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ABSTRACT. Let X be a set and £ a lattice of subsets of X such that @, X € L. A(L) is the algebra
generated by £, M (L) the set of nontrivial, finite, nonnegative, finitely additive measures on .A(L) ; and
I(L) those elements of M (L) which just assume the values zero and one Various subsets of M (L) and
I(L) are included which display smoothness and regularity properties.

We consider several outer measures associated with elements of M (L) and relate their behavior
to smoothness and regularity conditions as well as to various lattice topological properties In addition,
their measurable sets are fully investigated. In the case of two lattices £;, Lo with £, C L,, we present
consequences of separation properties between the pair of lattices in terms of these outer measures, and
further demonstrate the extension of smoothness conditions on £, to L,
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1. INTRODUCTION

Let X be an arbitrary nonempty set and £ a lattice of subsets of X with @, X € L. A(L) denotes
the algebra generated by £ and M (L) the set of nontrivial, finite, nonnegative, finitely additive measures
on A(L). We consider various specialized subsets of M (L) and introduce several outer measures
associated with them. Extending the work done in [3,4], we further investigate the interplay of these
outer measures with the various subsets of M (L) as well as with lattice topological properties.
Frequently, this is carried out under the assumption of regularity on one of the outer measures.

In addition, we analyze in detail the situation when £; C L,, where £, and £, are lattices of subsets
of X When separation conditions are satisfied between these two lattices, the behavior of the associated
outer measures reflects very strongly on the lattices. Our results here extend those obtained for zero-one
valued measures in [5,6,8].

We begin in section 2 with a brief review of some relevant facts and notations that will be used
throughout the paper. In addition, a few new basic results on the associated outer measures are
established. In section 3, we investigate the effects of lattice and lattice topological properties on the
outer measures, and, in turn, the latter's behavior in characterizing certain subsets of M(L). Section 4 is
mainly concerned with the case of £y C Loand the effects of separation properties between them on the
outer measures.

Further related matters can be found in [2,3,4].
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2. BACKGROUND AND NOTATIONS

In this section we introduce the notation and terminology that will be used throughout the paper.
They are mostly standard and we review the more important ones for the readers' convenience. For
further details see [3,4,6].

Let X be an arbitrary nonempty set and £ a lattice of subsets of X such that @, X € L A(L)
denotes the algebra generated by £, and M (L) the set of nontrivial, nonnegative, finitely additive, finite
measures on A(L). We denote by M, (L) those measures in M (L) that are o-smooth on £, namely, if
L,|0, L, € Lthenpu(L,) =0 M°(L) designates those u € M (L) that are strongly o-smooth on L,
ie, Lol L, L, L, € L implies u(L,) | u(L). Also, M°(L) denotes those p € M(L) that are o-
smooth on A(L), so A, | 0, A, € A(L) implies u(A,) — 0, this is equivalent to n being countably
additive.

In addition, Mg(L) denotes those u € M(L) that are L-regular: if for any A € A(L),
w(A) =sup{u(L)|LC A,Le L} Let M(L)= Mp(L)NM,(L), clearly p € MZ(L) implies
u € M?(L). If the measures just assume the values zero and one we denote the above sets by I's
replacing their corresponding M's.

For any set EC X, E' = X — E, and L' = {L'|L € L} is the complementary lattice to L We
denote by 6(L) the lattice of all countable intersections of sets from £, and L is delta if 6(C) = L, i.e, L
is closed under countable intersections. We shall utilize the following lattice topological notions as well
as their measure characterizations (see [6]): L is normal if whenever A, B € L such that ANB =0,
there exist C, D € L such that A C C', BC D' and C' N D' = 0, L is countably paracompact if for
every sequence {A,} of sets of £ with A, | @, there exists a sequence {B,} in L such that for all n,
A, C B], and B}, | 0; and L is complement generated if for every L € L there exist A, € L such that
L= ﬁ A}, Furthermore, we define for u € M(L) and E C X,

n=1

W(E) = inf{u(L)|E C L', L € £}

W'(E) = mf{fj we)iEc Lz e c}

1=1 =1

B(E) = inf{u(L)|E c L, L € £}

Clearly all these set functions are nonnegative, monotonic, and vanish on the null set; ' and  are finitely
subadditive while p” is countably subadditive. We shall simply refer to them as associated outer
measures of p. It is also clear that p'(X) = A(X) = p(X). If p € M, (L) then p”(X) = p(X). In fact,
ifp € I(L)and if u ¢ I,(L) then p” = 0.

If 1 and v are measures or outer measures we write 4 < v(L) whenever u(L) < v(L) forall L € L.
Using this notation, it is easy to see that for u € M, (L), p < p”"(£). Trivially, p” </, and p = p'(L)
if and only ifu € Mg(L).

Consider any two lattices £ and Lo of subsets of X. We say £, semi-separates L, if for A; € L,
Ay € Ly with A; N A = 0, there exists By € L; such that Ay C By C Aj}; L, separates L, if for Ay,
B; € £, with Ay C Bj, there exists A;, B; € £, such that A, C A; C B} C Bj; and L, coseparates
Ly if for Ay, By € Ly with Ay C B}, there exist A;, B; € £; such that Ay C All C B C Bé

Finally, if v is an outer measure defined on all subsets of X (finitely or countably subadditive) then
S, denotes the v-measurable sets.

We collect a number of important lattice measure results that will be utilized throughout the paper
1 Ifu € M(C) then there exists a v € Mp(L) such that p < v(£) and u(X) = v(X) [7]

2. Let £ be normal and p € M(L). Suppose p < v(L), v € Mg(L) and p(X) = v(X). Then for
Lel,v(l')=sup{p(L)ILc L',LeL} [4
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3 Let £ be normal and p € M,(L). Suppose pu < v(L), v € Mg(L) and p(X) =v(X) Then
v € M,(L'). [4]

4 Let £ be normal and p€ M(L), ve Mg(L). If p<v(L) and if p(X)=wv(X) then
p<v=v =y onl [4]

5 Let £ be normal and countably paracompact. If u,v € M(L) such that p < v(C) and
u(X) = v(X) then p € M, (L) implies v € M,(L). [8]

Next, we consider any two lattices £, and £, of subsets of X such that £; C £, Then we have
6. Anypu € Mg(L;) can be extended to a v € Mg(Ly). [1]

7 If v € Mg(Ly) then v restricted to A(L;) (we denote this restriction by v/, or even just v| if the
lattices involved are clear) belongs to Mp(L,) if £, semi-separates Lo [2,6]

THEOREM 2.1. Let £; and L, be lattices of subsets of X such that £; C Ly, and let £y be ;-
countably bounded Suppose p € M(L;) extends p € M,(L,), and p < v(L,), v € Mg(Ly) where
u(X) =v(X) Inaddition, suppose p < A(L2), A € Mp(L;) where p(X) = A(X) Then the following
are true:

(@) p€ M, (Ls)

(b) If L, is normal and countably paracompact, then v € MZ(L,).

(c) If L, is normal and countably paracompact, then A € MZ(L;).

(d) If £, is normal and complement generated and if Cy is normal and countably paracompact, then
A, =v.

PROOF.

(a) Let B, € L, such that B, | 0 Since L, is £1-countably bounded, there exist A, € £; such
that B, C A, | @ Consequently,

p(Bn) < p(Ar) = p(An) L 0.

(b) By statement (5), v € MZ(Ly).

(c) Again follows by statement (5).

(d) Since A € MZ(Ls), A, € M,(L}). Hence, A € ME(Ly) since £, is complement
generated. Then by normality, A|z, = v (see remark). 4

REMARK. In the proof of (d) we have assumed the following two facts’

« If £ is complement generated then £ is countably paracompact.

« If £ is normal and if p€ M(L), v, ve € Mg(L) with p <vi(L), p Lve(L) and
p(X) = v1(X) = 1o(X), then vy = 1p.
The first fact is elementary, the second can be found in [4].

DEFINITION 2.1. A measure u € M (L) is weakly regular if, for any L € C,

u(L) =sup{p/(L)Lc L', L e L}.

We denote the set of weakly regular elements of M (L) by My, (L). Clearly Mg(L) C Mw(L), and if £
is normal then Mp(L) = Mw (L) (see [4]).

We recall that the lattice £ is almost countably compact if for any p € Ig(L'), p€ I,(L) It
follows readily that if £ is almost countably compact then . € Mg(L’) implies u € M, (L).
3. PROPERTIES OF ASSOCIATED OUTER MEASURES

This section begins with an enumeration of several known properties of the associated outer
measures introduced in Section 2 We shall then develop new properties and characterizations

THEOREM 3.1.

Let u € M(L). Then E € S, if and only if one of the following is true.

(@) p'(X)=p'(E)+u'(E)

() p.(E) = p'(E), where u,(E) = sup{u(L)IL C E, L € L}
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2. Ifp € My(L)then p” < 4/, p"(X) = u(X), and p < p"(L)

3 IfpeMj(L)ythenpy=p"=p'onl

4. If pe M(L) then Sy NL={L € L|u(L)=p'(L)}, and consequently £ C S, if and only if
u € Mgp(L).

5. If L is a delta lattice and if u € M°(L), then p is countably subadditive on L', p’ = p”, whence
Sy =8

PROOF. See proof of Theorem 3.2(a) and [4].

DEFINITION 3.1. Let v be a finite outer measure (finite- or countably subadditive). Then v is
regular if for every E C X, there exists M € S, such that E C M and v(E) = v(M) Clearly v is
regular if it assumes only the values O and 1. In addition, if v is regular then E € S, if and only if
v(X) =v(E) +v(E'); also if v is a regular countably subadditive outer measure and if E, 1, E,, C X,
then

v fim E.) = lim v(E,).

THEOREM 3.2. (a) If p € M°(C) then p’ = p”(L'). (b) Let p € M,(L). If p' = p”(L') and if
u" is a regular outer measure, then u € M°(L)

PROOF. (a) This is proved in [4] under assumptions. We give a direct proof here without any
further assumptions Firstly, we shall show that if 4 € M°(L) and if ;E—jl L, € L' for every sequence

{L,"}, L, € L for all , then
o0 =
p (U Li) <DLy,
=1 1=1

i.e., p is countably subadditive on L’
Suppose there exists a sequence {L'}, L, € L, such that

M(DLi) > YouLl) = im Yo uLl) > Ji{rgon(oLi)-
=1 1=1 1=1 =1
We have

Uz Uz
=1 =1

n(ULi) = lim #(ULZ),
=1 nme 1=1
a contradiction.

oo o]
Now let L€ L and let L, € £ such that L' c|J L/, Then L' =|J (L,NL) Using the
n=1

n=1

therefore, p € M°(L) implies

preceding result, it follows that

wI) <Y pELNL) <D pLy).
n=1

n=1

Therefore,

L) < 'mf{Z I ¢ L Lo € C} = W'(L).
n=1 n=1
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Hence u < p”"(L') Since p” < p(L'), we get p = p"(L') and thus p' = " (L")

(b) see[4] <4

We now consider several new results

THEOREM 3.3. (a) Let u € M(L). If u € Mp(L) then p’ < i. Conversely, if u' < fi(L) then
K € Mg(L)

(b) p € M°(L) if and only ifﬂ( a L,,) = ir'}fp(L,,) where L, | , L, € L
(c) Letyp € M,(L) Supposefor E C X,
¢ (E) = sup{p"(D)|D C E,D € §(C)}

and suppose ' is countably subadditive on £'. Then p' = p”
PROOF. (a) By definition, given € > O there exists L € £, E C L such that

B(E) > p(L) -
Since s € Mg(L), there exists L € £, L C L' such that
u(L) > p(i') —e
Consequently,
a(E) > u(I-J') — 2 = p’(ff) —2¢>u'(E)—2¢

since EC L C L' Hence L(E) > p/'(FE) and thus p’ < fi.

For p € M(L), u < p/(L); hence by hypothesis, u < ' < i on £. But clearly p = Z(L) by
definition Therefore o = p/(L) or equivalently, u € Mg(L).

(b) If the condition is satisfied and if ﬁl L. =L €L, then

#(L) = (L) = infu(Ln) = lim p(Ln).

Thus p € M°(L).
Conversely, suppose u € M°(L). Then by definition of j,

p(ﬁ L,,) = inf{p(L)’ ﬁ L.cLLe c}.
n=1 n=1

oo
Since ﬂ] L, C L, foranyn,
n=

ﬂ(ﬁLn)Sp(Ln) forany n.

n=1
Therefore,
i (ﬂ Ln) < infp(Ln) = lim p(Ly).
n=1 n n—oo
Suppose
o0
lim u(L,) > ﬁ(ﬂ L,.) for L,|,L,€L.
n—o0 n=1

Then there exists € > 0 such that
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Jim (L) > u(ﬁ L,.> re

n=1

Also there exists L € £, °ﬁ’1 L. C L such that
o

W) < ﬁ(ﬁ Ln) e
n=1

Now, ’ﬁl (LyUL)=Land L,UL | . Hence u(L, UL) — p(L) since p € M°(L) It then follows
that
~ o0
u(g Ln) +€¢/2> p(L) =lim p(L, U L) 2 lim u(L,) > ,;(Ql Ln) +e,

a contradiction. Thus
o]
lim p(La) = 2| Ln).
n—oo n=1

(c) By hypothesis, given € > 0 there exists D € 6(L), D C E such that
p'(E) - e < p" (D).

oo
Also there exist L, € £, E C |J L! such that
=1

00
D WL~ < u'(E).
1=1

Consequently,

W/(E) 2 1'(D) > w'(B) - > 3o (L)) — 2e = 3 u/(L) - 2¢

=1 =1
o0
>y (U L:) — 2¢ since y’ is countably subadditive on £’
=1
> y'(E) — 2 since E C ULﬁ
=1
Hence p"(E) > p/(F) and thus, p” > /. But p” < u/ hence p”’ =y @
If p € M°(L) then u* denotes the usual induced outer measure, i.e , for E C X
(e 00
' (E) = inf{z WAE C | A, A € AL) forall i}
=1

=1

Clearly, if u € M?(L) then p* < p” < u'; moreover if L is a delta lattice and if p € MZ(L), then
pr = #I =y

We wish to consider certain consequences of equalities between a measure and one of its associated
outer measures. Firstly, we define

DEFINITION 3.2. A measure u € M,(L)is vaguely regular if forany L € L,

p(L) =sup{p" (L)L c L',L e L}.

We denote by My (L) the set of vaguely regular measures
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THEOREM 3.4. (a) Let u € Mw (L) and v € Mg(L) Suppose p < v(L) and p(X) = v(X) If
u =v(L)thenpy =v.
(b) Letp € My (L) and v € Mg(L) Suppose p < v(L) and p(X) = v(X). Ifu"” =v(L) thenpy =v
and v € M§(L)
(c) Letpue M,(L). Ifp=p"(L) and if p” is a regular outer measure, then
AL)yc Sy, p=p" on A(L), and pe M’°(L).

(d) Ifu € M,(L) and if " is a regular outer measure, then S,y C S,» and p’ = p” on Sy,
PROOF. (a) By weak regularity, forany L € L,
pL)=swp{p/(L)LcL',LecL}
=sup{v(L)|L c L',L € L} by hypothesis
=y(L') since v € Mg(L).

Therefore p = v
(b) By vague regularity, for any L € C,
p(L) =suwp{p"(L)ILc L' Lec}
=sup{v(L)|L c L',L € L} by hypothesis
=vu(L') since v € Mg(L).

Therefore v = p € My (L) C M,(L), and thus v € MZ(L).
(c) Let L € £, then

p(X) = p(X) = p(L) + (L) 2 p"(L) +p" (L) 2 4" (X)

since o = p"(L) and " < p(L’). Hence
H(X) = p"(L) + p"(L).

Consequently, L € S, for any L € L since p” is regular. Thus £ C S+ and hence A(L) C Sy
Now p” is countably additive on S, and equals u on L; therefore, u = u” on A(L) Finally, since
" is countably additive on S,» D A(L), u € M°(L).
(d) Let E € S,,. Since p” is regular, it suffices to show that
W'(X) = W'(E) + W' (E).
Now
p(X) = p"(X) since u € M,(L)
< u"(E)+4"(E'") since u" is finitely subadditive
S W(E)+4u/(E') since p" <y
=p'(X) since E€ Sy
= p(X).
Therefore, p”(X) = pu"(E) + p"(E'). Hence E € S,», and thus S,y C S,
Also by Theorem 3 1(1.b),

K (E) = p(E) = sup{p(L)IL C E, L € L}
< sup{u” (L)L C E,L € L} since p < p"(L) for p € M,(L)
< u'(E).

But p” < p',hencep’ =p" onS,. ¢
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THEOREM 3.5. (a) Let u € M,(L). If L is delta-normal then p’ = p" (L)
(b) Let pe M,(L). If £ is a delta-normal lattice and if pu < v(L) where v € Mp(L) and
w(X) = v(X), and if p” is a regular outer measure, then v € M"(L')

'PROOF. (a) see [4].
(b) Recall earlier that 1 < v(£) and p(X) = v(X) implies u < v =v' = u’ = p"(L) since L is delta-
normal Suppose v ¢ M°(L'), i.e.,

(L) # infy(Ly,)

for some sequence {L.,} € £’ and some L' € L', where L, | L’. Accordingly, there exists € > 0 such
that

v(L.) — e > v(L') forall n.

Thus v(L,) + € < v(L). Now u” is a regular outer measure and L,, T L, therefore
lim p" (L) = p"(L).
n—oo

Hence by hypothesis,
v(L)—e>v(L,) = p"(L,) forall n.

Consequently,
V(L) - €2 lim p"(L,) = u"(L) = »(L),

a contradiction. Sov € M°(L'). ¢

We next consider two lattices of subsets of X, £; and £ such that £; C L2, and give a necessary
and sufficient condition for a regular measure extension to be £;-regular on Cj.

THEOREM 3.6. Let £; C L, be lattices of subsets of X. Let v € Mp(L:) be an extension of
i € Mg(Ly). Thenv is L£y-regular on £} if and only if v = p'(L5)

PROOF. Suppose v is Li-regular on L5, ie., v(Ly) = sup{v(Ly)|L; C L}, L, € £,} for all
Ly € Lo Then given € > 0 there exists L, € £y, L; C Lj such that

v(Ly) — € < v(Ly) = p(Ly).
Accordingly,
v(Lg) +€ > p(Ly) = p'(L}) > p'(Lo).
Hence v > p/(L3) But
p'(Lo) = infu(L}) = infv(L}) > v(Lg), where L, C L), L; € Ly.
Thus ¢’ > v(L;)
Conversely, suppose v = u'(L;). Let Ly € L Then
v(Lg) = inf{u(L})|Ly C LY, Ly € L1}
Consequently,

v(Ly) = p(X) — inf{u(Ly)|Ly C L}, Ly € Ly}
= sup {u(L1)|Ly C Ly, Ly € L4}
= sup{v(L1)|L1 C Ly, Ly € Ly}

In other words, v is £,-regular on £, 4
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THEOREM 3.7. Suppose 6(L’) separates £ If u € My (L) N M, (L') then u € Mg(L)
PROOF. Let L € L and € > 0. Then, since p € My (L) there exists L € £, L C L’ such that
p(L') — e < w'(L). Now since 5(L') separates L, there exist A,, B, € £ such that

o o0
Lc(Aes), Lc()B,esL) and (ANB =0
1=1 =1 1)
We may assume A, NB;|. Hence, since u € M,(L') there exists N such that for i, j > N,
1(A NB)) <e Now

#(A;U B)) = u(A) +u(B]) — u(A. N Bj)
> p(A;) +u(B) —¢€ for 4,5 >N
2 (L) +4'(L)—e
2 p(L') +p'(L) ~ 2
=p'(L) +p/(L) - 2e.

Therefore,
B (X) =p(X) 2 p(4UB) > u'(L) + /(L) - 2e.

Hence by the arbitrariness of € > 0 and by Theorem 3.1(1.2), L€ S, forany L € £ Thus £ C S, and
by Theorem 3.1(4), u € Mp(L). 4

Finally, we improve on Theorem 3.5(a).

THEOREM 3.8. Let £; C Lo. Suppose L; is a delta lattice and £; semi-separates £y If
b€ My(Ly) and if p' = p"(Ly) then p' = p"(Ly).

PROOF. Let L, € £,. Since p € M,(L,), given € > 0 there exist L, € £; such that

Lyc JL and ) u(L)-e<p(Lo).
=1

=1

(o) o]
Hence Ly, N (ﬂ L,) = @ where ) L, € £; since L, is delta. By semi-separation there exists A, € £,

1=1 =1

such that
=]
Lycac L.
=1
Therefore

™ o
H (L) S /(A1) = p"(Ar) S " ( ULI) S DKL) < H'(La) +€;
=1 1=1
and so p'(Lg) < p"(Ly) forany Ly € L£o. But p” <y, thus p’ = p”(Ly). 4
As an immediate consequence in the case where £, is delta-normal, we have
COROLLARY 3.8. Let £; C L. Suppose L; is delta-normal and £, semi-separates Co. If
p € M;(Ly) then p” = p"(Ly).
PROOF. By Theorem 3.5(a), if £; is delta-normal and if 4 € M, (L), then p’ = p"(L;) Hence
by Theorem 3.8 the corollary follows. <
We shall build up in the next section a complete characterization of semi-separation of a pair of
lattices £;, Lo with £1 C Ly, in terms of associated outer measures of elements of Mg (L;)
4. LATTICE SEPARATION
We consider consequences of lattice separation properties between pairs of lattices on some of the
associated outer measures introduced earlier Throughout £; and £, will denote lattices of subsets of X
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THEOREM 4.1. Let £, C Ly and suppose L; semi-separates Lo If u € Mgp(L,) then
B = (Ls)

PROOF. By Theorem 3.3(a) we have ¢’ < i, thus u’ < 3(L;). Suppose u' # E(Ly), then there
exists Lo € Lo such that /(L) < i(Ly) Since

P'I(L2) = inf{P(Lll)tLZ c Lllel € ‘Cl}v

there exists L; € £; such that Ly C L] and u(L}) < fi(Ly). By semi-separation there exists A; € £,
suchthat Ly C A; € L Then

B(A1) < u(Lh) < @(Ly).
But by monotonicity, i(Le) < i(A;) = u(A;) Therefore
B(Le) < p(A1) < p(L}) < B(Ly),

a contradiction Hence i = u/(L;) ¢

REMARK 1. We note that if for any u € Ig(L,) we have & = u'(L;), then £,semi-separates Lo
(see [6,9]). Theorem 4.1 also appears in [4]; we have included a slightly different proof for
completeness We next consider separation between £; and Lo

THEOREM 4.2. Let £; C Ly and let v € Mg(L;) be an extension of u € Mp(Ly) If £y
separates Lo then v is £y-regular on £y’ and v = A(Ls).

PROOF. Since v € M, R([,g), for Ly € L,

v(Ly) = sup {v(Ls)|Ls C L}, L; € Lo}

Then given € > 0 there exists L, € £, such that L, C L} and v(L}) — e < v(L2) By separation there
exist Ly, Ly € £; suchthat L, ¢ L; ¢ L} ¢ L. Hence

v(Ly) — e < v(L1) < v(Lh).

Thus clearly v(L}) = sup {v(A)|A C Ly, A € 1}, i.e, vis £;-regular on L)

Now by Theorem 3.6, v = n/(L2). But since £, separates L, and, consequently, semi-separates Co,
Theorem 4 1 yields p' = i(Ly). 4

REMARK 2. Clearly if £, separates L, then the regular extension v € Mg (L) of p € Mg(L,) is
unique. It is also to be noted that if we just assume £; C Lo, and for any u € Ir(L;) and any extension
v € Ip(Ly), v is Ly-regular on L) and if £; semi-separates Cp, then £; separates £, (see [S]). In
summary, £, separates L, if and only if v =& on L, for any u € Mg(L;) and any v € Mg(L;)
extending L.

For coseparation of lattices, we can obtain even stronger results.

THEOREM 4.3. Suppose £; C L9 and p € M(L,) If £, coseparates Lo then there exists a
unique v € Mg(L;) such that p < v|(£,) and p(X) = v(X).

PROOF. Since v € Mg(Ly), v = V/(L;) where p < v(L,). If £1 C £; and £, coseparates Ly,
then £; coseparates itself or equivalently, £, is normal. Thus by statement (4) in section 2,
@])' = #'(£1); hence

b= @) = H L),

Now if v; € Mp(L;) and if < v1|(L,) then p < 1| = (1n])' = p'(L,); similarly if v, € Mg(L;) and
if u < vo|(Ly) thenp < 1y| = (vo]) = w/(£1) Hencevy =vy. 4

Continuing, we have

THEOREM 4.4. Suppose £; C £y and L£; coseparates Lo, Let u € M(L) and v € Mg(Ls)
where p(X) = v(X). Ifp < v|(L,) then

(@) v(Ly) = sup{u(L1)|Ly C Ly, Ly € L4} for Ly € L,.
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(b) v=p'(L)
PROOF. (a)Let A; € Ly, then

v(Az) = inf{v(Ly)|As C Ly, Ly € Lo}

since v € Mp(Ly) Hence given e > 0 there exists Ly € L, such that Ay C Lj and v(L}) — € < v(Ay)
By coseparation, there exist Ay, L; € £, such that Ay C A} C L; C L; Therefore

#(L1) 2 p(Ay) 2 v(A) 2 v(A2) > v(Ly) — €.

Hence v(Lj) = sup {u(L1)|Ly C Ly, Ly € L4}
(b) Let Ly € Ly, then
W' (L2) = inf{p(L)|Ly C L}, Ly € L1}
= inf{u(X) — u(L1)|Le C Ly, Ly € Ly}
= p(X) = sup{p(L1)|L1 C Ly, Ly € L4}
= v(X) — sup {p(L1)|L1 C Ly, Ly € Ly}
=v(X) — v(Ly).

Hence p'(Lg) = v(L2) and sov = p/(L;). 4

REMARK 3. Part (b) above gives an alternative proof to Theorem 4 3. Suppose v, v; € Mg(Ls)
suchthat u < 11|(£;) and p < 1,|(L;). Thenvy = p/(L;) and vo = p'(L2) Hence vy = vo.

We can explore Theorem 4.4 further by imposing conditions on the measure . and the lattice £;, and
see how this affects the measure v on the larger lattice £,

THEOREM 4.5. Suppose £; C Lo and L; coseparates Lo Let u € M,(L,)and v € Mg(Ly)
where p(X) = v(X)
(a) Ifp < v|(L,) thenv € M,(L5).
() Ifu < v|(Ly) and p” is regular then v € M°(L}), provided L, is a delta lattice.

PROOF. (a)Let B, € £, and B, | 0. By Theorem 4.4(a), given € > 0 there exists A, € £; such
that

A, CB. and v(B.)—e< p(4,),
and we may assume that A, | @ Moreover, u(A,) — 0 since u € M,(L;) Hence, nlin;lo v(B,) =0,
ie,v e M,(L)

(b) Since L; is delta-normal, yx’ = u"”(L;) by Theorem 3.5(a), and thus by Corollary 3.8,
p' = p"(Le) It follows from Theorem 4.4(b) that v = p’ = 1" (L,). Now let

L, | L where L,L,€L,.
Then L,, T L and since u” is regular,
H'(Ln) T u"(L)-
Since v = p" (L), v(L,) 1 v(L); therefore
v(Ly) L v(L).

Hencev € M°(L}). 4

So far we have concentrated on v as a regular measure "enlargement" of 1 € M (L,) from A(L;) to
A(L3) on coseparation lattices. We now turn our attention to measure extensions

THEOREM 4.6. Suppose £; C L, and £, coseparates Lo Let u € M(L;) and v € Mg(L,)
where u(X) = v(X). If p < v|(Ly) then
(@ B<v=p'(Ly)
(b) andif & = v = u/(C2), then u € Mp(Ly) and p = v|(Ly).
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PROOF. (a) By Theorem 4 4(b), v = u'(L;) Let Ly € Ly, then
v(Lg) = p'(Le) = inf{u(Ly)|Ly C L}, Ly € Ly}

Hence given € > 0 there exists L; € £; such that Ly C L] and p(L}) — € < v(Lg). By semi-separation,
there exists A; € £, suchthat Ly C A; C L| Hence

B(Lg) < a(A1) = p(Ar) < p(Ly) < v(Lg) +,

and thus i(Lq) < v(Lg). Therefore i < v = p'(Ly)
() If @ =p' =v(Ly), then i = p' = v(Ly) since £1 C L. Butf = p(L,), hence p = p'(L;)
and equivalently, u € Mgr(L,). ¢
In the course of developing our measure extension and enlargement results, we have thus extended
previously known results such as those on coallocation lattices [3]. Finally, we note some consequences
of assuming the £, lattice to be delta or almost countably compact
THEOREM 4.7. Let £; C Lo. Then
(a) If £y is a delta lattice and £, coseparates Lo, and if u € M, (L) then ' = p"(Cy).
(b) If £, is almost countably compact and £; coseparates Ly, and if v € Mg(L2) then v € M, (L}).
PROOF. (a) This is just a special case of Corollary 3.8, since if £; C L, and if £, coseparates Lo,
then £, coseparates itself or equivalently, £, is normal.
(b) Consider v| € Mgp(L;). Then

vl < p(Ly), n€Mp(Ly) and p(X)=v(X).
Hence p < v|(L1) and p € M,(L,) since £; is almost countably compact (see section 2). From
Theorem 4.5(a), it follows that v € M,(L5). €

We close this section with several extensions and ramifications of results found in [4].
THEOREM 4.8. Let £ be normal and i € I,(L). Suppose

oo
A=()B, where AcL and B,€L forall n.

n=1

Then A€ S,
PROOF. Recall that for . € I,(L),

Sy = {ECX[ED nL,. or E'D ﬂL,., L,el, p(L,)=1 forall n}, (see [4)).

n=1 n=1
Case 1. Ifu""(A) =0then A€ S,»
Case 2. If y"(A) = 1 then since L is normal, there exist C,, D,, € L such that
AcCC,cD,CB,.

Therefore " (C)) = 1, so u'(CL) = p(CL) = 1. Hence

o0
u(D,)=1 forall n, where A= ﬂ D,,
n=1
thus A € S,/l. L2
THEOREM 4.9. Let £ be normal and u € M°(L). Suppose

o0
A=()B, where A€L and B,€L foral n.
n=1
Then A€ Sy
PROOF. By normality there exist C,, D, € L suchthat A C Ci, C D, C B,,. Then
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A=nC,=nD,=NB,.
We may assume C), | and D, | Then
K(A) = lim p(Dn)
since u € M° (L) Hence
1(A4) £ p(Cr) < u(Dn) — p(A).
Thus
k(4) =nli{{.1° w(Cyr) = W' (A).

But in general 1 < p/(L), therefore
u(A) = p'(A).
It follows from Theorem 3 1(4) that
AeSy,nL={Lelly(L)=pl)} ¢

As special cases of the above theorem, we have the following.
COROLLARY 4.10. Suppose £ is a normal and complement generated lattice If u € M°(£) then
LC S, and p € M3(L).

PROOF. If L is complement generated then every set A € £ can be written as A = ﬁ B,

n=1

B, € L. 1t follows from the above theorem that
LCSynL={LeL|(L)=p(L)}

Hence p = p/(L) or equivalently u € Mg(L), and since u € M°(L) we have u € MG(L) ¢
COROLLARY 4.11. Let £ be normal and u € I'(£) Suppose

o0
A= (B, where A€L,B,eL foral n.
n=1
Then A€ Sy andthus A € Sy
PROOF. It is a special case of Theorems 3.4(d) and 4.9. ¢
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