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ABSTRACT. The results of the paper concern a broad family of time-varying nonlinear systems with
differentiable motions. The solutions are established in a form of the necessary and sufficient conditions
for: 1) uniform asymptotic stability of the zero state, 2) for an exact single construction of a system
Lyapunov function and 3) for an accurate single determination of the (uniform) asymptotic stability
domain. They permit arbitrary selection of a function p(*) from a defined functional family to
determine a Lyapunov function v(*), [u(*)], by solving V/(*) = —p(*) {or equivalently,
(*) =- p(*)[1 — v(*)}, respectively. Illustrative examples are worked out.

KEY WORDS AND PHRASES: Nonlinear Dynamical Ssytems, Lyapunov and Asymptotic Stability.
1991 AMS SUBJECT CLASSIFICATION CODES: 34A34, 34C35, 34D20, 93D05, 93D20.

1. INTRODUCTION

The well known fundamental advantageous feature of the Lyapunov method consists in the use of
both a positive definite function and its total derivative along system motions without knowing the
motions themselves in order to investigate qualitative properties of the system behavior, among which
there are various asymptotic stability properties.

Theorems established for time-varying nonlinear systems have been expressed in terms of existence
of a Lyapunov function v(*)[v(+)] without clarifying how to determine it, that is without clarifying how
to choose p(*) in V/(*) = — p(*) {or equivalently, in v/ = — p(*)[1 — v(*)}, and what are, with respect
to a selected p(+), the necessary and sufficient conditions for a solution v(°) [v(*)], respectively, to
guarantee uniform asymptotic stability of z = 0 and/or to determine accurately its -domain of uniform
asymptotic stability. Such a crucial incompleteness of the existing Lyapunov stability theory has been an
inherent obstacle to broader and more effective applications of the theory than have been realized. It
was overcome in [2]-[12] for different classes of time-invariant systems by proposing three distinct
approaches. Their common feature is in defining a family of functions p(*) used to generate a function
v(*) [or, »(*)]and in specifying the necessary and sufficient properties of v(*) [or, v()] to guarantee
asymptotic stability of the zero state and/or to ensure that a set N is the domain of its asymptotic
stability. This paper is aimed to establish analogous solutions for a broad family of time-varying
nonlinear systems.

2. NOTATION

Capital italic Roman letters are used for sets, lower case block Roman characters for vectors, Greek
letters and lower case italic letters denote scalars except for the empty set @ and subscripts. The
boundary, interior and closure of a set 4 are designated by 94, In A and CIA, respectively, where 4 is a
time-invariant set. If A(<): R — 2" is a set-valued function then its instantaneous set value A(t) at
arbitrary time t € R will be called a time-varying set A(t). Let | +]| : R" — R, be the Euclidean



348 L. T. GRUJIC

norm on R", where R, = [0,00[ = {z:z € R,0 <z < 00o}. B, will be used for the open hyperball
with radius a centered at the origin, B, = {x:x€ R", || x| < a}. An initial time ¢, € R, and
determines Ry = [ty, 0o[, where R; = ]o, + oo[, 0 € [ — 00, 00].
Let { € R* =)0,00[ and p(*): R, x R® — R. Then F(t) is the largest open connected
neighborhood of x = 0 at time ¢ € R; such that p(t,x) < ¢ for every x € F(t).
Let p(*) : R" x 28" — R, be a distance function defined by
p(x, A) =inf[ || x—y]| :y€A].

Let now d() : 2% x 2F" — R, be a distance function introduced by:
d(A’ B) = max{[supp(x, B) 1XE€ A]» [supp(y, A) ‘y€ B]} .

A non-empty set-valued function S(*) : R — 2" is continuous at 7 € R if and only if for every
€ € R* thereis 6 € R*, § = §(,€), such that |t — 7| < & implies d[S(t), S(7)] < e. It is continuous
on Ry (i.e. int € Ry) if and only if it is continuous at every t € Ry.

Let x(¢; tp,%p) be a motion (solution) of a system through xo € R"™ at t5 € R;, and x(¢; 5, %o) be
its vector value x(t) at time t € R;, x(t) = x(¢; t,%o).

If a function x(*) is differentiable then its total time derivative dx(*)/df will be also denoted by x'().
If v : R; x R" — R is differentiable then its total time derivative along x(*) is its Eulerian derivative
Vo, x()),

vt x(t)]

Vit x(t)] = === + {gradv[tx@ X ().

The notation used for stability domains is explained in Definitions 1-3 (Section 4). Their importance
was explained by LaSalle and Lefschetz [17].

3. SYSTEM DESCRIPTION
Nonlinear time-varying systems treated herein are described by (3.1),
dx(#)

rrale fit,x(t)], x(*):R—R", f*): RxR"— R", 3.1)

and by one of the following features:
W m ess Pro
(i) There is an open continuous neighborhood S(t) of x = 0 for every t € R;, S(t) C R", such that
S=nN[SE):te R)=S(R,) is also an open neighborhood of x=0 and for every
(to,%0) € R; x S(to):
a) the system (3.1) has a unique solution x(*; #o,Xo) through xo at ¢y on a largest interval I,
I = Io(to,%0), R; 2 Io, Io # 0, and

b) x(*; to,xo) is defined, continuous and differentiable in (2,15, %) € Ip X R; x S(tp).

(ii) For every (t,%0) € R; x [R™ — 8S(t)] every motion x(*; to,Xp) of the system (3.1) is continuous
int € Iy.

Strong Smoothness Property

(i) The system (3.1) obeys the Weak Smoothness Property.

(ii) If the boundary 8S(t) of S(t) is non-empty at any T € R; then every motion of the system (3.1)
passing through xo € 3S(ty) at tp =7 obeys inf[]| x(¢; to,%0) || : £ € Ip) >0 for every
(to,%0) € R; x 8S(to).

4. ASYMPTOTIC STABILITY DOMAINS
This section is aimed to clarify the notions of the asymptotic stability domains in the framework of

time-varying systems.
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The notion of the attraction domain has been mainly used in the following sense (Hahn [15],
Zubov [20]):
Definition 1.
The state x = 0 of the system (3.1) has:
(a) the domain of attraction at ¢y denoted by D,(%p), Ds(to) C R",if and only if both 1) and 2) hold,
1) forty € R and every { € R™ there exists 7 = 7(¢,%0,¢) € R, such that || x(; to,%0) || <¢
for all t € Jto + 7, oo is valid provided only that xy € D,(%o),
2) the set D,(to) is a neighborhood of x = 0.
(b) the domain D,(R;) of uniform attraction on R;, D,(R;) C R", if and only if 1)-4) hold,
1) it has the domain D, (o) of attraction at every tp € R;,
2) N[Dy(t) : to € Ry] is a neighborhood of x = 0,
3) Du(R;) = N[Da(to) : to € Ry,
4) the minimal 7(tg, Xo, ) obeying 1) of (a) and denoted by 7 (o, X0, {) satisfies

sup[m(to,%0,¢) : to € Ri) < +00, forevery (x0,{) € Da(R.) x R .

The expression "or R;" is to be omitted if and only if R; = R. Then and only then D,(R;) will be
denoted by D,,, D, = D,(R).
The stability domain and the asymptotic stability domain in the Lyapunov sense were introduced in
[1], and further broadened and used in [2]-[14] as follows:
Definition 2.
The state x = 0 of the system (3.1) has:
(a) the domain of stability at ¢y denoted by D,(%), D,(ty) C R", if and only if 1)-3) hold,
1) for every € € R the motion x(; o, Xo) satisfies || x(t; to,%o) || < € for all t € Ry provided
only that xg € D, (to, €),
2) the set D,(ty,€) is a neighborhood of x = 0 for every € € R™,
3) the set D,(to) is the union of all the sets D,(%y, €) over e € R*:

D,(ty) = U[D,(to,€) : € € RY] .

(b) the domain D,(R;) of uniform stability on R; if and only if 1)-3) hold,
1) it has the domain D, (%) of stability at every ¢y € R,,
2) N[D,(to) : to € R;] is a neighborhood of x = 0,
3) Dy(R)=n [Ds(to) 1t € Ry).
The expression "on R;" is to be omitted if and only if R, = R. Then and only then D,(R,) will be
denoted by D,, D, = D,(R).
Definition 3.
The state x = 0 of the system (3.1) has:
(a) the domain of asymptotic stability at todenoted by D(%y), D(tp) C R", if and only if it has both
D,(tp) and D,(t), and D(2y) is their intersection:

D(to) = Da(tO) n Ds(tO) .
(b) the domain D(R;)of uniform asymptotic stability on R; if and only if it has both D,(R;) and
D,(R;), and D(R,) is their intersection:
D(R;) = Do(R;) N Dy(Ry) .

The expression "on R;" is to be omitted if and only if R; = R. Then and only then D(R,) will be
denoted by D, D = D(R).
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Qualitative features of the stability domains of x = 0 of the system (3.1) are discovered and proved
in Appendix 1. They are important for proofs of the main results of the paper (Section 6).
5. FAMILIES OF FUNCTIONS p(¢) AND LYAPUNOV FUNCTIONS

Families P(+) and P!(+) of functions p(+) were used in [10], [11] to generate Lyapunov functions
v(*) obtained as solutions of V() = — p(*) [or, to determine Lyapunov functions v(*) as solutions of
v(¢) = — [1 — v(+)]p(*)] in the framework of time invariant systems. In the setting of this paper they
will be replaced by families L' (+) and E'(+) of functions p(+).
Definition 4.

A function p(+) : R, x R® — R belongs to family L!(R;, S; f) if and only if:
1) p(*) is differentiable on R; x S : p(t,x) € CV(R; x S),
2) the equations (5.1) with (5.1a) taken along motions of the system (3.1),

V(t,x) = - p(t,x), (5.1a)

v(t,0)=0, VteER;, (5.1b)
have a solution v(e) that is continuous and differentiable in (¢,x) € R; x ClB,for some (anyhow
small) u € R*, pu = u(f, p), and which obeys (5.2) for some w,(x) € C(CIB,),
v(t,x) < w,(x), V(t,x) € Ri xCIB,, (5.2)
and
3) forany p € R* fulfilling S(t) D CIP,(t) forall t € R; it holds:
min {p(t,x) : (t,x) € Rx[S(t) - P,()]} =a, a=a(p;p) €R".
Definition 5.
A function p(+) : R, x R" — R belongs to family E' (R;, S; f) if and only if:

1) p(e) is differentiable on R; x S : p(t,x) € CV(R; x S),
2) the equations (5.3) with (5.3a) taken along motions of the system (3.1),

U(t,x) = — [1 - v, x)]ptx), (5.33)

ut,0)=0, VteR, (5.3b)
have a solution v that is differentiable in (¢,x) € R; x CIB,, for some p € R*, u = u(f, p), and
which obeys (5.4) for some w,(x) € C(CIB,),
vu(t,x) < wu(x), V(t,x)€ R;xCiB,, (5.9
and
3) forany p € R* satisfying S(t) D CIP,(t) for all t € R; it holds:
min{p(t,%) : (£,x) € RX[S(®) ~ P,(t)]} =a, a=a(pip) € R" .
Notice that p(*) € L'(R;, S,f) if and only if p(*) € E'(R;,S,f), which is easy to verify. If

p(*) € L'(R;, S;f), hence p(*) € E'(R,,S,f), then solutions v(*) and v(*)to (5.1) and (5.3) are
interrelated by (5.5),

u(t,x) =1— exp[— v(t,x)] , (5.5)

which was pointed out by Vanelli and Vidyasagar [19]. Besides, v(t,x) = 0 if and only if v(¢,x) = 0,
and v(t,x) — 1 if and only if v(t,x) — oo.
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There is not any stability condition imposed on the system and no definiteness requirement is
imposed on p(+), v(+) and u(+) in Definition 4 and Definition 5 Therefore, L'(R,, S, f) and E'(R,, S, 1)
are not dependent in general on a stability property of the system.

6. NOVEL SOLUTIONS TO THE CLASSICAL STABILITY PROBLEMS
For the sake of clearness we emphasize that the notions of a positive definite function and of a
decrescent function will be used in the usual sense (c.f Hahn [15], Zubov [20]), that is that a function
v(*): R, x R" > R
(a) is positive definite on R, x A(t) if and only if A= N[A(t):t€ R,] is an open connected
neighborhood of x = 0 such that there exists w;(*) : R — R obeying the following

1) v(t,x) and w;(x) are uniquely determined by (¢,x) € R, x A(t) and continuous on R, x A(t),
v(t,x) is also differentiable in (t,x) € R, x A(t), that is v(t,x) € C'V[R, x A(t)] and
wi(x) € C{U[A(?) : t € R},

2) v(t,0)=0forallt € R,, w1(0) =0,
and
3) v(t,x) > wy(x)forall (¢t,x) € R, x A(t).

() is decrescent on R, x A(t) if and only if A= N[A(t):t€ R,] = A(R,) is open connected
neighborhood of x = 0 such that there exists wq(¢) : R* — R obeying what follows

1) wv(t,x) and wo(x) are continuous on R, X A, thatis v(¢,x) € C(R, x A) and wy(x) € C(A),
and
2) w(t,x) < wy(x)forall (¢,x) € R, x A.

The expression "R;" is to be omitted if and only if R, = R, and the expression "xA(t)" is to be omitted
if and only if A(t) is some (anyhow small) open connected neighborhood of x = O for all t € R,.

Solutions to the problems will depend on the smoothness properties of the system (3.1) as well as
whether a function p(+) generating a system Lyapunov function is selected from L'(R,, S, f;) or from
E'(R,S,f)

THEOREM 1. For the state x = 0 of the system (3.1) with the Strong Smoothness Property to
have the domain D(R,) of uniform asymptotic stability on R,, for a set N(¢y), N () C R", to be the
domain of its asymptotic stability at o € R, : N(t) = D(t), and for a set N, N C R", to be the
domain of its uniform asymptotic stability on R,, N = D(R,), it is both necessary and sufficient that

1) the set N(ty) is an open neighborhood of x = 0 and N (ty) C S(3o) for every ¢y € R,,
2) the set Nis a connected neighborhood of x =0and N C S,

3) f(t,x) =0for (t,x) € R, x N(t) ifand only if x = 0,

and

4) for any differentiable decrescent positive definite function p(*) on R, x S(t) obeying:

(@ p(*) € L'(R,, S;f) the equations (5.1) have the unique solution function v(+) with the following
properties.

(i) v() is a decrescent positive definite function on R, x N(t),

(ii) if the boundary AN(t) of N(t) is nonempty then x — dN(t), x € N(t), implies
v(t,x) — oo forevery t € R,,
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and
@) N = N[N(t): t € R] = N(R,),
or obeying:

(b) p(*) € E'(R,,S;f) the equations (5.3) have the unique solution function v(*) with the
following properties:

(i) v(*) is a decrescent positive definite function on R, x N (%),

(ii) if the boundary ON(t) of N(t) is nonempty then x — @N(t), x € N(t), implies
u(t,x) — 1 foreveryt € R,,

and
(i) N=N[N@¢):te R]= N(R.).

PROOF. Necessity. Let x = 0 of the system (3.1) possessing the Strong Smoothness Property
have the uniform asymptotic stability domain D(R,) on R, Hence, it has also the asymptotic stability
domain D(%y) at every ty9 € R, (Definition 1). Definitions 1 and 3 show that it has also the uniform
attraction domain D,(R,) and the attraction domain D,(f)) at every i € R,.  Obviously,
D,(t9) 2 D(tp) for all ¢y € R, and D,(R,) 2 D(R,). Besides, D,(tp) is a neighborhood of x = 0 at
every t) € R, and D,(R,) is also a neighborhood of x = 0 (Definition 1) The set S(ty) is a
neighborhood of x = 0 at every tp € R, and S is also a neighborhood of x = 0 (the Weak Smoothness
Property). Hence, D,(to)NS(ty) #0 for all to€ R, and D,(R)NS #0. Let us prove
S(to) 2 D,(to) for every ty € R,. If 8S(tp) # @ then we will consider separately u € dS(ty) and
w € [R" — CiS(t)]. If u € 8S(to) then u ¢ dD,(t) due to (ii) of the Strong Smoothness Property.
Therefore, D,(to) N 8S(ty) = 0, Vto € R,. If w € [R" — ClS(tp)] then for x(t; ty,w) — Oast — ocoiit
is necessary that there is t* € Ry such that x(t*;ty,w) € 8S(t*) because D,(t) and S(t) are
neighborhoods of x =0 for all ¢, € R;, both S(¢) and x(t;¢y,w) are continuous in ¢t € R, and
S = N[S(t):t € R,] is an open neighborhood of x = 0 (the Weak Smoothness Property). However,
x(t*; tp,w) € 8S(¢t”) implies inf [ || x(¢; o, W) || : £ € R,) > 0 because of (ii) of the Strong Smoothness
Property.  This yields w ¢ dD,(t;) and [R" — CIS(t)]ND(ty) =0, Vi € R,  Altogether,
Da(to) NS(to) # 8, Dalto) N8S(to) =0, Da(to) N[R" ~ CIS(ts)] =9, Vit € R,, which prove
S(to) 2 D,(tg), Vto € R,. Therefore, S(t) 2 D(ty) due to D,(tp) = D(tp) (Lemma A.2). Let
N(ty) = D(tp) so that S(ty) 2 N(t9). Hence, N (o) isan open neighborhood of x = 0 (Lemma A.1),
which proves necessity of the condition 1). Now, N = D and Lemma A.1 prove necessity of the
condition 2). From D,(t) 2 D,(t) = D(t) = N(t) and Definitions 1-3 it results that x = 0 is the
unique equilibrium state of x = 0 of the system (3 1) in N(t), Vty € R,, which implies f(t,x) = 0 for
(t,x) € R, x N(t) if and only if x = 0 (Proposition 7 in Gruji¢ et al. [12]) This proves necessity of the
condition 3). From N(to) = D(ty) it follows that the interval I of existence of x(*;tp,Xo) satisfies
Iy C Ry, Y(tg, %) € R, x N(ty) due to Definitions 1-3. Let p(+) € L'(R,,S,f) be an arbitrarily
selected positive definite decrescent function on R, x S(t) Hence, there is 4 > 0 such that there exists
a solution function v(*) to the equations (5.1), which is continuous in (t,x) € R, x CIB, and satisfies
(5.2). Therefore,

[v(t,x)| < o0, V(t,x)€ R, xCIB,, (6 1a)

|@v(tx)/0t < oo, V(tx)€ER,xClB, , (6.1b)

and
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|| gradv(t,x) | < oo, V(tx)€ R; xCIB, . 6.1¢)

Let B €]1, oo[and ¢ € R* be such that
ClB;NCIB,NS() D P.(t), VtER,. 6.2)
Existence of such ¢ is guaranteed by positive definiteness of p(¢) on R, x S(t) and the fact that

N[S(t):t€ R is a neighborhood of x=0  Let t € R; be arbitrary and 7€ R,,
T = 7(tp, Xo; f, P, {), be such that for any xg € N (%) the condition (6.3) holds,

x(t;t0,X0) € CIP(t), Vt€ [to+7,00]. 6.3)

Such 7 exists due to Definitions 1 and 3, xo € N(t) and D,(t) = D(¢9) = N(¢p). Notice that
X9 € N(tp) yields also

x(00;t0,%0) =0 . (6.4)

Let (5.1a) be integrated from t € Ry to oo,

v[oo, x(00; to, X0)] — V[t, X(¢; 0, X0)] = — [ plo,x(0;t0,%0)ldo, V(t,%) € Ry x N(t,) , (6.5)
Now, (5.1b) and (6.4) yield (6.5) in the next form,

Mtatttaxo)] = [ plox@ite, a)ldo + [ plox(aite xoldo, Vitixe) € Fox Nit) . (66)
Invariance of D,(t) with respect to system motions on R; (Lemma A.1), S(t) 2 D(t) = D,(t) = N(¢),
differentiability of the motions x(¢; t9, Xo) in (£; tg,%0) € Ip X R, x S(p) [(i-b) of the Weak Smoothness
Property], continuity, positive definiteness and decrescency of p(*) on R; x S(t), the definition of 7 and

compactness of [t,7] for any t € Ry imply

< oo, V(ttog,%)€ Rox R; x N(to) , (6.7a)

[ " plox(0; to, x0)ldo

l% /, plo.x(a5t0.%0)] d”!=|p[t,x(t;to,Xo)]| <o, V(tto,x)€ Rox R, x N(to), (6.7b)

and
/ grad p[o, x(; tg, Xg)]do|| < 00, V(t,t9,%0) € Ry X R; x N(tp) - (6.7¢)
t
Now, (6.1)(6.3), (6.6) and (6.7) yield
[v[t, x(t; t0,%)]| < o0, V(t to,%) € Ro X R; x N(to) , (6.8a)
|3t x(ito, 0| <00, Vlttoxo) € Ro x Rex N (636)

and

llgrad v [¢t, x(t; o, %0)]|| < 00, V(tt0,%) € Ro x R, x N(to) . (6.8¢c)
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Lett = toand x = xo be set in (6.8) Then,

v(t,x)] <oo, V(tx)€ R, x N(t), (6 9a)
‘%v(t,x) <oo, VY(t,x) € R, x N(t), (6 9b)

and
|lgrad v (t,x)|| < oo, V(t,x) €R, x N(t) (6 9¢)

Differentiability of p(*) on R, x S(t), S(t) 2 N(t), (6 6) and (6.9) prove

v(t,x) € CV[R, x N(t)] . (6 10)
Invariance of both D,(t) and N = D(R,) on R,, D,(t) = D(t) = N(t), continuity of x(¢; t9,Xo) in
(t;to,%0) € Ip x R, x D(tp), positive definiteness and decrescency of p(*) on R, x N(t),

p(*) € L(R,,S;f), (5.2), the definition of T and compactness of [t,7] guarantee existence of
¢G(*): R"— R, ¢, (x) € C{U[N(2t) : t € R,]} and (»(x) € C(NN) such that

(l(o)=07 i=1121 (61]&)

0 < Gix0) < / i [x(0ito,%0)ldo, V(t,to,%0 #0) € Ro x R, x N(t), (6 11b)

0 > () 2 / " Ualx(@itor x0)ldo, Vit o %0) € Ro x R, x N, 6.110)

where ¢,(¢) : R* — R, i=1,2, obey

¥(x) e C{U[N(t):te R]} and s(x) € C(N), (6.12a)

$(0)=0, i=1,2, (6.12b)

¥i1(x) >0, V(x#0) e {U[N(t):t€R]} and ¥p(x) >0, V(x#0) €N, (6.12)
i (x) < p(t,x), Y(t,x)€ R, x N(¢), (6.12d)

p(t,x) S ¥o(x), V(t,x)€ R x N. (6 12¢)

Such functions 1;(*) exist due to decrescency and positive definiteness of p(*) on R, x S(t) and
S(t) 2 N(t) Letw,(*): R* — R, w,(x) € C(R"), w,(0) =0, ¢ = 1,2, be such that

O<wi(x)<Gi(x), Vx#0)e U[N(t):teR)], (6 13a)
wo(x) > Co(X) + wu(xs), X =x(7itg,X), V(to,X) ER, x N, (6.13b)

where w,(¢) is defined by (5.2) Now (5.2), (66) and (6.11)-(6 13) yield the following for
(t07x0) = (t’ x)
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wy(x) <v(t,x), V(t,x) € R x N(t), (6.14a)
v(t,x) < wg(x), V(t,x) € R;x N. (6.14b)

From p(*) € L'(R;, S;f), (5.1b), (6.10) and (6.14) it follows that a function v(+) defined by (5.1) is
decrescent positive definite on R; x N(t). Let it be assumed that there exist two such solutions v;(*)
and v;(*) of (6.1). Hence,

Vi (to, Xo) — v2(to, Xo) = [o 0O{p[a,xl(a;lto,xo)] — plo,x2(0; to, %0)] }da, Y(to, o) € R, x N(tp). (6.15)

Uniqueness of the motions x(*;%p,Xp), V(to,x) € R, x S(ty) (the Weak Smoothness Property),
S(t) 2 N(tp) and uniqueness of p(t, x) for every (¢,x) € R; x S(t) due to positive definiteness of p(*)
on S(t) imply

/:’ {plo,x1(0;t0,%0)] — plo, 32(0; t0, X0)] }do =

/:., "~ (plo,x(03t0,%0)] = plo,x(@3 tor o)} = 0, V(to,%0) € Ry x Nito) -

This and (6.15) prove

vl(t01x0) = Vz(to,X()) .

Hence, the function v(*) is the unique solution to (5). This completes the proof of necessity of the
condition 4-a-1). Let ty € R; be arbitrary and x;, k = 1,2, ..., be a sequence converging to u, X, +— u
as k— o0, xx € N(tg) for all k=1,2,..., and u € ON(t) in case ON(ty) # ¢. Let p€ R* be
arbitrarily chosen so that N(t) D CIP,(t) for all t € R;. Such p exists because p(*) is positive definite
and defines CIP,(t), and because N[N(t):t€ R;] is a neighborhood of x=0. Let 7,
T = T(Xx, p) € R, be the first instant satisfying (6.16),

x(t; to,x¢) € CIP,(t) , Vt € [to + 7k, 00] . (6.16)

Existence of such 7y is ensured by x, € N(ty), N(t) = D(t) and by the fact that N [P,(t):t € R,]isa
neighborhood of x = 0 due to decrescency of p(*) on R, x N(t) (Gruji¢ et al. [12]). Continuity of the
motions  x(%;%p,x) in  (t,t,x) € [y x R; x S(ty) (the Weak Smoothness Property),
S(to) 2 D(t) = N(t), positive invariance of D(t) [(a) of Lemma A.1] and x; € N (tp) imply

Tk 00 as k0o (6.17)

Let m € {1,2,...} be such that x, € [N(ty) — CIP,(t)] for all k = m,m + 1, ..., which exists because
N (tp) is open (Lemma 1), N(t5) D CIP,(ty) and x, — N (to) as k — oo. Let a be defined by

a = min{p(t,x) : (¢,x) € R; x [S(t) — P,(t)]} . (6.18)

Since p(*) € L'(R,,S;f) then a € R*. Hence, (6.16), (6.18) and the definitions of « and 7, yield
v(tg,Xx) > aTk, Vip € R,, which together with (6.17) proves necessity of the condition 4-a-ii). The
fact: N(t) = D(t) implies the condition 4-a-iii) due to Definitions 1-3. The conditions under 4-b)
follow from 4-a) due to (5.1), (5.3) and (5.5). This completes the proof of the necessity part.
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Sufficiency Let all the conditions of Theorem 1 hold and ¢, € R, be arbitrary Then x = 0 of the
system (3.1) is uniformly asymptotically stable (Gruji¢ et al [12], Hahn [15], Lakshmikantham and Leela
[16], Miller and Michel [18], Zubov [20]). Hence, x = 0 has both D(¢;) at ty and D(R,) (Definitions 1-
3) so that D,(tg) = D(ty) and D,(R,) = D(R,) (Lemma A.2). Besides, S(t) 2 N(t)) Since the
function v(*) is solution to (5.1), [or, ¥(*) is solution to (5.3)], and it is positive definite and decrescent
on R, x N(t), p(+) € L'(R,, S;1), [or, p(*) € E'(R,, S;f)), and p(*) is decrescent positive definite on
R, x N(t), then N(ty) = D(ty) as shown in the proof of the necessity part. Hence, D(R,) = N
(Definition 3), which completes the proof.

Conditions of Theorem 1 slightly change for the system (3.1) possessing the Weak Smoothness
Property rather than the Strong Smoothness Property

THEOREM 2. In order for the state x =0 of the system (3 1) with the Weak Smoothness
Property to have the domain D(R,) of uniform asymptotic stability on R,, for a set N(tp),
N(tg) C S(tp) for all ty € R,, to be the domain of its asymptotic stability at ¢, € R, : N () = D(tp),
and for a set N, N C S,, to be the domain of its uniform asymptotic stability on R,, N = D(R,), it is
both necessary and sufficient that

1) the set N () is an open neighborhood of x = 0 for all ty € R,,
2) the set Nis a connected neighborhood of x = 0,
3) f(t,x) =0 for (t,x) € RxN(t) ifand only ifx = 0,
and
4) for any differentiable decrescent positive definite function p(¢) on R, X R" obeying:
(a) p(*) € L'(R,,R™;f) the equations (5.1) have the unique solution function v(+) with the
following properties’
(i) v(*) is decrescent positive definite on R, x N(t),
(i) if the boundary ON(t) of N(t) is nonempty then x +— AN(t), x € N(t), implies
v(t,x) — oo forevery t € R,,
and
@iii) N = N[N(t):t € R},
or obeying
(®) p(*) € EY(R,, R™;f) the equations (5.3) have the unique solution function v(+) with the
following properties.
(i) v(+) is decrescent positive definite on R, x N(t),
(i) if the boundary AN(t) of N(t) is nonempty then x— dN(t), x € N(t), implies
u(t,z) — 1foreveryt € R,
and
@iii) N= N[N():te€R).

PROOF. Necessity. Let the system (3.1) possess the Strong Smoothness Property. Let x =0
have the uniform asymptotic stability domain D(R,) on R, so that it has also the asymptotic stability
domain D(ty) at every top € R,. Let S(ty) 2 D(tp) and let N(ty) = D(tp) for all ¢y € R, so that
D(R,) C Sand N = D(R,) Let a positive definite decrescent function p(¢) on R, x R" be arbitrarily
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selected so that p(*) € L'(R,, R™;f) [p(-) € E'(R;, R™;f)]. From now on we should repeat the proof
of necessity of the conditions of Theorem 1 in order to complete this proof.

Sufficiency. Let the system (3.1) possess the Weak Smoothness Property and let the conditions 1)-
4) hold. Hence, x = O of the system is uniformly asymptotically stable (Gruji¢ et al. [12], Hahn [15],
Lakshmikantham and Leela [16], Miller and Michel [18], Zubov [20]) so that it has both the domain
D(R;) of uniform asymptotic stability and the domain D(¢;) of asymptotic stability at ¢, € R,
(Definition 3). Let xo € [R" — N(tp)] and to be arbitrary. Continuity of x(¢; ¢9, Xo)in t € Ry (the Weak
Smoothness Property), positive definiteness of p(*) on R; x R" and the condition 4-a-ii), [4-b-ii)] imply
x(t; tp,%0) € [R™ — N(t)] for all t € I,. Therefore, D(ty) C CIN(ty) and D(R,) C N. Since v(¢) is
generated via (5.1) [u() is generated via (5.3)], then (as shown in the proof of the necessity part of
Theorem 1) v(t,x) — oo as x — 8D(t), x € D(t) [v(t,x) — 1 as x — dD(t), x € D(t)], for every
t € R;, which, together with the condition 4-a-1), [4-b-i)], proves 8D(t) N N(t) = ¢ for every t € R;.
This result, D(t) C CIN(t), and the fact that both N(t) and D(t) are open neighborhoods of x =0
[condition 1 and Lemma A.1] imply N (t) = D(t) and N = D(R;), which complete the proof.

Theorems 1 and 2 are based on the usage of p(+) € L'(+), [p(*) € E'(+)]. This means that p(+)
should obey the condition 3) of Definition 4, [3) of Definition 5], which was used to generate
v(t,x) — 0o as x — ON(t), x € N(t) [v(t,x) — 1 as x — ON(t), x € N(t)], for every t € R,, in
order to determine exactly D(t) and D(R;). If we are interested only in uniform asymptotic stability of
x = 0, then such a requirement need not be imposed on p(*) as explained in what follows:

THEOREM 3. In order for the state x = 0 of the system (3.1) possessing the Weak Smoothness
Property to be uniformly asymptotically stable on R; it is both necessary and sufficient that

1) f(t,0)=0forallt€ R,
and

2) for any differentiable decrescent positive definite function p(¢) on R; obeying the conditions 1) and
2) of Definition 4 the equations (5.1) have the unique solution function v(+) that is differentiable,
decrescent and positive definite on R;.

PROOF. Necessity. Let the system (3.1) possess the Weak Smoothness Property. Let x = 0 be
uniformly asymptotically stable on R; so that it has the domain D(R;) of uniform asymptotic stability
(Definitions 1-3). Necessity of the condition 1) is proved in the same way as in the proof of Theorem 1.
Since D(R;) and S are neighborhoods of x = 0 then D(R;) NS # ¢. Let A be an open connected
neighborhood of x = 0, which obeys A C D(R;)N S, and let p(¢) be arbitrary decrescent positive
definite function on R; x A obeying the conditions 1) and 2) of Definition 4. Hence, there exist positive
definite functions ¥;(*) : R — R, i = 1,2, which satisfy (6.19),

¢1(x) < p(t»x) < 1/’2(") ’ V(tyx) €ER; xA . (6.19)

From the conditions 1) and 2) of Definition 4 it results that there is a solution v(*) to (5.1), which is well
defined and continuous on CIB, and obeys (5.2). The set L = AN B, is also an open and connected
neighborhoodof x =0 and L C D(R;). Let € € R* be arbitrarily selected so that B, C L. Hence,
B, C D(R,). Let p€R"obeying B, C D,(€) = N[D,(to,€) : to € R,] (Definitions 2 and 3), be
arbitrarily selected. By following the proofs of (6.9) and (6.10) we prove that the function v(*) has the
next property since B, C D,(¢) C B. C L C A,

[v(t,x)| < o0, V(t,x)€R,x B, . (6.20)
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By following the proof of (6.14) we show that there are w;(x) € C(B,), w;(0) =0 and w;(x) >0,
V(x #0) € B,, i=1,2, suchthat

wi(x) < v(t,x) < wa(x), V(t,x) € Ri x B, . (6.21)

(6.20), (6.21), w;i(x) € C(B,), and w;(0) = O prove that the solution v(*) is decrescent positive definite
on R; x B,. Its uniqueness is proved in the same way as in the proof of the necessity part of Theorem
1. Hence, all the conditions are necessary for uniform asymptotic stability of x = 0 on R,.

Sufficiency. Sufficiency of the conditions of Theorem 3 for uniform asymptotic stability of x = 0 on
R; of the system (3.1) is well known (Grujic et al. [12], Hahn [15], Lakshmikantham and Leela [16],
Miller and Michel [18], Zubov [20]).

7. EXAMPLES
Example 1.
Letx = (z1 )" € R?, ) = [fy(*) £o(*)]" and
9:71 =21 +e ) etz + [ — 1+ e )22 [~ (5 + et sint)zy +z2)} (7.13)

%"’- =201 +e) e tmy — [10 — (1 + ¢')z)[az, + 1+ £)1+28) ']} . (7.1b)

The system possesses the Weak Smoothness Property on R; X R?, where R; = ]—1, oof and
S = R®. The set S, of the equilibrium states is singleton, S, = {0}. The function v(*) (7.2),

_ (@+eh)2d 10— (1+e7t)z}
v(t,x) = T-tea In [ 10 , (7.2)
and the function p(*) (7.3),

p(t,x) = 4(5+ e ' sint)zl + (1 + £)(1 +26) "2, (73)

satisfy the equations (5.1). For the function p(s) (7.3) we find that ,(*) and ¥,(°),
¥1(x) = (2} +27'23) and 4 (x) = (3223 + =3), satisfy
¢1 (X) _<- p(tr X) ) V(t'x) € R x R2 ’ (743)

p(t,x) > ¥y(x) , V(t,x) € Rx R®. (7.4v)
Similarly, for the function v(*) (72) we find that w;(*) and wq(s), where

wi(x) = {[Z@-22)) - ;h[(10-2)10"]}  and  wy(z) = {434 — (1 +e)z3]" —Inf10 -
(1+e)z3] 1071}, obey

wy(x) < v(t,x), V(tx) € R x N(t), (7.52)
v(t,x) > wr(x), V(t,x) ER; x N, (7.5b)
where
Nt)={x:xe Rz} <41+ 7',z <10(1+e7")7'}, (7.6)
and

N={x:xeR,z?<4(1+e) 7,22 <10(1 +¢)'}. &)
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The functions v(*) (7.2) and p(-) (7.3) are differentiable. =We may now conclude that
p(*) € L'(R;, S,1). For such p(*) the function v(*) (7.3) and the set N(t) (7.7), as well as the system
(7.1) itself, fulfill all the conditions of Theorem 2. Hence, x = 0 of the system (7.1) is uniformly
asymptotically stable with the domain D(2) of asymptotic stability: D(t) = N(t) (7.6) on R; and with
the domain D of uniform asymptotic stability on R; : D = N (7.7). Simulation results are shown in Fig.
la,b. They illustrate an influence of the initial time ¢, on D(%y) and on system solutions with the same
initial state at different initial instants. They illustrate also an influence of the initial state xo on system
solutions at every initial time t € {0s, 0.3s}. The initial states xo = (1.4 2.236)7 € D(ty) and
X = (=14 2.236)" € D(to) for every to € {0s, 0.3s}. The initial state xo = (1.42 2.236)7 is in
D(ty) for to = 0.3s, but not for t; = 0s.

X1,X2: Xlo in{-1.4(b), 1.4(r), 1.42(g)}, X20=2.236(b,g,r) at to=0s

3 — — =

[P ——

X1(t), X2(t)

Fig. 1: a) x =(—-14 2.236)7 € D(0) and xpp = (1.4 2.236)7 € D(0) but
X3 = (142 2.236)T ¢ D(0).

X1, X2: X1o in {-1.4(b), 1.4(r), 1.42(8)}, X20=2.236(b,g.1) at to=0.3s

X1(t), X2(t)

b) xo1=(-14 2.236)T € D(0.3), xp = (1.4 2.236)7 € D(0.3) and
xo3 = (1.42 2.236)T € D(0.3).
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Example 2.
Letx = (z; 23 73)7 € R®, £(2) = [£,(*) £o()f(*)]" and

_ int )T Hxl?
2 -1 2
H=|-1 4 o]. (7.8b)
2 06

The matrix H is symmetric and positive definite. The system (7.8) has the Weak Smoothness Property
with S = R® and has the single equilibrium state at x = 0 so that f{(¢,x) = 0 for all t € R iff x = 0. For
the function p(*),

p(t,x) = 99(2 + cost)x” Hx, (7.9)

the function v(),

2(2 + sint)x” Hx
- 7.10
Y X) = 59— (2 + sint)xTHx ’ (7.10)

satisfies (5.1). The following comparison functions are found for them,

¥y (x) = 99x Hx,

¥y(x) = 297xTHx ,

wy (x) = x"Hx(99 — x"Hx)!,
wy(x) = 3xTHx(99 — 3xTHx) !,

so that
¥i(x) < p(t,%) < ¥u(x), V(t,x) € Rx R?,
wy(x) < W(t,x), V(t,x)€ Rx N@),
and
wy(x) > ¥(t,x), V(t,x) ERXN,
where
N(t):{x:xeR3,xTHx< 99. }EInN(t); 0e N(t), Vt €R,
2 + sint
and

N ={x:x€ R x"Hx < 33}.

The system (7.8), the functions p(*) (7.9) and v(+) (7.10), and the set N (2) satisfy all the conditions of
Theorem 2 for R; = R. The equilibrium state x = 0 of the system is uniformly asymptotically stable
with
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D(t)={x:xeR3,xTHx< }, VteR,

9
2 + sint
and
D={x:x€ R*x"Hx < 33}.

The simulations completely verified the above results. They are shown for two initial states, xg; = (6.6
1 -2)7, Fig. 2, and xpp = (7.96 1 —2)7 that was preserved unchanged at three different initial
instants to € {0s, 3.893s, 3.895s}, Fig. 3a,b,c. In this example, xo; = (6.6 1 — 2)T e D(0), Fig.
2. However, x¢2 ¢ D(0), but xy € D(3.893) N D(3.895), Fig. 3a,b,c.

X10=6.60, X20=1, X30=-2 at to=0s

10

X1, X209, X3()

t

Fig. 2: x5 = (6.6 1 —2)7 € D(0).

X10=7.96, X20=1, X30=-2 at to=0s
10 T B T T T T T T

X1(1), X2(1), X3(1)

Fig.3:2) x00=(7.96 1 —2)7 ¢ D(0).
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X10=7.96, X20=1, X30=-2, at t0=3.893s

10 —
8 -
_ e e ]
0 0.5 1 ] 2 25 3 35 4 a.s
t
Fig. 3:b)xez = (7.96 1 —2)T € D(3.893).
o X10=7.96, X20=1, X3o=-2, at to=3.895s
0 05 1 15 3 25 3 35 4 as
t
Fig.3:¢) x020=(796 1 -2)T € D(3.895). The rate of
convergence is much higher than when t, = 3.893s.
Example 3.

Letx=(z; z)" € R?, f() = [f;(*) £,(*)|" and

dz 1
& "G PnTE e Lt A - A 2)E + 2 e, (L)

dz, 1
dT=(1+2t2)[1+t2_2(1+2t2)z%]{—t+[1+t2—(1+2t2)(z§+2z§)]2}zg, (7.11b)

The system (7.11) has the Weak Smoothness Property with
S@) ={x:xe R’} < 1+ )21 +20)) 7,28 < (1 + 2)[4(1 +22)] "} .

The system has the unique equilibrium state x = 0. The function (%),
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p(t,x) = p(x) = 2(z? + 2z3), and the function v(+) ,
(1 +2£%)(a} — 243)
1+82 - (1+28)(22 +223) ’

v(t,x) =

show that p(+) € L!(R, S, f) so that we may apply Theorem 3. Since the solution function () to (5.1)
is not positive definite then Theorem 3 is not satisfied. Hence, x = 0 is not uniformly asymptotically
stable. Simulation results shown in Fig. 4a,b will illustrate that x = 0 is not uniformly asymptotically
stable. This example illustrates importance and usefulness of the necessity of the conditions of Theorem
3, as well as of Theorems 1 and 2. Since it is not satisfied there is not any sense to try constructing a
more suitable function v(*) in order to prove uniform asymptotic stability of x = 0 because it is
impossible. This example illustrates the usefulness of the single step construction of the function v(*) by
using any of the above theorems.

X10=0.01, X20=0.1 at to=0s

1 v —

X1, X2(1)

X1(9), X2(1)

Fig. 4 Motions for two different small initial conditions under a) and b)
express instability of x = 0 at ¢y = 0s.
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8. CONCLUSION

The new methodology for a single simultaneous exact construction of a system Lyapunov function
and accurate determination of the domain of asymptotic stability of x = 0 established in [4]-[11] for time
invariant systems is essentially broadened to time-varying systems The conditions are presented as both
necessary and sufficient, and in terms of arbitrary choice of a differentiable decrescent positive definite
function p(+) € L*(*), {or, p(*) € E'(+)}, and in terms of properties of a solution function v(*) to
Vv(*) = — p(*) (5.1), {or in terms of properties of a solution function v(*) to v'(*) = — [1 — v(*)]p(*)
(5.3)}, respectively, obtained for arbitrarily selected function p(*). The families L!(+) and E'(¢) are
determined by Definitions 4 and 5 If so obtained v(s), {v(*)}, is also differentiable decrescent positive
definite then (Theorem 3) x = 0 IS uniformly asymptotically stable If v(+), {v(*)}, does not have any
of these properties then x = 0.1S NOT uniformly asymptotically stable The solution to the problem of
uniform asymptotic stability is obtained under a single application of Theorem 3 The same conclusion is
valid for the determination of the domain of (uniform) asymptotic stability of x = 0 via Theorems 1 and
2 Numerous simulations were carried out They completely verified the theoretical results. Few of
them are presented in the paper

APPENDIX

LEMMA A.l. Let the system (3.1) possess the Weak Smoothness Property and let x = 0 be
uniformly attractive on R, with the instantaneous domain D, (t) of attraction obeying D, (t) C S(t) for
allt € R, and with the domain D,(R,) of uniform attraction on R,.

a) IfR, C Rthen
1) (to,x0) € Ry x Dg(to) implies x(¢;tp,%0) € D,(t) for all t € R,, that is that D,(t) is invariant
on R,

2) D,(t) is an open neighborhood of x = O at any t € R, : D,(t) = InD,(t),

and

3) D,(R.) is a connected neighborhood of x =0 such that (¢9,x9) € R, x D,(R,) implies

x(t;to,%o) € D,(R,) for every t € R;, that is that D,(R,) is invariant on R, in case
D,(t) = D,(R,) forallt € R, Otherwise, D,(R,) is connected neighborhood of z = 0
b) IfR, = R then

1) D,(t) is invariant, that is that (¢y,%o) € R x D,(tp) implies x(¢; o, Xo) € D,(t) forall t € R,

2) D,(t) is an open neighborhood of x = O at any ¢t € R : D,(t) = InD,(t),

and

3) D, is an invariant connected neighborhood of x =0: (fy,x0) € R x D,(R) implies

x(t; to,%X0) € Do(R) for all t € R in case D,(t) = D,(R) for all t€ R  Otherwise,
D, = D,(R) is connected neighborhood of z = 0.

PROOF. Let the system (3.1) possess the Weak Smoothness Property and let x = 0 be uniformly
attractive on R, with the instantaneous domain D, (t) of attraction obeying D,(t) C S(¢) forallt € R,
and with the domain D,(R,) of uniform attraction on R,. Hence, D,(R,) = N[D,(to) : to € R\
(Definition 1).

a) Lettpand 19 € R, to # 7o. Let x* = x(70; to,Xo) for any xg € D,(ty) Then, x(t;t9,%) — O as
t — oo Since x(¢; 79, X*) = x[t; To, X(70; to, X0)] = x(¢; 29, Xo) due to (i) of the Weak Smoothness
Property and D,(tg) C S(to) then x(¢; 7o,x™) — 0 as t — oo. Hence, x™ = x(79; to,X0) € Dy(7o)
that proves the statement under a-1). Let ¢ € R* be such that By, C Do(R,). Let there exist
to € R, and xj € 0D, (ty) N Dy(ty). Let € €]0,{/2[. Then, (i) of the Weak Smoothness
Property, D,(tp) C S(tp) and (a) of Definition 1 imply existence of p € R*, p = p(ty, %o, €),
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such that |[xo—xXgp|| <p ensures ||x(t) +20"; t),x0) — x(ty +20"; ), xp)|| <€, where
o' =7(t,%p,¢) (Definition 1). Since €< ¢{/2 and ||x(ty +20';t5,%p)]| < ¢ then
x(tg + 20758y, %0) € By C D,(R;). Hence, xg € D,(t;). However, xo may be chosen in a p-
neighborhood of xj out of D,(t) that is contradicted by the obtained xo € D,(ty). Since the
former is true then the latter is wrong so that there are not &, € R; and xi € 8D, (t;) N D, ().
Hence, if xi € 8D,(t;) then x{ ¢ D,(t;). The set D,(t) is open for all ¢y € R, and it is
neighborhood of x =0 due to Definition 1. Hence, the statement under a-2) is correct.
Furthermore, D, (R;) is a neighborhood of x = 0 by definition (Definition 1). Its connectedness is
proved as follows. Let us assume that it is not connected. Then, there are disjoint sets D,;,
i=1,2,...,N, such that D,(R;) = U[D,:i=1,2,...,N]. One of D,; is not a neighborhood of
x=0. Letit be D,;. Thenxg € D, implies x(¢;%p,x9) — 0 as t — oo, Viy € R;. Hence, there
is ¢ € Ry such that x(¢;;%0,%0) € Ds(R:) because of continuity of x(t;%9,Xp) in t € Ry,
V ty € R;, and because D, is disjoint subset of D,(R;) that is not a neighborhood of x = 0, which
is impossible due to x[t; ¢,, x(t; 2o, Xo)] = x(¢; t9,X9) — 0 as £ — oo. Hence, the assumption on
disconnectedness of D,(R;) is incorrect. In order to prove that (t,,X,) € R; X D,(R;) implies
x(t; to, Xo) € Do(R;) for all t € R; let (£, %,) € R; x Dy(R;) be arbitrarily selected. The condition
b-4) of Definition 1 guarantees sup[7m(to,%o,¢) 1 tp € Ri] = a < 00, V¢ €R*. Let t; € R; be
arbitrary. Evidently, S =1, —t, obeys |8 = |t, —t2] < 0o. Let xo = x(tp;tp,%) so that
xg € Da(tz) and sup[m(t2, X2, () : to € Ri] = sup[rm(to,%0,{) + B : to € R] = @ + 5 < oo that
proves Xo = x(t2;%9,%0) € Do(R;) in view of the condition b) of Definition 1 and
x(t; tp, z2) = x(¢; o, zo). This completes the proof of all the statements under a).

b) The assertions under b) directly follow from those under a) in case R; = R.
LEMMA A.2.

(a) If the state x = 0 of the system (3.1) possessing the Weak Smoothness Property is asymptotically
stable and its domain D, (tp) of attraction at ¢, € R; obeys D,(tg) C S(to) for all £, € R; then its
domains D,(ty), D,(to) and D(ty) are interrelated by D,(ty) C D,(ty) and D(ty) = D,(tp), for
allty € R,.

(b) If the state x =0 of the system (1) possessing the Weak Smoothness Property is uniformly
asymptotically stable and its domain D,(R;) of uniform asymptotic stability on R; satisfies
D,(R;) C S(R;) then its domains D,(R;), D,(R;) and D(R,) are interrelated by
D,(R;) € Dy(R,) and D(&) = Dy(Ry).

PROOF. Let the system (3.1) possess the Weak Smoothness Property. Let x =0 be
asymptotically stable and D,(ty) C S(ty) for all to € R;. Let (tg,Xo) € R; X D,(ty) be arbitrary.
Continuity of x(t;%0,%) in (fo,%) € R, X S(to), Da(to) C S(to) and xo € Da(to) imply
max[{|x(t; g, Xo)|| : t € Ro] < 0o. Let € = 2 max][||x(2; %9, Xo)|| : t € Ro). Hence, xg € D,(ty,€) due to
(a-1) of Definition 2, which implies xo € D,(t;) in view of (a-3) of Definition 2. Altogether,
Xo € D,(to) yields xo € D,(to) that proves D,(t9) C D,(tp) for all ¢y € R;. This result and (a) of
Definition 3 complete the proof of the statement under (a).

Let x = 0 be uniformly asymptotically stable on R; and D,(R;) C S(R;). Let xo € D,(R;) be
arbitrary.  Hence, max[||x(¢;%5,%0)|| : (£,%0) € Ro x R;] < oo due to continuity of x(t;p,Xo) in
(t,to) € Ro x R; and xg € Dy(R,). Let € =2 max{||x(¢;to,%0)|| : (t,%) € Ro X Ri] € R* so that
obviously xg € D,(e, R,) = N[D,(t,€) : tg € R,] and therefore xg € D,(R;) (Definition 3). The
result that xo € D,(R;) implies xo € D,(R;) proves D;(R;) C Ds(R;) and D(R;) = Da(R;) (due to
Definition 3). This completes the proof.
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