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ABSTRACT. In this note we introduce a new method of absolute summability. A general theorem is
given. Several results are also deduced.
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1. INTRODUCTION.

Let 3" a,, be an infinite series with partial sums s,,. Let of and n, denotes the nth Cesaro mean of
order 6(6 > — 1) of the sequences {s,} and {na,} respectively. The series Y  a, is said to be
summable |C, 6|, k > 1, if

> k
Z n""|aﬁ - crf,_ll <oo,
n=1
or equivalently
= k
Z n’l In,‘;| <o00.
n=1
Let {p.} be a sequence of real or complex constants with
P.=p+p+..+P, P1=p1=0.
The series 3 a, is said to be summable |N, p,|, if

00

Z Itn - tn—l' < 0o, (1)

n=1
where
tn = P! i Pao8, (14=0) .
v=0
We write p = {p,} and
M ={p:pn>0& Pos1/Pn < Prs2/Par1,n=0,1,...}
It is known that for p € M, (1) holds if and only if (Das [4])

el n
> pwvay
v=1

1
Z nP,

n=1

<00.
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DEFINITION 1 (Sulaiman [5]). For p € M, we say that > a,, is summable |N, p,|, k > 1, if

0 1 n k
Zl ;l—P_,lf UZ; Pn-4V0y

In the special case in which p, = A7"!, r > — 1, where A7, is the coefficient of z" in the power series
expansion of (1 — z)™""! for |z| < 1, |N,p,|k summability reduces to |C, |, summability.
The series 3" a,, is said to be summable | R, p, |k, [N, pnlk, k > 1 (Bor [2] & [1]), if
o~ k-1 K = (B! k
YT, — T < o0, (—") T, — Tasq|f < 0,
> il Z} ) | il

n=1

<00.

respectively, where
n
Tn=Pr:1 Zpusu-

v=0

In the special case when p, = 1 for all values of 7 (resp. k = 1), then |R, p,|x, |V, pa|x summability is

the same as |C, 1|, (resp. |R, p,|) summability.
Qu=g@+qa+..+¢, ¢g1=Q-1=0.
U.=uw+ur+... +u,, u_1=0U_,=0.

Rn = pogn + P1gn-1+ - Pno

Afn = fn - fn+1

We assume {¢,}, {a.} and {3,} be sequences of positive real constants. Here we give the following

We set

new definition.
DEFINITION 2. Let {p.}, {gn} be sequences of positive real constants such that g € M We

say that Y a,, is summable [N, R,,, ¢n|x, k> 1,if
’ k
00 n
k-1 Pn
E E P, 1qn—y .
n P.R._, Lo 19n-v@y| < OO

n=1

DEFINITION 3 (Sulaiman [6]). The series 3" a,, is said to be summable |N, p,, .|k, k > 1, if

00
> T~ Taca | < o0,
n=1

2. LEMMAS
LEMMA 1. Let {p.}, {¢-}, and {u,} be sequences of positive real constants such that ¢ € M,
{a,l,"l/ * pn/ PaRn-1} nonincreasing for g, # c. Let T, denote the (N, u,,)-mean of the series 3" a. Let

= A il
P,{‘Rn—l n—-v-1 P,:‘

n=v+1
o0 " k k Pn- k A k
> (5) (B) (72) (&) wrar <,

n=1

[en} be a sequence of constants and write ,6.1._1/ kAT, =0, If
k=1, k-1 }

00 a k-1
(—") feal¥ 1Al < 00,

2

n=1
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and
0o k-1 k
5 (2)"(5) et o

then the series ) an¢, is summable |N, R,, an|x, k> 1.
LEMMA 2 (Sulaiman [7]) Letg € M. Thenfor0 < r <1,

gn-v-1 -
Invl _ g
n=v+1 nrQ" 1 ( )

LEMMA 3 (Bor [2]). Letk > 1and A = (a,) be an infinite matrix. In order that A € (I¥; I¥), it
is necessary that

any, =0(1) (all n,v) 3)

Proof of Lemma 1. Write

n
T = Z P, ~19n-yQy€y -

=1
Since
T.=U; Zu{;a, Uy ‘Z(U = Usr)ay
then
-QATh = U > -1Qy -
By Abel's transformation,

= Z U, _1% u—lQn—vUv—lev)

v=1

- nX: (Z U, 'la") P19y v-15v) + (Z U, —lar) P 190U €n

— r=1

= u—lU -1 Uy
= To-1 -18vGn-—vYy—1&y -19n-v-1 77 rr
; { JAN }{Pv 180gn- U, 160 + Poo1gnov-1 U0,

- Pin—v-lUu_lfv + Pin—u—lUu_lAfu} - P, —lqunuy—.lenATn-l

3
-

U, U,-
{ - Pv—lAQn—u ;'i evAT:.'—l - Pv—lqn—v—levATv—l + PuGn-v-1 ; !

v v

<
Il
-

X E.,AT,,—] - Puqn-u-l

Lot Aeum;_l} N PLLPWN @

=Tn1+ T2+ Tn3 + Tnd + Tas, Say
In order to prove the lemma, by Minkowski's inequality, it is sufficient to show that

00
St

n=1

Pn

k
———Tar| <00, r=1,234,5.
Pan-l n.

Applying Holder's inequality,
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m+1 X m+1 1 P n-1 U X
ak™! Tn a, P 1Dygn-y—€, AT,
1'n2= Pn 1 nZ_Q Pan 1 Zl 1 q; w 1
m+1 o1 P -1 U ) k
Sgan (Pan 1) Zl llA”q" "l( ) Ievl |AT-1I
n—-1 k-1
% {Zlﬁuqn-ul}
= x m+1 k 1 k
=0y P,y (2 ) O IATA 3 P 1o
vz n=v:
_O(I)i (ﬁ)m(&) (Pu-1>k (gg) leolt 18, F
=1 By P, R,1 Uy v v
m+1 Pn k m+1 P n-1 Pv . k

Pn.Rn—l — Py Pin—vvlevATv—l

m+1 oflpgk B 1 P._ k n—1 k-1
S PkRnp_nl Z( - l) pUQn—v—llevlklATv—llk{ Bl 1}

n=2 "n Py v=1 Rn—l
m P m+1 k IPk
~ o) (—) poleul* |6T, s _—
2 2, HE
m k-1
Qy
—omd (%) kst
k
a Tn3 an Dv@n—v- v-1
m=2 n=2 FuRa v=1 '
m+1 k-1 n—1
an n k k
SnZzPrfRnlungQn v-1 ( u) leol® |AT,]

_ k-1
x {n Pin—v—l}
“~ R.a

m U, k m+1 ak -1k
=00 n(=2) Il IAT n ,f’ Gnovr
u P*R;

n=v+1

Py
oo () (3) () (&)
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k

~ P.R, n,4 — [ Pan 1 v@n—v-1 uy €y v-1
m+1 k_lpk n—1 P k U k
a
< n n v v—1 k k
- n=2 P’{‘R"'l v=1 (Pv) pvq""”( Uy ) |A€V, IATV-II
_ k-1
x {” vaQn—u—l}
v=1 R"’l
i - V- k k mi':l k an
—owy ()5 (22 ) INTLIS NS oot
v=1 Py n=v+1 PkR“"
m k-1 k-1
a «a U,
—om Y (5) (% )(—) Bef 1A
; By B, Uy
N k-1|__Pn P& ko _Pn Un ,
a,” Tas| = o P,_ e,,AT,.
2o R | T R P, AT

g () () (B2) (@) et

This completes the proof of Lemma 1.
3. MAIN RESULT

THEOREM. Let g€ M such that {t:nzl v kp,. /P.R,_1} nonincreasing for g, #c. Let
PoRo1tn = 0(pnPao1Un), T @k~ (pa/Pn)* divergent, and

i k lpk _0 aﬁ'lp{f"'l
& PER,, ! P [

Then the necessary and sufficient conditions that } ane€, is summable [N, R, a,|x whenever 3" a, is
summable | N, p,, Balx, k > 1, are

. _ PR, 1u, Bn -1k

® = 0{ Gereze) (&) )
1-1/k

o el

PROOF. Sufficiency. Follows form Lemma 1.
Necessity of (i). Multiplying (2) by ol kpn /PrR,_4, the last term on the right becomes

nPn PnPr1Us
Tns = — ———— €, 0T,,_
PR, ™ P.R, ju, !

PoaU, ('™ .
- (5) e erena)
Following Bor [2]. By (3), it is possible to write the matrix transforming (ﬂl_l/ kAT,._l) into
(k™% p,/PaRn_1)Ts). Since |N,pn, Balx implies | N, Ry, anx, the matrix e(I*; 1*). By Lemma 3, a

necessary condition for this implication is that the elements (in particular the diagonal elements) of this
matrix should be bounded. Hence (i)
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Necessity of (ii). Suppose [N, pn, Balx of 3 @, implies | N, R, anlx of 3 ane,. From (2)

ITnal €D Inrl +1mal , 7=1,2,3,5.
T

By Minkowski's inequality, using (i), we have, via the proof of Lemma 1,

m k m k m k
k-1 Pn k k-1 Pn k k=1 _Pn_ k
Zan (Pan—l) |Tn.4| < 0(1){2071 (PnRﬂ—l) lTn,rl + nzzlan (Pan—l) |Tn| }

n=1 n=1

<o [adk

n=

=0(1)Y B AT,k
n=1

Therefore
k

— )3 B AT

n=1

m k
£ (5)

n=1

1 n-1 U-'.,_1 T
Rﬁ—l ;Pv%'t—v—l u, AEUA v-1

~1/k )
, we obtain

k n—1 1-1/k
R =)(%)
vdn—v- v A A v
Rt 2™ {( wN\a)

Now, put AT,_; = (f,ﬁ) (",—3:

£ (3

n=1

N—"
-

k

This should imply

n—1

But 3 pugn-v-1 = Rn1, We get
v=1

This completes the proof of the theorem.
REMARK. It is clear that

IN, B, Pa/Pulk = [N, Palk, [N, pn,nlk = R, Palk, [N, 1,nlk = |C, 1,
and from our definition we may deduce that
G =1=|N, Py, ¢nlk =|N,ps, alk,
which implies
IN, Pp, Pa/pulk = [N, pulk
and
IN, Pa,nlk = |R, pole*pn = 1= [N, Qn,nlk = [N, gnk -

4. APPLICATIONS )
COROLLARY 1. Let Pu, =0(p,U,). Then the necessary and sufficient conditions that
" an€, be summable |V, p, |k whenever 3 ay, is summable |V, un|i, k > 1, are
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= 0{ (._’i)’} , A = o{ (=) (P_)’} |
Unpn Una P,
PROOF. Follows from the theorem by putting ¢, = 1, a, = P,/p,, and 5, = U, /u,
COROLLARY 2 (Bor and Thorpe [3]) Let P,u, = 0(p,U,) and p,U, = 0(P,u,) Then} a,
is summable [N, p, |y iff it is summable | N, u, |z, k > 1
PROOF. Follows from Corollary 1 by putting €, = 1

COROLLARY 3. Let Qu-ju, =0(U,) Then the necessary and sufficient conditions that
3" an€, be summable [N, g, |, whenever Y a, is summable IN,unlk, k> 1,are

(36 o))

PROOF. Follows from the theorem by putting p, =1, a, =n, B, = U,/u, and making use
of Lemma 2.

COROLLARY 4. Let Q,_ju, = 0(U,). Then a necessary and sufficient condition that 5_ a, be
summable | N, g, |x whenever it is summable [N, u,|x, k > 1,is

k71U, = 0(Q%_juy) .
PROOF. Follows from Corollary 3 by putting €, = 1.
COROLLARY 5. Let {n'~V*p, /P, P,_;} nonincreasing, P,u, = 0(p,U.,), and
e k-1 vk—l k—1
Z n pfx — 0( Py ) .

<~ PkPny Pk

Then the necessary and sufficient conditions that 3 a,e, be summable |R,p,|; whenever } a, is
summable | N, u,),, k> 1,are

(@) E)) o)) Y

PROOF. Follows from the theorem by putting ¢, =1, o, =n and 8, = U,/un.
COROLLARY 6. Let P,u, = 0(p,U,). Then the necessary and sufficient conditions that
3" a,€, be summable [N, p.|x whenever 3" a, is summable |R, u,|i, k > 1, are

1/k ‘\ 1-1/k
=04 ( 2=m i) , De, =0 (———u" ) (E&) .
U, np, Up-1 P,
PROOF. Follows from the theorem by putting g, =1, a, = FB,/p,and 5, =n
The following four results follows from Corollary 3 and they are generalizations for the results of

(8]
COROLLARY 7. The necessary and sufficient conditions that }_ a,€, are summable |C, a,
0 < a < 1, whenever ¥ a,, is summable |C, 1|s, k > 1, are

€ =0(n"1), De, =0(n7?) .
PROOF. Follows by putting g, = A2~!, u, =1.

COROLLARY 8. The necessary and sufficient conditions that 3 ane, be summable
|N,1/(n + 1)|x whenever }_ a, is summable |C, 1|x, k > 1, are

€, = O(logn/n), De, =0(n7") .
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PROOF. Follows by putting g, =1/(n+1), u, =1
COROLLARY 9. The necessary and sufficient conditions that ) a.e, be summable
|N,1/(n + 1)|x whenever ¥ a, is summable (R, log n,1[x, k > 1, are

€ = 0{(logn)1'l/'°/n} ) De, = 0{1/n(logn)1/"} .

PROOF. Follows by putting g, = u, = 1/(n +1).
COROLLARY 10. The necessary and sufficient conditions that _ a,€, be summable |C, alx,
0 < a < 1, whenever Y a,, is summable |R, logn, 1|, k > 1, are

€ = 0{n°'1/(logn)1/"} s De, = O{I/n(logn)l/"} .

PROOF. Follows by putting ¢, = A2, u, =1/(n+1).
Lastly it may be mentioned that many other results could be obtained either from the theorem or
from its corollaries.
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