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ABSTRACT. Let X be a set and E a lattice of subsets ofX such that 0, X E . 4(E) is the algebra

generated by 12, M(12) the set of nontrivial, finite, normegative, finitely additive measures on 4(12) and

I() those elements of M(E) which just assume the values zero and one Various subsets of M(E) and

I(E) are included which display smoothness and regularity properties.
We consider several outer measures associated with dements of M(E) and relate their behavior

to smoothness and regularity conditions as well as to various lattice topological properties In addition,
their measurable sets are fully investigated. In the case of two lattices 121, E2 with 121 c 129., we present

consequences of separation properties between the pair of lattices in terms of these outer measures, and

further demonstrate the extension of smoothness conditions on 1 to 2
KEY WORDS AND PIIRASES: Lattice, measure, associated outer measure, regular outer measure,
weakly regular, vaguely regular, almost countably compact, complement generated, countably
paracompact, delta, normal, semi-separation, separation, coseparation.
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1. INTRODUCTION
Let X be an arbitrary nonempty set and a lattice of subsets ofX with O, X E . Jt() denotes

the algebra generated by and M() the set of nontrivial, finite, nonnegative, finitely additive measures
on Jt(). We consider various specialized subsets of M() and introduce sveral outer measures

associated with them. Extending the work done in [3,4], we further investigate the interplay of these
outer measures with the various subsets of M() as well as with lattice topological properties.
Frequently, this is carried out under the assumption of regularity on one ofthe outer measures.

In addition, we analyze in detail the situation when 1 C 2, where 1 and 2 are lattices of subsets
ofX When separation conditions are satisfied between these two lattices, the behavior ofthe associated

outer measures reflects very strongly on the lattices. Our results here extend those obtained for zero-one
valued measures in [5,6,8].

We begin in section 2 with a brief review of some relevant facts and notations that will be used

throughout the paper. In addition, a few new basic results on the associated outer measures are

established. In section 3, we investigate the effects of lattice and lattice topological properties on the

outer measures, and, in turn, the latter’s behavior in characterizing certain subsets of M(). Section 4 is

mainly concerned with the case of1 C 9and the effects of separation properties between them on the

outer measures.

Further related matters can be found in [2,3,4].
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2. BACKGROUND AND NOTATIONS
In this section we introduce the notation and terminology that will be used throughout the paper.

They are mostly standard and we review the more important ones for the readers’ convenience. For
further details see [3,4,6].

Let X be an arbitrary nonempty set and a lattice of subsets of X such that 0,X
denotes the algebra generated by , and M() the set of nontrivial, nonnegative, finitely additive, finite

measures on 4I). We denote by Mo() those measures in M() that are a-smooth on , namely, if

L, t 0, Ln then #(L,) 0 M() designates those # M() that are strongly a-smooth on ,
e., L, L, L, L, implies #(L,) #(L). Also, M() denotes those # M() that are a-

smooth on A(), so A, t 0, A, A() implies #(A,) 0, this is equivalent to # being countably
additive.

In addition, MR() denotes those /z M() that are -regular: if for any A .A(),
#(A) sup{#(L)lL C A,L L} Let M() M() Mo(), clearly # M(L) implies

# M"(L). If the measures just assume the values zero and one we denote the above sets by I’s

replacing their corresponding M’s.
For any set E c X, E’ X- E, and L’ { L’JL } is the complementary lattice to We

denote by 6(E) the lattice of all countable intersections of sets from , and is delta if 6(:) , i.e.,

is closed under countable intersections. We shall utilize the following lattice topological notions as well

as their measure characterizations (see [6]): is normal if whenever A, B L such that A
there exist C, D L such that A C C’, B C D’ and C’ q D’ }; is countably paracompact if for

every sequence A,, } of sets of with A,, 0, there exists a sequence {B, } in L such that for all

Am C B’ and B’ 0; and is complement generated if for every L L there exist A, L such that

L I’] A’,. Furthermore, we define for/z M() and E c X,
n=l

#’(E) inf{(L’)lE C L’,L }

,"(E) inf (L’,)IE C L’,, L, :
p(E) inf{/z(L)]E C L, L }

Clearly all these set functions are normegative, monotonic, and vanish on the null set; #’ and/ are finitely
subadditive while #" is countably subadditive. We shall simply refer to them as associated outer

measures of#. It is also clear that #’(X) (X) #(X). If# Mo(:) then #"(X) #(X). In fact,
if# I() and if# lo() then #" 0.

If/z and v are measures or outer measures we write/z _< v(:) whenever (L) <_ v(L) for all L
Using this notation, it is easy to see that for/z E M(), # <_/z"(). Trivially, " <_/’, and

if and only if# MR().
Consider any two lattices 1 and 2 of subsets of X. We say 1 semi-separates 2 if for A

A2 2 with A1 f"l A2 O, there exists B1 1 such that A2 C B1 C A 1 separates 2 if for A2,

B2 2 with A2 C B, there exists A, B1 1 such that A2 C A1 C B C B; and :1 coseparates

2 if for A, B2 2 with A2 C B, there exist A1, B 1 such that A2 C A C B1 C B.
Finally, if v is an outer measure defined on all subsets of X (finitely or countably subadditive) then

Sv denotes the v-measurable sets.

We collect a number ofimportant lattice measure results that will be utilized throughout the paper

If# M() then there exists a v MR() such that # < v() and #(X) v(X) [7]
2. Let be normal and # M(). Suppose # _< v(), v MR() and/a(X) v(X). Then for
L , v(L’) sup{#()] C L’, e }. [41
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3 Let L be normal and /z E Mo(). Suppose # _< v(), v MR(.) and (X)= v(X) Then
e M(’). [4]

4 Let be nom md M(), Ma(). If v() d if (X)=v(X) then

’= ’ on [4]
5 Let E be no d countably pacompact. If , M(E) such that (E) d
(X) u(X) then E M(E) implies u Mo(E). [8]

Nero, we nsider y two laaices E1 d E2 of subsets ofX such that c E2 Then we have

6. y E MR(1) be eend to a u E Ma(E2). [1]
7 If u E Ma(E2) then restfied to A(E) (we denote ts restfiion by [z or even just u[ if the

lattices involved e cle) belongs to Ma(E) ifE se-sepates E2 [2,6]
EOM 2.1. Let d E be latices of subsets ofX such that Ex C E2, d let

countably bounded Suppose p M(E) emends E M(Ex), d v(Ex), E Ma(E) where

(X) u(X) In addition, suppose p 5 A(E2), A E Ma(E2) where p(X) A(X) Then the follong

(a) p M()
) IfE1 is nod countably pacompa, then u E M(E).
(c) IfE2 is nod countably pacompact, then A E M(2).
(d) IfE is nod complement generated d ifE2 is nod countably pacompact, then

PROOF.
(a) Let B e 2 such thin B $ Since 2 is -countably bounded, there est A E such

that B C A Consuently,

;(S) ;(A) (A.) 0.

(b) By statement (5), v e M(,).
(c) Again follows by statement (5).
(d) Since A e M/(2), Ale. e M(). Hence, A[z:, e M() since is complement

generate. Th by nohOW, AIc (see rek).. In the proofof(d) we have assumede follongo facts

If is complement gerated then is countably pacompa.
If is no d if M(),v,v2Ma() th vx(E),hv2() d

(X) v (X) y2(X), then y 2.

The fir fa is elemem, the second c be found in [4].
DEON 2.1. A me.urn M() is wetlyrel if, fory L

We denote the set ofweakly regular elemems ofM() by Mw(). Clearly MR() C Mw(), and if

is normal then Ma() Mw() (see [4]).
We recall that the lattice /2 is almost countably compact if for any p Ia(’), p E Io() It

follows readily that if is almost countably compact then/ Ma(’) implies p Mo().
3. PROPERTIES OF ASSOCIATED OUTER MEASURES

This section begins with an enumeration of several known properties of the associated outer

measures introduced in Section 2 We shall then develop new properties and characterizations

THEOREM 3.1.

Let M(E). Then E S,, if and only if one ofthe following is true.

(a) #’(X) =/’(E) + #’ (E’)
(b) /,(E) #’(E), where/,(E) sup{#(L)[L C E, L 6 }
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2. If# 6 Mo()then#" _< #’, #"(X) #(X), and# <_ #"()
3 If# 6 M() then # #" #’ on

4. If E M(E) then Su, E {L E[(L)=’(L)}, d consequently E c Su, if d oy if

5. If E is a delta lattice d if # M(E), then # is countably subadditive on E’, #’ #", whence

S#, S#,,
PROOF. S proofofTheorem 3.2(a) d [4].
DEaf.ON 3.1. Let u be a

ml fo ve E C X, thee

re] if it assumes oy the vMus 0 d

u(X) u(E) + u(E’) so f u s a re] countab]y subaddifive outer measure d fE. E. c X,
then

(IE) lira (E).

EOM 3.2. (a) If p 6 M() then p’ p"(’). (b) Let. 6 M(). If.’ "(’) d if

p" is a re] outer measure, then p

PROOF. (a) Ts is proved in [4] under assumptions. We ve a direct proof here thout
nher assumptions Firmly, we shMl show that if p 6 M() d if U L’, 6 ’ for eve sequence

{ L,’}, L, 6 for all i, then

(0)# L: < E #(L:),
,=1 ,=1

i.e.,

Suppose there exists a sequence { L’, }, L, , such that

# L > #(L’,) lira #(L’,) _> lim # L
t=l t=l t=] t=l

We have

UL: T UL:,

therefore, # e M() implies

a contradiction.

Now let L 6 and let L, 6 such that L’ C U L’
n=l

Then L’= U (LnL’)

preceding result, it follows that

.(L’) <_ n L’) <_
n=l n=l

Therefore,

o }#(L’) < inf #(L)IL C L’, L 6 #"(L’).
n=l n=l

Using the
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Hence # _< #"(’) Since #" < U(’), we get # #" (/:’) and thus #’ U" (’)
(b) see [4]
We now consider several new results

TItEOREM 3.3. (a) Let # E M(). If # E Mt(2) then #’ _</2. Conversely, if #’ _</2(2) then

U M(:)

(b)# M()ifand only if/2(n._X Ln) inlnl(Ln where L,

(c) Let Mo() Suppose for E C X,

"(E) sup{#"(D)lD C E,D 6())

and suppose #’ is countably subadditive on ZY. Then #’ #"
PROOF. (a) By definition, given > 0 there exists L E , E C L such that

> u(L)-

Since # M(2), there exists 6 Z2, L C ’ such that

Consequemly,

since E C L C Hence/2(E) >_ #’(E) d thus U’ .
For # M(), # #’(); hence by hothesis, # #’ on . But clely # () by

defifition Therefore # #’() or uivflemly, # Ms(g).
(b) If the condition is satisfied d if L L , then

#(L) #(L)= iff#(L,)= lim #(L,).

Thus U M(g)
Conversely, suppose # M (E). Then by detion of,

Since N L c Ln for any n,
n=l

Therefore,

Suppose

n.

n=l

Then there exists > 0 such that
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rl.=l

Also there exists L E L;, N L, C L such that
n=l

Now, (LUL)=LdLUL. Hence#(LUL)#(L) since#M() It then follows
n=l

that

B(n=l L)+ /2 > #(L)=lim #(L O L)lim #(L)> (=L)+,
a contradiction. Thus

(c) By hothesis, Nven e > 0 there ests D (), D C E such that

."(E) e < ."(D).

so there L, , E C L inch that

(v,) < "().

Conquently.

"() "(D) > "()- > (L’,) ’(L)
t=l t=l

t=l

Hence "(E) ’(E) d thus, " ’. But " ’, hence " ’If M () then * denotes the usuM induced outer mease, i.e, for E C X

"(E) i (A)]E C A,, A (C) for 1
=1 =1

Clely, if Mo() then * " ’; morever if is a delta lattice d if M(), then

We sh to consider cen cnsequences of equNities betwn a msure d one f its

outer mres. Firstly, we define

ON3.. A measure Mo() is aely relar iffry ,
We denote by My() the set ofrarely relar measures



OUTER MEASURE ANALYSIS OF TOPOLOGICAL LATTICE PROPERTIES 285

THEOREM 3.4. (a) Let # E Mw(/2) and v E Mn(/2) Suppose # _< v(/2) and #(X) v(X) If

#’ v(/2) then # v.

(b) Let # E My(E) and v Mn(/2) Suppose # _< u(E) and u(X) u(X). If #" u(E) then # u

and v M /2

(c) Let # Mo(E). If# #"() and if#" is a regular outer measure, then

.A(/2) C St‘,,, #-- #" on A(/2), and # 6 Ma(/2).

(d) If# 6 Mo() and if #" is a regular outer measure, then St‘, c St‘,, and #’ #" on St‘,
PROOF. (a) By weak regularity, for any L 6/2,

#(L’) sup {#’ (L)l c L’,_, 6/2}
sup {u (,)]_, c L’, 6/2 } by hypothesis
u(L’) since u 6 Mn(/2).

Therefore # v

(b) By vague regularity, for any L /2,

#(L’) sup {#"(L)[ C L’,L /2}
sup{v(L)[ C L’, L } by hypothesis
u(L’) since

Therefore v # My( C M,,(/2), and thus v e M,(/2).
(c) Let L /2, then

#"(X) #(X) #(L) + #(L’) >_ #"(L) + #"(L’) >_ #"(X)

since # #"(/2) and #" < #(’). Hence

u"(x) u"(L) + u"(V).

Consequently, L St‘,, for any L /2 since #" is regular. Thus/2 C St,,, and hence .A(/2) c St‘,,
Now #" is coumably additive on S,, and equals # on/2; therefore, # #" on .4(/2) Finally, since

#" is coumably additive on S, .A(/2), # M (/2).
(d) Let E St‘,. Since #" is regular, it suffices to show that

u"(x) u"() + u"(E’).

Now

#(X) #"(X) since
_< #"(E) + #"(E’) since #" is finitely subadditive
< #’(E) + #’(E’) since #" <

#’(X) since E
u(x).

Therefore, #"(X) #"(E) + #" (E’). Hence E S,, and thus Su, c St‘,,
Also by Theorem 3 (1 .b),

#’(E) #,(E) sup{#(L)lL C E,L /2}
_< sup{#"(L)[L C E,L /2} since # _< #"(/2) for # e Mo()
< u"(E).

But #" _< #’, hence #’ #" on St‘,. 4
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THEOREM 3.5. (a) Let # E Mo(). If is delta-normal then #’ #"()
(b) Let E Mo(). If is a delta-nofl lattice d if () where Ma() d
#(X) (X), d if" is a rel outer measure, then u M (’)

PROOF. (a) see [4].
(b) Recfll elier that () d #(X) (X) implies v’ ’ #"() since is delta-
nofl Suppose M (’), i.e.,

(L’) if(L)
for some sequence {L} E’ d some L’ ’, where L I L’. Accordingly, there exists e > 0 such
that

(L) -, > (n’) for fll n.

Thus (L) + e < (L). Now #" is a rel outer measure dL T L, therefore

}i"(L) "(L).

Hence by hypothesis,

Consequently,

p(L) > v(L) #"(L,,) for all n.

v(L) > lirnoo #"(L) #"(L) (L),

a comradiction. So v e M(’). ,
We next consider two lattices of subsets of X, 1 and 2 such that E1 C 2, and give a necessary

and sufficiem condition for a regular measure extension to be 1-regular on .
TItEOREM 3.6. Let 1 C 2 be lattices of subsets of X. Let v MR(2) be an extension of

# MR(/:I). Then v is/:l-regular on if and only ifv #’(Z:2)
PROOF. Suppose v is 1-regular on , i.e., v(L)= sup{v(L1)lL1 C L’2,LI 1} for all

L2 2 Then given e > 0 there exists L1 (/:l, L1 C L such that

(L_)- < (L1) =/(L).

Accordingly,

v(L) + e >/(L) #’(Li) > #’(L2).

Hence v > #’(2) But

#’(L) inf#(L) infv(L) _> (L2), where L2cL, Ll:l.

Thus #’>
Conversely, suppose v #’(2). Let L2 2 Then

v(L2) inf{/(L)lL2

Consequently,

v(L) #(X)- inf{tz(Li)lL2 C LI,L e 1}
sup {#(L1)lL1 C L, L1 1 }
sup{v(L1)lL1 c L2,L1 e El}.

In other words, v is/:l-regular on/_
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THEOREM 3.7. Suppose 6(Z2’) separates Z2 If# E Mw(Z2) N Mo(Z2’) then E Ma(E)
PROOF. Let L d > 0. Then, since Mw() there exists L , L c L’ such that

#(L’) -, < ’ (L). Now since 6(’) sepates , there efist A,, B such that

We may assume A fqBj I. Hence, since # Mo(Z2’) there exists N such that for i, j > N,
#(A:fqBj) <e Now

u(A’,) + u(B;) -, for i,j N

’ (L) + .’ (z)

#(L’)+ #(L)- 2,.

Therefore,

#’(X) u(X) > #(A tO B) >_ #’(L’) + #’(L) 2e.

Hence by the arbitrariness of > 0 and by Theorem 3.1 (1 .a), L Su, for any L Z2 Thus C Su, and
by Thedrem 3.1(4), # E Ms(Z2). q

Finally, we improve on Theorem 3.5(a).
TltEOREM 3.$. Let /21 C Z22. Suppose 1 is a delta lattice and 1 semi-separates 2 If

/ Mo(Z2x) and if/’ =/"(Z21) then/’ #"(122).
PROOF. Let L2 6 2. Since # E Mo(1), given > 0 there exist L, 1 such that

L2 C U L’, and
t=l =1

Hence L2 fq L 0 where I"l L Z21 since
,=1 t=l

such that

Therefore

L2cA1 C UL,’.

u’(L) <_ u’(A) U"(A) <_ u" LI <_ ’u(LI) < u"(L)
t----1 t=l

and so #’ (L2) < #" (Lg_) for any L2 Z22. But #" _< #’, thus #’ #"
As an immediate consequence in the case where Z21 is delta-normal, we have
COROLLARY 3.$. Let Z21 C/22. Suppose /21 is delta-normal and Z2 semi-separates 2. If

# Mo (Z21 then #’ tz" (122).
PROOF. By Theorem 3.5(a), if Z21 is delta-normal and if/ E Mo(Z21), then ’ #"(/21) Hence

by Theorem 3.8 the corollary follows.
We shall build up in the next section a complete characterization of semi-separation of a pair of

lattices Z2I, 122 with 121 C Z22, in terms of associated outer measures ofelements of
4. LATTICE SEPARATION

We consider consequences of lattice separation properties between pairs of lattices on some of the
associated outer measures introduced earlier Throughout Z21 and Z22 will denote lattices of subsets ofX
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TItEOREM 4.1. Let /21 C 122 and suppose 121 semi-separates 122 If # MR(E1) then
#(:).
PROOF. By Theorem 3.3(a) we have #’ _</5, thus #’ _</2(122). Suppose #’ :/:/2(/22), then there

exists L2 122 such that #’ (L2) </5(L2) Since

#’(L2) ---inf(#(L)lL2 C L,L1 121),

there exists L1 121 such that L2 C L and #(L) </5(L2). By semi-separation there exists A1 121
such that L2 C A1 C L Then

#(A1) _< #(L) </5(L2).

But by monotonicity,/2(L2) _/(A1) #(A1) Therefore

P(L2) <_ #(A1) <_ #(L)

a contradiction Hence/ #’ (122)
REMARK 1. We note that if for any # IR(121) we have/5 #’(122), then 121semi-separates 122

(see [6,9]). Theorem 4.1 also appears in [4]; we have included a slightly different proof for
completeness We next consider separation between 121 and 122

TIIEOREM 4.2. Let 121 C 122 and let MR(122) be an extension of # MR(121) If 121
separates 12_ then z/is 121-regular on 122’ and , =/2(122).

PROOF. Since z/ MR(122), for L2 122

() up {(/)1 c ,: e c }.

Then given e > 0 there exists/-,2 122 such that/-,2 C L and (L) e < ’(2) By separation there

exist L1,/,1 121 such that ,2 C 1 C L C L. Hence

,(L)-, < t(.l)
_
,(L).

Thy(L) p{(2)2 c L, e gl }, i.e.,

Now by Theorem 3.6, (2). But sin sepates E2 d, consequemly, se-sepates 2,
Theorem 4 elds p’ (g2).

2. Clly if1 sepates then the rel eension Ms() of Ms(El) is

uque. It is so to be noted that ifwe just sume g C 2, d for y In() dy eension

I(), is 1-rel on d if se-sepates 2, then El sepates E2 (see [5]). In
su, El sepates g2 if d oy if p on E2 for y p Mn() d y Mn(E)
eending .

For cosepation of lances, wecobn even ronger results.

EOM 4.3. Suppose C 2 d p M(gl) If 1 cosepates 2 then there ests a

uque Mn(2) such that [(E) d (X) (X).
PROOF. Since Ms(E2), #(2) where

then cosepates itff or equivemly, is no. Thus by statement (4) in scion 2,

()’ z’(); hence

()’ Z’(g).

Now iftq MR(2) and if# < 11(121) then # < 11 (vii)’ #’(121); similarly if t,2 MR(122) and

if# < v21(121) then # < v2l (v21)’ #t(121) Hence lY V2. ’Continuing, we have

TItEOREM 4.4. Suppose 121 c 122 and 121 coseparates 122. Let # M(121) and v MR(122)
where #(X) v(X). If# < v1(121 then

(a) v(U2) sup {#(L1)IL1 C U2,L 1} for L2 2.
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(b) v ’(Z:)
PROOF. (a) Let A2 E 2, then

v(A2) inf{v(L’2)lA2 C L,L2 2}

since v MR(2) Hence given e > 0 there exists/-,2 E 2 such that A2 C L and v(L’2) < v(A2)
By coseparation, there exist A1, L1 E 1 such that A2 C A C L1 C L Therefore

#(L) > #(AI) >_ v(A) > v(A2) > v(L’2)- ,.

Hence v(L’) sup (#(L1)IL1 c L,L1 1}
(b) Let L2 E 2, then

#’(L2) inf{#(L’)lL2 C L,Li
i{(X) (L1)IL2 C L,L C

(X) mp{(L1)]L C L,Li
v(X)- sup{(nl)[L1 C L,Li e
(x)- (L).

Hence #’(L2) v(L) and so v U’(9_).
REMARK 3. Part (b) above gives an alternative proofto Theorem 4 3. Suppose vl, v2

such that # < v11(1) and # < v2](1). Then vl #’(2) and v2 #’(2) Hence vl

’e can explore Theorem 4.4 further by imposing conditions on the measure # and the lattice 1, and
see how this affects the measure v on the larger lattice 2

THEOREM 4.5. Suppose 1 C 2 and 1 coseparates 2 Let # E Mo(1)and v MR()
where #(X) v(X)
(a) If# < vl(1 then v e Mo().
(b) If# < v1(1 and #" is regular then v E M(), provided 1 is a delta lattice.

PROOF. (a) Let B, e 2 and B’ . By Theorem 4.4(a), given e > 0 there exists A, E 1 such

that

A, cB and v(B)-e<

and we may assume that A, q) Moreover, #(A,) 0 since # Mo(1) Hence, lira v(B) 0,

i.e, v e Mo()
(b) Since 1 is delta-normal, #’= #"(1) by Theorem 3.5(a), and thus by Corollary 3.8,

#’ #"(2) It follows from Theorem 4.4(b) that v #’ #"(2). Now let

L’ L’ where L,

Then L. T L and since #" is regular,

Since v #"(), v(L,.,) " v(L)" therefore

HencevEM(). ’

#"(L) T #"(L).

v(L) m(L’).

So far we have concentrated on v as a regular measure "enlargement" of# E M(1) from .A(1 to

.A(E2) on coseparation lattices. We now turn our attention to measure extensions

TIIEOREM 4.6. Suppose 1 ([ 2 and 1 coseparates 2 Let # M(1) and v MR(2)
where #(X) u(X). If# < v[(1) then

(a) < v ’(2)
(b) and if/ v #’(2), then # M(1) and #
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PROOF. (a) By Theorem 4 4(b), v #’(2) Let L2 6 2, then

(L2) #’(L) inf{#(L[)IL C L,L1

Hence given > 0 there exists L1 E 1 such that L2 C L and #(L) <_ v(L). By semi-separation,
there exists A1 E ,1 such that L2 C A1 C L Hence

(L2) _</](A1) #(A1) _< B,(L) _< u(L2) + (,

and thus (L2 <_ v(L2). Therefore/2 _< v #’(2)
(b) If/2 #’ ’(2), then/2 #’ ’(1) since 1 C 2. But/2 #(1), hence

and equivalently, # E Ma(1). 4,

In the course of developing our measure extension and enlargement results, we have thus extended
previously known results such as those on coallocation lattices [3]. Finally, we note some consequences
of assuming the 1 lattice to be delta or almost countably compact

THEOREM 4.7. Let E1 c 2. Then

(a) If1 is a delta lattice and 1 coseparates E2, and if# E Mo(1) then #’ #"(2).
(b) IfE1 is almost countably compact and 1 coseparates 2, and if, 6 Ma(2) then , E Mo().

PROOF. (a) This is just a special case of Corollary 3.8, since if1 C 2 and if1 coseparates 2,
then 1 coseparates itself or equivalently, 1 is normal.

(b) Consider,] Ma(). Then

vl < #(’), # Ma(.’) and #(X) v(X).

Hence # _< v[(1) and # M(1) since 1 is almost countably compact (see section 2). From
Theorem 4.5(a), it follows that , 6 Mo(,).

We close this section with several extensions and ramifications of results found in [4].
THEOREM 4.8. Let be normal and # Io (f..). Suppose

A (")B’ where A and B, for all n.
n=l

Then A S,,.
PROOF. Recall that for # 6 Io(f..),

S.,,= ECXIED NLn or E’D Ln, LneE,#(L,)=I for all n (see [4]).
n=l n=l

Case I. If#"(A) 0 then A S,
Case 2. If#"(A) I then since is normal, there exist C’n, D, such that

xc c’ c D c ’.
Therefore #"(C) 1, so #’(C) #(C) 1. Hence

#(D,)=I for all n, where A= ’]D,,
n=l

thus A Sz,,.
TItEOREM 4.9. Let : be normal and # 6 M (). Suppose

A= ["B’ where A el: and B, e Z: for all n.
n=l

Then A e S,.
PROOF. By normality there exist C,, D, e such that A C C c D C B. Then
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A= nc’. nD. nB’.,

We may assume C’ , and D $ Then

since # M(E) Hence

Thus

But in general # _< #’ (), therefore

It follows from Theorem 3 (4) that

#(A) lim #(D)

(A) <_ #(C) <_ #(D,) #(A).

#(A) =lim #(C) >_ u’(A).

#(A) u’(A).

A Su, n {L Elm’(L) #(L)}. 4.

As special cases ofthe above theorem, we have the following.
COROLLARY 4.10. Suppose : is a normal and complement generated lattice If# M(:) then

: C S’,, d # M(:).
PROOF. If : is complement generated then every set A : can be written as A n B’,,,

B :. It follows from the above theorem that

c S., n {L Z:Iu’(L) #(L)}.

Hence # #’() or equivalently # Ma(), and since # M() we have # M()
COROLLARY 4.11. Let : be normal and # I(:) Suppose

A= NB’ where A:,B for all n.
n=l

Then A Su, and thus A Su,,
I’ROOF. It is a special case ofTheorems 3.4(d) and 4.9.
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