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1. INTRODUCTION
Let (X, d) be a metric space and let f and g be mappings from X into itself. In[1], S Sessa defined
f and g to be weakly commuting if
d(gfz, fgz) < d(gz, fz)

for all z in X It can be seen that two commuting mappings are weakly commuting, but the converse is
false as shown in the Example of [2]

Recently, G. Jungck [3] extended the concept of weak commutativity in the following way
DEFINITION 1.1. Let f and g be mappings from a metric space (X, d) into itself The mappings f
and g are said to be compatible if
lim (fgzn,9fz) =0

whenever {z,} is a sequence in X such that lim fz, = lim gz, = z for some z in X
n—oo n—oo

It is obvious that two weakly commuting mappings are compatible, but the converse is not true
Some examples for this fact can be found in [3].

Recently, H. Kaneko [4] and S. L. Singh et al. [5] extended the concepts of weak commutativity and
compatibility [6] for single-valued mappings to the setting of single-valued and multi-valued mappings,
respectively

Let (X,d) be a metric space and let C B(X) denote the family of all nonempty closed and bounded
subsets of X. Let H be the Hausdorff metric on CB(X) induced by the metric d, i e,

H(A,B) = max{supd(:r,B), supd(y, A)}
zeA veB
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for A, B € CB(X), where d(z, A) = inﬁd(z,y).
yE
It is well-known that (CB(X), H) is a metric space, and if a metric space (X, d) is complete, then
(CH(X), H) is also complete.
Let 6(A, B) = sup{d(z,y) : z € A and y € B} for all A, Be CB(X). If A consists of a single
point a, then we write 6(4, B) = 6(a, B) If6(A, B) =0, then A = B = {a} [7]
LEMMA 1.1 [8]. Let A, B € CB(X) and k > 1. Then for each a € A, there exists a point b € B
such that d(a,b) < kH(A, B).
Let (X,d) be a metric space and let f: X — X and § : X — CB(X) be single-valued and multi-
valued mappings, respectively.
DEFINITION 1.2. The mappings f and S are said to be weakly commuting if for all z € X,
fSz € CB(X) and
H(Sfz, fSz) < d(fz, Sz),

where H is the Hausdorff metric defined on CB(X)
DEFINITION 1.3. The mappings f and S are said to be compatible if
lim d(fy.,Sfr,)=0
n—00

whenever {z,} and {y,} are sequences in X such that lim fz, =nlim yn = 2 for some z € X, where
n—oo —00

yn € Sz forn=1,2,....

REMARK 1.1. (1) Definition 1 3 is slightly different from the Kaneko's definition [6]

(2) If S is a single-valued mapping on X in Definitions 1.2 and 1.3, then Definitions 1 2 and 1.3
become the definitions of weak commutativity and compatibility for single-valued mappings

(3) If the mappings f and S are weakly commuting, then they are compatible, but the converse is
not true

In fact, suppose that f and S are weakly commuting and let {z,} and {y,} be two sequences
in X such that y, € Sz, for n=1,2,--- and nlim fzn =nlim yn =z for some z€ X  From

d(fzn, Sz,) < d(fzn,yn), it follows that lingod(f:c,.,S:z:n) =0. Thus, since f and S are weakly
commuting, we have
nlixgoH(Sf:c,,,fS:c,,) =0.

On the other hand, since d(fyn, Sfz,) < H(fSz,,Sfz,), we have
nlmgo d(fyrn szn) = 0,

which means that f and S are compatible

EXAMPLE 1.1. Let X = [1,00) be a set with the Euclidean metric d and define fz = 2z* — 1 and
Sz =[1,z%) for all z > 1 Note that f and S are continuous and S(X) = f(X) = X Let {z,} and
{yn} be sequences in X defined by z, =y, = 1forn =1,2,.-- Thus we have

lim fz, =lm y,=1€ X, y, € Sz,.
n-—00

n—oo

On the other hand, we can show that H(fSz,,Sfz,) = 2(z} - 1)2 — 0 if and only if z, — 1 as
n — oo and so, since d(fyn, Sfz,) < H(fSznp,Sfz,), we have

Jim d(fyn, Sfz,) =0.

Therefore, f and T are compatible, but f and T are not weakly commuting at z = 2
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We need the following lemmas for our main theorems, which is due to G Jungck [2]

LEMMA 1.2. Let f and g be mappings from a metric space (X,d) into itself If f and g are
compatible and fz = gz for some z € X, then

f9z2=gg9z=gfz= ff=

LEMMA 1.3. Let f and g be mappings from a metric space (X,d) into itself If f and g are

compatible and fz,, gz, — z for some z € X, then we have the following
(1) lim gfz, = fzif f is continuous at z,
n—0

(2) fgz=gfzand fz = gz if f and g are continuous at z

2. COINCIDENCE THEOREMS FOR NONLINEAR HYBRID CONTRACTIONS

In this section, we give some coincidence point theorems for nonlinear hybrid contractions, ie.,
contractive conditions involving single-valued and multi-valued mappings In the following Theorem 2 1,
S(X) and T(X) mean S(X) = U ;ex Sz and T(X) = U zcx Tz, respectively

THEOREM 2.1. Let (X,d) be a complete metric space. Let f, g: X — X be continuous
mappings and S, T : X — CB(X) be H-continuous multi-valued mappings such that

T(X)C f(X) and S(X)C g(X), @.n

the pairs f, S and g, T are compatible mappings, 22)
P P

H,(Sz,Ty) < cd(fz, Sz)d?(gy, Ty) + bd(fz, Ty)d"(gy, Sz) @3)

6(fz,S8z) + 6(gy, Ty)

for all z, y € X for which 6(fz,Sz) + 6(gy,Ty) # 0, wherep >1,b>0and 1 < ¢ <2 Then there
exists a point z € X such that fr € Sz and gz € Tz, i.e, z is a coincidence point of f, S and of g, T

PROOF. Choose a real number & such that 1 < k < (%):’ and let zo be an arbitrary point in X
Since Sz¢ C g(X), there exists a point z; € X such that gz, € Sz, and so there exists a point y € T’z
such that

d(gzy,y) < kH(Szo,Tz,),

which is possibly by Lemma 11 Since T'z; C f(X), there exists a point zo € X such that y = fz, and
so we have

d(gzlx fx2) < kH(SIo,Tzl),

Similarly, there exists a point z3 € X such that gz3 € Sz, and
d(gzs3, fzo) < kH(Sz9,Tx1).

Inductively, we can obtain a sequence {z,} in X such that

szn € TI?n-l» n€N,
gTons1 € Sz, nE€ Ng=NU {0},
d(9Z2n11, fTon) < kH(ST9n, TT2n-1), €N,

d(9%T2n+1, fTont2) < kH(SZ9q, TTont1), m € No,

where N denotes the set of positive integers.
First, suppose that for somen € N

6(f12n, SI?n) + 6(932n+lvTI2n+l) =0.
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Then fzo, € Sxo, and gzonyy € T2,y and so zo, is a coincidence point of f and S and z9,.1 is a
coincidence point of g and 7.

Similarly, 6(fZon+2,SZon+2) + 6(gTont1,TTony1) =0 for some n € N implies that zo,,; is a
coincidence point of g and T and z2,.9 is a coincidence point of f and S.

Now, suppose that 6(fzon, SZon) + 6(gZon+1, TZons1) # 0 forn € Ny Then, by (2 3), we have

d?(9Tan+1, fTons2)
< kPH?(Sz9,, TZon+1)
cd(fzon, STon)dP(9Zonr1, TTon11) + bd(fZon, TZon11)dP (92041, STon)
6(fxon, STon) + 6(9Z2n+1, TT2nt1)
<y S8 (fZ2n, 9%2n+1)dP(gZ2n+1, fTons2) + bA(fTon, fTon+2)dP(9T2n+1, §Z2n11)
- 6(fzan, STan) + 6(9Tons1, TTons1)
» €8(fTon, 9T2n+1)dP(9T2n+1, fT2n+2)
d(fZon, 9Ton+1) + d(gZan+1, fTons2)

< kP

< (2.4)
I d(gTons1, fTons2) =0 and d(fzon,gT2,41) #0 in (24), then gzTony1 = fronio € TZons
and so Tg,4; is a coincidence point of g and T. But the case of d(fzgn,gzons1) =0 and
d(gZ2n+1, fTan+2) # 0 in (2.4) cannot occur.

In fact, if d(fzon,9gZon+1) =0 and d(gTon+1, [Toni2) #0 in (2.4), then we have
d(gZon+1, fTons2) = O, which is impossible From (2.4), we have

dP(9Ton+1, FTons2)[d(fTon, 9T2ns1) + d(9T2n41, fTon42)]
< kPed(fzon, 9Zont1)dP (%2041, fZont2),

which implies that
d(9Zan+1, fTon41) < (KPe — 1)d(fZ2n, gZ2n+1)-
On the other hand, from (2.3), we have
dP(9Ton+3, fTons2)
< kPHP(SZon49, TTont1)
cd(fZoant2, STons2)dP(9Zon11, TTons1) + bd(fZons2, TT2n11)dP (9T2n+1, ST2nt2)
6(fTonsa, STonta) + 6(9Zon+1, TZon41)

» €A(fTant2, 9T2n13)dP(gTon+1, fT2n42)
d(fTont2, 9T2n+3) + d(9Tont1, fTonsa)’

<k

which implies that, if @ = d(T2n13, fZon+2)/d(fTon+2, 9T2n41), then o + P! < kPc Thus a < 1
and we have

d(9%2n43, fTons2) < d(fTan42, 9Tont1)-

Repeating the above argument, since 0 < kPc—1< 1, it follows that {gzi, fzo,gx3, fZ4, ",
9Ton-1, 9T2n, §T2n+1, - - -+ is @ Cauchy sequence in X. Since (X, d) is a complete metric space, let lim
n—0o0

gZon+1 = lim fzo, = 2.
n—00
Now, we will prove that fz € Sz, that is, 2 is a coincidence point of f and S. For everyn € N, we
have

d(fgzan+1,52) < d(fgZan+1, Sfran) + H(S fzon, S2). (25)
It follows from the H-continuity of S that
nlirgo H(Sfzg,,S2) =0 (2.6)
since fzo, — z asn — oo. Since f and S are compatible mappings and lim fz, = lin°1° yn = 2z, where
n—oo n—

Yn = gT2n41 € STo, and 2, = Ty,, We have
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nli_rgo d(fyn,Sfzn) =n1in(!° d(f9zon+1,Sfxon) = 0. 27
Thus, from (2 5), (2.6) and (2.7), we have lim d(fgz2,.1,S2) = 0 and so, from

d(fz,82) < d(fz, fgTan+1) +d(f9Tons1,52)

and the continuity of f, it follows that d(fz,Sz) = 0, which implies that fz € Sz since Sz is a closed
subset of X  Similarly, we can prove that gz € Tz, that is, z is a coincidence point of g and T This
completes the proof
If we put f = g = ix ( the identity mapping on X) in Theorem 2 1, we have the following
COROLLARY 2.2 [1] Let (X,d) be a complete metric space and let S,T : X — CB(X) be H-
continuous multi-valued mappings such that
cd(z, Sz)d?(y, Ty) + bd(z, Ty)dP(y, Sz)
6(z,Sz) + 6(y, Ty)

H?(Sz,Ty) < (2.8)

for all z, y € X for which 6(z, Sz) + 6(y, Ty) # 0, where p>1,5>0and 1 < c < 2. ThenS and T
have a common fixed point in X, thatis, 2 € Szand z € T2

Assuming that f = gand S = T on X in Theorem 2.1, we have the following

COROLLARY 2.3. Let (X,d) be a complete metric space and let f : X — X be a continuous
single-valued mapping and S : X — CB(X) be an H-continuous multi-valued mapping such that

S(X) c f(X), (29

f and S are continuous mappings, (2.10)

cd(fz, Sz)dP(fy, Sy) + bd(fz, Sy)d”(fy, Sx)
6(fz,Sz) + 6(fy, Sy)

for all z, y € X for which 6(fz,Sz) + 6(fy,Sy) # 0, where p>1,b>0and 1 < ¢ <2 Then there
exists a point 2 € X such that fz € Sz, i.e, z is a coincidence point of f and S.

REMARK 2.1. If we put p =1 in Theorem 2.1, Corollaries 2.2 and 2.3, we can obtain further
corollaries.

H?(Sz,Ty) < @11

3. FIXED POINT THEOREMS FOR SINGLE-VALUED MAPPINGS

In this section, using Theorem 2.1, we can obtain some fixed point theorems for single-valued
mappings in a metric space

If S and T are single-valued mappings from a metric space (X, d) into itself in Theorem 2 1, we have
the following'

THEOREM 3.1. Let (X,d) be a complete metric space Let f, g, S and T be continuous
mappings from X into itself such that

S(X) c g(X) and T(X)C f(X), 3N
the pairs f, S and g, T are compatible mappings, (32

cd(fz,Sz)d?(gy, Ty) + bd(fz, Ty)dP(gy, Sz)
d(fz,Sz) +d(gy, Ty)

either (i) d?(Sz, Ty) < (33)

ifd(fz,Sz)+d(gy,Ty) #0forallz, y € X,wherep>1,b>0and1 < c<2,0r
(ii) d(Sz,Ty) =0 if d(fz,Sz)+d(gy,Ty) = 0.
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Then f, g, S and T have a unique common fixed point z in X Further, z is the unique common fixed
point of f, S and of g, T

PROOF. The existence of the point w with fw = Sw and gw = Tw follows from Theorem 2 1
From (ii) of (3.3), since d(fw,Sw)+d(gw,Tw)=0, it follows that d(Sw,Tw)=0 and so
Sw = fw = gw = Tw. By Lemma 1 2, since f and S are compatible mappings and fw = Sw, we have

Sfw=8Sw= fSw= ffuw, (34)

which implies that d(fSw, SSw) + d(gw, Tw) = 0 and, using the condition (ii) of (3.3), we have
Sfw=8Sw=Tw=gw= fw 35)

and so fw = z is a fixed point of S. Further, (3 4) and (3 5) implies that
Sz=fSw=SSw=fz=2z

Similarly, since g and T are compatible mappings, we have Tz = gz = z. Using (ii) of (3 3), since
d(fz,S5z) +d(gz,Tz) =0, it follows that d(Sz,Tz) = 0 and so Sz = Tz Therefore, the point z is a
common fixed point of f, g, S and T'.

Next, we will show the uniqueness of the common fixed point z. Let 2’ be another common fixed
point of f and S. Using the condition (ii) of (3.3), since d(f2/,Sz') + d(gz,Tz) = 0, it follows that
d(z,2') = d(T2,S2') = 0 and so z = 2’. This completes the proof.

Now, we give an example of Theorem 3.1 withp=1and f =g

EXAMPLE 3.1. Let X = {1,2,3,4} be a finite set with the metric d defined by

d(1,3) = d(1,4) = d(2,3) =d(2,4) = 1,
d(1,2) = d(3,4) = 2.

Define mappings f, S, T : X — X by

fQ)=1, f(2)=2, f(3) =4, f(4) =3,
S1)=S52)=54)=2, S3)=3,
TQ)=T2)=T(3) = T4) = 2.

From
Sf(1)=8(1) =2 = £(2) = F5(),
Sf(2) =85(2)=2=f(2) = fS(2),
d(S£(3), fS(3)) = d(S(4), f(3)) = d(2,4) <1< 2=4d(3,4) =d(5(3), f(3))
and

d(Sf(4),fS(4)) = d(5(3),£(2)) = d(3,2) =1 =d(2,3) =d(5(4), f(4)),

it follows that f and S are weakly commuting mappings and so they are compatible. Clearly, f, S and T
are continuous and

S(z)={2,3} c X = f(X), T(X)={2} Cc X = f(X).

Further, we can show that the inequality (i) of (3.3) holds with ¢ = % and b = 2 and the condition (ii) of
(3.3) holds only for the point 2. Therefore, all the conditions of Theorem 3 1 are satisfied and the point 2
is a unique common fixed point of f, S and T'.

REMARK 3.1. Theorem 3.1 assures that f, g, S and T have a unique common fixed point in X
However, either f or g or S or T can have other fixed points. Indeed, in Example 3 1, f and S have two
fixed points.
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REMARK 3.2. From the proof of Theorem 3 1, it follows that if the condition (ii) of (3 3) is
omitted in the hypothesis of Theorem 3.1, then f, g, S and T have a coincidence point w, ie,
fu=gw=Sw=Tw

If we put f = g = ix in Theorem 3 1, we have the following.

COROLLARY 3.2. Let (X,d) be a complete metric space and let 5,7 : X — X be continuous
mappings such that
cd(z, Sz)dP(y, Ty) + bd(z, Ty)d"(y, Sz)

d(z,5z) +d(y, Ty)

either (i) d?(Sz,Ty) < G9)

forallz, y € Xifd(z,Sz) +d(y,Ty) # 0, wherep>1,b>0and1 < c < 2,0r
(i) d(Sz,Ty) =0 if d(z,Sz)+d(y,Ty) =0

Then S and T have a unique common fixed point z in X
Assuming that f = gand S = T on X in Theorem 3.1, we have the following.

COROLLARY 3.3. Let (X,d) be a complete metric space and let f,S : X — X be continuous
mappings such that

5(X) c f(X), (39)
f and S are compatible mappings, 37
cither &) (8o, Ty) < 4@ Sy, Sy) + bd(fz, Sy)d?(fy, S+) 08

d(fz,Sz) +d(y, Sy)

forallz, y € Xifd(fz,Sz)+d(fy,Sy) # 0, wherep >1,b>0and1 <c < 2,0r
(i) d(Sz,Sy) =0 if d(fz,Sy)+d(fy,Sy)=0.

Then f and S have a unique common fixed point z in X

REMARK 3.3. (1) If p =1 in Corollary 3.2, we obtain the result of B Fisher [9].
(2) Theorem 3.1 is an extension of the results of M L. Diviccaro, S Sessa and B. Fisher [10]
REMARK 3.4. Conditions (3 6) and (3.7) are necessary in Corollary 3.3 (and so Theorem 3.1) [3]
EXAMPLE 3.1. Let X =[0,1] with the Euclidean metric d(z,y) = |z — y| and define two
mappings f,S : X — X by
1

and fr= -z

Sz = 3

] -

forall z € X. Note that f and S are continuous and S(X) = {1} c [0,1] = f(X)
Since d(Sz,Sy) =0 for all z, y € X, all the conditions of Corollary 3 3 are satisfied except the
compatibility of f and S. Infact, let {z,} be a sequence in X defined by z,, = % forn=1,2,---. Then

we have

. o1 1 . o011
dm fan =Jim 3on =30 Jim S =lim 3 =5
but
. . 1 1 1
Jim (e £22) =Jim |1 =5 = 5.

Thus f and S are not compatible mappings But f and S have no common fixed points in X
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