pr:(s,h) h,

D+f U L(+IE, G).

Since Lc(PE, G) is L:embedded, we obtain in a similar manner as in Proposition 3.1 that

eo! S U, L(PE, G) is differentiable. Thus Df U Le(E, G) is differentiable and

even continuously differentiable as a consequence of (2.2) and the hypothesis that D+f U

L(+IE, G) is differentiable. Hence the assertion is true for p q- and thus for all p 0, 1,

Combining the proposition above and Proposition 2.2 we obtain:

COROLLARY 3.3. Let G be an L=-embedded cvs and U a c-open subset of an equable

cvs E. Then

c,(v, c) (co(u, c)).
We are now ready for the exponential law.

THEOREM 3.4. Let G be an L,- or an L:embedded cvs and U and V c-open subsets of

equable cvs E and F repectively. Then there exists a natural isomorphism

=(u,c,>(v,c)).c<,)(u x v, G)""

PROOF. Let G be L:embedded and consider its L:embedded reflection G (i.e. the canon-

ical image of G in L,LcG). According to [3] there is an exponential law

=(u v, co) "(u, =(v, co)),

and thus

(c(o(u v, co))" (C(o%(V,c(v, co)))’.
The set U x V is c-open in the equable cvs E x F and C((V, Go) is Lc-embedded by Proposition

2.3, so by Corollary 3.3:

c,( x v, Go) =- C,(u, Co(v, Go)). (3.3)

Thus, by Proposition 3.1 and Corollary 3.3 applied on the right member of (3.3), we get

(v, co)).c,>(u v, co) - c:>(u,

Since H H for L:embedded H, the assertion follows for the case that the range space is

L:embedded. Using Proposition 3.1 and the fact that (G) G by Bjon [4], the isomorphism

in (3.4) finally turns into

c,(u v, G) =- co(u, c,(v, c)).

REMARK. In general for equable convergence spaces X,Y and Z

C(X x Y,Z) C(X,C,(Y,Z)).
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Therefore the exponential law for equable structures in the theorem above do not fit into the

very general setting of differential calculus, based on category theory, by Nel [1.].

We conclude this section by giving some completeness results.

PROPOSITION 3.5. Let F be a complete Lcoembedded cvs and U a c-open subset of a

cvs E. Then Cc)(U, F) is complete for p 0, 1, .
PROOF. By Bjon and Lindstrbm [7], C(U, F) is complete if F is Lcoembedded and complete.

Thus Co(U, L(E,F)) is complete for all k

_
0. Let p be finite (the case when p can be

treated in the same manner) and let (f,) be a Cauchy-net in Cc)(U,F). Hence there are

mappings f 6 U(U,L(E,F)) (k 0,1 ,p) with

Df, f in C(U, Lc(E,F)) for k =0,1,...,p.

However, by theorem 3.4 in [6], f D(f_l) for k 1 p, by which

Df, I Dfo in C(U,L(E,F)) for k 0, 1,...,p.

Thus f, I f0 in C’)(U, F) and the proof is complete.

The completeness of Ce)(U, F) is obvious under much more restrictive conditions.

PROPOSITION 3.6. Let F be a complete La-embedded cvs (a c, e) and U a c-open

subset of an equable cvs E. Then the space C(e)(U, F) is complete.

PROOF. First suppose that F is L,-embedded and complete and let (f,) be a Cauchy-net
in C()(U, F). Although we do not know whether the spaces Ce(U, L(E, F)) are complete, we

have the embedding

C,(U, L,(E, F)) Ce(U, L(E, F)),

and thus (DL) is a Cauchy-net in the space C,(U, Lc(E,F)) that is complete by Bjon and

Lindstrbm [7]. As in the proposition above we obtain a function f0 6 C(U, F) with

f, f0 in (C((U,F))’.
The completeness of C(e)(U,F) then follows from Corollary 3.3. Now assume that F is L,-
embedded and complete. Then F is closed in L,LeF and consequently C(e)(U, F) can be con-

sidered as a closed subspace of C(,)(U, LeLeF). Let i" LeL,F C(e)(LeF, K) be the inclusion.

Its associated mapping

" LeL,F x LeF K

is bilinear and continuous, hence of class C. By Theorem 3.4 also is of class C, and espe-

cially it is continuous. Since LeLeF is closed in Ce(L,F), we thus obtain that LeLeF is closed
in C(e)(LeF, IK) too. Consequently C(e)(U,L,LeF) is a closed subspace of

However, since LF is equable, C(,)(U, C(e)(L,F, IK)) is isomorphic to e(e(U x LeE, K) by Theo-

rem 3.4. But this last space is complete according to the first part of this proof. Because closed

sets in complete spaces are complete, we have thus shown the completeness of the cvs C(,)(U, F).

4. COMPACTLY GENERATED SPACES.

A compactly generated vector space E is said to be a k-vector space if the vector operations

+ E x E E and ]K x E E are continuous. If E is a topological vector space, then kE
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is a k-vector space. A k-vector space is not always a topological vector space, since the structure

of the k-product in general is finer than that of the topological one. If, however, E is a k-vector

space, then Ec is a cvs.

To every k-vector space E can be associated a locally convex topological vector space cE,
where the topology is generated by the convex zero neighbourhoods in E [13]. A k-vector space

E with E kcE, where cE is sequentially complete, we call a convenient k-vector space. These

convenient k-vector spaces (containing all Frchet spaces) constitute the basis for the differential

calculus by Seip [13,14].

Let E and F be convenient k-vector spaces and U an open subset of E. A function f U F

is said to be of class C if there is a continuous mapping Df U kLco(E, F), such that the

map go" 0 F (0 { (s,x,h E IK x U x E" x + sh U}), defined by

o(O,,) o, o(,,,)= Df(x)h fors:O,

is continuous. Further we say that f U F is of class C’ if Df U kLo(E, F) is of class

C-1. By C(U, F) we mean the space of all C-functions f U F. We use the following

notations

kLo(E,F) F, kLo(n+IE, F) kLo(E, kLo(nE, F)) for p 0, 1

The set C(U, F), equipped with the initial structure induced by the differential operators

D" C(U, F) kCco(U, kLo(E, F)), p O, 1, 2,

we denote by init(C(U,F)). Let C(%(U,F) k(init(Co(U,F))). In [13] and [141 it is shown

that C((U, F) is a convenient k-vector space and further that there exists an exponential law

c<%(v v, e) - C%(u, c(v, G)) (4.1)

for convenient k-vector spaces E, F and G with open sets U and V in E and F respectively.

In order to compare the classes of C- and Cc-functions, we need the following lemma.

LEMMA 4.1. Let X be compactly generated and Y a topological space. Then

c(x,Y) c(x,Y) c(x’,Y) c(x’,Y), (4.1)

Coo(X, Y) Coo(X, z).

Moreover, if Y is a separated topological vector space, then

Co(X, Y) C,(X", Y).

(4.2)

(4.3)

PROOF. Since the verification of (4.1) is straightforward and thus left to the reader and

(4.2) is a theorem due to Steenrod [15], we only have to concern about the structure in (4.3).
Let " 0 in Co(X, Y), x . X and { be a filter with G x in Xc. Then there is a compact set

K G. Hence, to every zero neighbourhood U of Y there exists an F " with F(K) C U

and thus ’() I 0 in Cc(X=, Y). On the contrary, let 1 0 in C(Xc, Y), K be a compact set

in X and U as above. Let further x K and g be a filter with g I x in X;’. Thus there exist

Fx E " and G, g7 with Fx(G,) C U. Since K is compact in X, it can be covered by finitely
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many sets G=, that is K C G= t2...tJG=. Let F F=I f... NF=. Then F E " and F(K) C U,
so " 0 in Co(X, Y).

In comparing C- and C-differentiability, the equality (4.3) will be of fundamental impor-

tance. The C-functions are defined on open sets whereas the C-functions require c-open

domains. Now, it is easy to see that every open set in a k-vector space also is c-open. Since X
and X= has exactly the same open sets, flt= is c-open in E= if U is an open subset of a k-vector

space E.

PROPOSITION 4.2. Let U be an open subset of a k-vector space E and F a separated

locally convex topological vector space. Then

C"(U,F) C(U=,F) C(U, kF). (4.4)

PROOF. By repeated use of Lemma 4.1 we arrive in

kLo(’E, F) kL=(’E, F) kL,o(’E, kF), for p 1, 2

By definition, f . C(U, F) iff for each p 0, 1, there exist continuous mappings D’+lf
U kLo(’IE, F) and g: 5 kLo(’E,F) (5 {(s,x,h) . ]K V x E x + sh e V}),
where the latter is defined by

D’f(x + sh) DVf(x) D+:f(x)h for s 0.

Take a function f C(U, F). Since

C(U, kLo(’E,F))

also gp ()" L(’E, F) is continuous for every p, and hence obviously f . C(U’, F). It
then remains to be shown that C(U, F) C C(U,F). Since the procedure is the same for

.lrr F). As inall derivatives, it suffices to be verified that C(U F) C C(U,F) Let f e
theorem 3.4 in [6] we write

Since F is L-embedded, by lemma .2 in [6] g" (} N is continuous, where is considered

to be a subspace of K U x E= (K x U x E), and thus also when d is a subspace of

IK x U x E. Hence J" (U, F), which completes the proof.

PROPOSITION 4.3. Let U be an open subset of a k-vector space E and F a separated

locally convex topological vector space. Then

’ (u, F).kc(o)(u F)

PROOF. Since kCo(U, kLo(’E, F)) kCo(U, kL=o(’E, kF)), (4.6) follows directly from

(4.4). Further (4.7) is a consequence of (4.4) and the relation

kC(U",L(’E’,F))- kCo(U, kL=o(’E,F)).
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THEOREM 4.4. Let E, F and G be convenient k-vector spaces and U as well as V open

subsets of E and F respectively. Then there is an exponential law

c,%(u v,c)
_
c>(u, c(,%(v,c)). (4.8)

PROOF. Since G kcG, where cG is a separated locally convex topological space, cG is

L=-embedded and hence, by theorem 3.9 in [3], there is an exponential law

(4.9)

The law in (4.8) then follows from that in (4.9) by repeated use of (4.6) and (4.7), remembering

that C(=)(V, cG) is topological and L:embedded and thus a separated locally convex topological

vector space.

5. HOLOMORPHY.

an open subset of E. A function f U F is said to be Gateaunc holomorphic if the function

A -+ l(f(z + Ah)) is holomorphic in a neighbourhood of zero in C for each x ( U, h ( E and

ELF. It is holomorphic, if it is Gateaux holomorphic and continuous. Let H(U, F) denote

the set of all holomorphic functions f U F.

Let U be a --open subset (i.e. to each x E U there is a circled convex open set U= with

x + U= C U) of a cvs E and F an L:embedded sequentially complete cvs. Bjon and LindstrSm

[7] show that a holomorphic function f" U F has an expansion

f(x -i- h)--- . m! h, (5.1)
’t----’O

where the mappings "’f(z) E F, defined by

m! /I), f(x + Ah)dA (m 0, 1 ), (5.2)jf(=)=
= +

are continuous m-homogeneous polynomials.

Certainly a differentiable function is holomorphic. On the contrary, by corollary 4.1.1 in [6],
a holomorphic function f U F, where U is a --open subset of a cvs E (respectively an

equable cvs E) and F is a sequentially complete L:embedded (Le-embedded) cvs, is of class

C (C) with the derivative given by (5.2) for m 1; that is,

1 f /(x-I- Ah)Df(x)h JP,lffi, A
dA. (5.3)

Thus

C:(U, F) H (U, F) (a c, e), p 1, 2, oo. (5.4)

Let (f,) be a net with f, I 0 in H=(U, F). By proposition 4.5 in [7], the mapping J" H,(U, F)
U x E F, where j(f,x,h) Jf(z)h, is continuous. Thus Dr, 0 in C,(U, Lc(E,F)). From

(5.4) we get that Dr, H(U,L(E,F)) and hence D2f, ], 0 in Cc(U, Lc(2E, F)) etc. If E is

equable and F is Le-embedded and sequentially complete, we can use theorem 4.3 in [6] and get

f, I 0 in H,(U,F) = D’f, . 0 in C,(U,L,(’E,F)).

Thus we have
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PROPOSITION 5.1. Let U be a z-open subset of a cvs E (an equable cvs E) and F an

Lc-embedded (L,-embedded) sequentially complete cvs F. Then

C)(U,F) Hc(U,F), (C,)(U,F) H,(U,F)) p= 1,2,..., oo.

As is easily seen, completeness can be replaced with sequentially completeness in Propositions
3.5 and 3.6. Thus the theorem below follows directly from Proposition 5.1.

THEOREM 5.2. Let G be a sequentially complete L,-embedded cvs (a c, e) and U and
V r-open subsets of two cvs E and F respectively, which are equable when a e. Then

,,(u x v,c) H,,(U, Ho(V,C)) (,, ,,).
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