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ABSTRACT. In this paper we will investigate the combined effect ofNewtonian cooling, viscosity and

thermal condition on upward propagating acoustic waves in an isothermal atmosphere. In part one ofthis

seres we considered the case of large Prandtl number, while in part two we investigated the case of small

Prandtl number In those parts we examined only the limiting cases, e. the cases of small and large
Prandtl number, and it is more interesting to consider the case of arbitrary Prandtl number, which is the

subject of this paper, because it is a better representative model. It is shown that if the Newtonian

cooling coefficient is small compared to the frequency ofthe wave, the effect ofthe thermal conduction is

dominated by that of the viscosity. Moreover, the solution can be written as a linear combination of an

upward and a downward propagating wave with equal wavelengths and equal damping factors On the

other hand if Newtonian cooling is large compared to the frequency of the wave the effect of thermal

conduction will be eliminated completely and the atmosphere will be transformed from the adiabatic form

to an isothermal. In addition, all the linear relations among the perturbations quantities will be modified.

It follows from the above conclusions and those ofthe first two parts, that when the effect ofNewtonian

cooling is negligible thermal conduction influences the propagation of the wave only in the case of small

Prandtl number.
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1. INTRODUCTION
It is well known that upward propagating acoustic waves of small amplitude may be reflected

downward if the Brunt-Vdlsdld frequency varies with altitude. However, even when the Brunt-Vgz’sld

frequency is constant, additional reflection is possible because of the exponential decrease of the density

with height. This type of reflection is most important when the wavelength is large compared to the

density scale height.
The reflection properties of a viscous isothermal atmosphere were examined by Yanowitch [27],

Alkahby and Yanowitch [3], Campos [14]. It was shown that the viscosity creates a transition region,

which connect two distinct regions and acts like an absorbing and reflecting barrier In the lower region
the effect of the kinematic viscosity is negligible and the solution can be written, for frequencies greater

than the adiabatic cutoff frequency, as a linear combination of an upward and a downward propagating
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wave In the upper region the effect of the kinematic viscosity is large and the solution decays
exponentially with altitude to a constant value.

The presence of thermal conduction also produces a reflecting layer, with different mechanism from

that of the viscosity. The exponential increase of the thermal diffusivity with height creates a

semitransparent layer allowing part of the energy to propagate upward As a result, the reflecting layer
separates two distinct regions with different sound speeds, because the signals propagate with Newtonian

sound speed in the isothermal region. Consequently, the wavelengths in the two regions are different and

this will account for the reflection (Alkahby [7], Alkahby and Yanowitch [3,4], Lyons and Yanowitch

[18]).
The combined effect of Newtonian cooling, viscosity and thermal conduction, for large Prandtl

number, is investigated in Alkahby [8]. It was shown that the effect of thermal conduction can be

excluded and the solution, above the reflecting layer that is created by the viscosity, decays exponentially
with altitude before it is influenced by the effect of thermal conduction. Moreover, when the Newtonian

cooling coefficient is large compared to the frequency of the wave the lower region will be transformed
from the adiabatic form to the isothermal one. The effect of Newtonian cooling, viscosity and thermal

conduction, for small Prandtl number, on upward propagating acoustic waves in an isothermal

atmosphere is investigated by Alkahby [9]. It was shown that when the Newtonian cooling coefficient is

small compared to the frequency of the wave the atmosphere may be divided into three distinct regions
connected by two different reflecting layers In the lower region the oscillatory process is approximately
adiabatic, it is isothermal in the middle region and in the upper region the solution will decay
exponentially with altitude. On the other hand if the Newtonian cooling coefficient is large compared to

the frequency of the wave the oscillatory process in the lower region will be transformed to an isothermal

one As a result, the two lower regions become one because the reflecting layer, which is created by
thermal conduction, will be eliminated.

In the above two limiting cases, which were discussed in part and part II of this series, our

conclusions are presumed and it is more important to consider the case of the effect of Newtonian

cooling, viscosity and thermal conduction for arbitrary Prandtl number because this case is a more

representative model for the reflection and dissipation of acoustic waves in an isothermal atmosphere. It
is shown that the atmosphere can be divided into two distinct regions connected by a reflecting and

absorbing layer, when the Newtonian cooling coefficient is small compared to the frequency ofthe wave,
the oscillatory process in the lower region is adiabatic and above the reflecting barrier the solution will

decay exponentially with altitude. When the Newtonian cooling oefficient is large compared to the

frequency of the wave, the atmosphere will be transformed to an isothermal one and the effect of thermal
conduction will be eliminated completely while the influence of the viscosity will remain the same.

the case of small Prandtl number and the effect of Newtonian cooling is negligible. Moreover, the

atmosphere can only be divided into three distinct regions in the case of small Prandtl number and

negligible effect of Newtonian cooling. It is shown that if the Newtonian cooling coefficient is large

compared to the adiabatic cutoff frequency, it will act directly to eliminate the temperature perturbation

quantity associated with the wave in a time which is small compared to the period of oscillations Since

Newtonian cooling adds an additional term to the linearized equation ofthe energy, damping modifies all

linear relations among perturbation quantities. In particular, it causes attenuation in the amplitude of the

wave and thereby the energy flux as well Also the attenuation in the amplitude of the wave will vanish

not only when Newtonian cooling is eliminated but also when Newtonian cooling becomes large

compared to the adiabatic cutoff frequency. The reflection coefficient and the damping factors are

obtained and the conclusions are discussed in connection with the heating ofthe solar atmosphere
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2. MATHEMATICAL FORMUlaTION OF THE PROBLEM
In this section we will indicate the main steps ofthe formulation ofthe problem and the details can be

found in Part or Part II. Suppose that an isothermal atmosphere, which is viscous and thermally

conducting, and occupies the upper half-space z > 0 We will investigate the problem of small vertical

oscillations about equilibrium, i.e. oscillations which depend only on the time t and on the vertical

coordinate z.

Let the equilibrium pressure, density and temperature be denoted by P0, Po, and To, where P0 and

To satisfy the gas law Po RToPo and the hydrostatic equation P + gPo O. Here R is the gas

constant, g is the gravitational acceleration and the prime denotes differentiation with respect to z The

equilibrium pressure and density,

Po(z) P0(O)exp(- 1/H), po(z) p0(O)exp(- z/H),

where H RTo/g is the density scale height
Let iv, p, w, and T be the perturbations in the pressure, density, vertical velocity, and temperature.

The linearized equations of motion (conservation ofmomentum and mass, the heat flow equation and the

gas law) are

powt + Pz + gP (4/3)/zw, (2 I)
Pt + (p0w)z 0, (2.2)

po(cv(T + qT) + gHw,) T,,,, (2.3)
p R(poT + Top). (2.4)

Here cv is the specific heat at constant volume,/z is the dynamic viscosity coefficient, q is the Newtonian

cooling coefficient which refers to the heat exchange and is the thermal conductivity, all assumed to be

constants. The subscript z and denote differentiation with respect to z and t respectively Equation

(2.4) includes the heat flux term cvpoqT, which comes from the lineafized form ofthe Stefan-Boltzmann

law We will consider solutions which are harmonic in time, i.e

w(z,t) W(z0exp(-/), T(z,) T(z) exp( -/), (2 5)

where w denotes the frequency ofthe wave.

It is more convenient to rewrite the equations in dimensionless form; z" z/H,
w,, c/2g, W* w/c, w" w/w,, t* tw,, ," 2/cvcHpo(O), T* T/2"yTo, q" q/wa,
where c v/7RTo vgH is the adiabatic sound speed, and w is the adiabatic cutofffrequency. The

primes can be omitted, since all variables will be written in dimensionless form from now on

One can eliminate p, w and p from equation (2.1) by differentiating it with respect to , then with

respect to z and substituting equations (2.2-2.5) to obtain a single fourth-order differential equation for

T(z) only:

[(D D + TW2/4) i(/rn)d’D2(D + D + 7w2/4)
iP,.m’r(,/m)eD(D + 1) (’yP,.rn)(e/m)2D2(D + 1)(D + 2)IT(z) 0. (2.6)

where T ")’(w + iq)/(Tw .+ iq) "y(w + iq)/m, rn "yw + iq, D d/dz and P,.
BOUNDARY CONDITIONS: To complete the formulation of the problem certain boundary

conditions must be imposed to ensure a unique solution. Physically relevant solutions must satisfy the

following two conditions (Alkahby [7], Alkahby and Yanowitch [4], Lyons and Yanowitch 18])

IWldz < oo, (2 7)



370 H Y ALKAHBY

The first of these is the dissipation (DC), which follows from the finiteness of the energy dissipation rate

in a column of fluid of a unit cross-section. The second one, the entropy condition (EC), is a

consequence ofthe finiteness ofthe entropy growth rate in a column offluid of a unit cross section

Boundary conditions are required at z 0, and we shall adopt the lower boundary condition (LBC)
In a fixed interval 0 < z < zo, the solution of the differential equation (2.10) should approach some

solution of the limiting differential equation ( 0 and # 0), i.e the solution can be written in the

form

T(z) Const. [exp[(l + V/l- -)z/2] + K, exp[(v/l- "rz/2)]], (2.9>

where Kq is a constant. Considering the lower boundary condition is simpler than prescribing T(z) and

W(z) at z 0 because we avoid the computation of the boundary layer which has no effect on the

reflection and dissipation processes that take place at high altitudes.

3. THE EFFECT OF NEWTONIAN COOLING ALONE
In this section we will review the effect of Newtonian cooling alone on the wave propagation to

make the paper more self contained. Also the results of this section are needed for the results and the

analysis of section (4). For this case, the differential equation can be obtained by setting # 0 in

the differential equation (2.10). The resulting differential equation is

[D D + -a/4] T(z) O. (3.1)

where r 7(w+iq)/m, and m 7w+iq. The solution of the differemial equation (3.1) can be

written in the following form

T(z) c, xp [(1 + V/1 "rw2)z/2] + c, exp[(1 V/i-- "rw,)z/2], (3.2)

where cl and c2 are constants and they will be determined from the boundary condition To examine the

effect ofNewtonian cooling on the wave propagation and dissipation, let

(V/1 TO’)/2 -4- (-- d(q,w) + i)). (3.3)

To investigate the behavior of d(q, w) and/3, we have to study the following cases

(N1) When q 0 and w > 1, the solution of the differential ,equation (3.1), defined in equation

(3.2), becomes a linear combination of an upward and a downward propagating wave with equal
adiabatic wave number/3a (V/u 1)/2 and d(q, w) O.

(N2) When w/q --, 0 and w > 1/V/’, equation (3.2) which defines the solution ofthe differential q

(3.1) can be written as a linear combination of an upward and downward traveling wave with equal
isothermal wave number/3, (,v/’Tw2 1)/2 and d(q, w) 0. This can easily be seen from limit ofr as

q oo.

(N3) When q/w << 1 the solution of the problem can be described as follows: the first term on the

right of equation (3.2) will be an upward propagating wave decaying exponentially like exp(- d(q,w)z)
and the second term is a downward traveling wave decaying in the same rate

(N4) As a result of (N1) and (N2), the damping factor, d(q,w) becomes zero not only when the

effect ofNewtonian cooling is eliminated but also when the Newtonian cooling coefficient becomes large

compared to the adiabatic cutoff frequency of the wave. Also the wave number/3 increases from the

adiabatic value /3, to the isothermal /3,. At the same time the oscillatory process changes from the

adiabatic form to the isothermal one.
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(N5) As a result of the above discussion we have three ranges for the frequency ofthe wave. above
the adiabatic cutofffrequency oa, below the isothermal cutofffrequency w, and between oa and

(N6) When the frequency of the wave is greater than the adiabatic cutoff frequency the damping
factor d(q,w) is positive and equals zero at the extreme limits, e. when the Newtonian cooling
coefficient equals zero and when it is large compared to the adiabatic cutoff frequency The damping
factor increases to its maximum value, d(q,w) 0.1, when (q/w) O(1) and decays to zero as q 0

4. SOLUTION OF THE PROBLEM
In this section we will investigate the singular perturbation boundary value problem for the following

differential equation

[(D D + TW2/4) i(/rn)eZD2(D + D + ,w2/4)
iP,.mT(/m)eD(D + 1) (P,.m)(e’/m)2D2(D + 1)(D + 2)]T(z) 0, (4.1)

where T ( + iq)/(7w + iq) 7( + iq)/m and rn 7w + iq, subjected to the boundary condition

(2.7), (2.8), and the lower boundary condition. At the outset we have to indicate that the parameters #
and are sufficiently small and proportional to the values at z 0 ofthe kinematic viscosity and thermal

diffusivity Prandtl number Pr can be written as

P,- #/ (tg/Po)/(/PO) I(/mpo)/(/mpo)[. (4.2)

It is cl[ear that Prandtl number P measures the relative strength of the viscosity with respect to thermal

conduction. As a result, small Prandtl number means that thermal conduction dominates the oscillatory
process and large Prandtl number indicates that the viscosity dominates the motion. For small Prandtl

number the atmosphere may be divided into three distinct regions because thermal conduction creates a

semitransparent reflecting layer. In the case of large Prandtl number the atmosphere may be divided into

two different regions connected by an absorbing and reflecting layer. For arbitrary Prandtl number the
reflection and dissipation process depends mainly on the viscosity and Newtonian cooling. To obtain the

solution of the differential equation (4.1) it is convenient to introduce a new independent dimensionless

variable defined by

exp( z)/(i/m) exp[- z log[/m[ + iO, + 3ri/2], (4 3)

where 0, arg(m). As a result, the differential equation (4.1) becomes

[2(o + o + /4) o2( e + /4)
mP(O e) + 7Pme2(o 1)(e 2)]T() 0. (4 4)

where 0 dld. The point 0 is a regular singular point ofthis differential q
(4.4). Consequently, there are four linearly independent solutions, which in the neighborhood of 0

can be written in the following form

TI() E an (el),n+.,, T2 () E aS(e2)"+e’ + T1 ()log(),

T3() E an(e3)"+e" T4() E a, (e4)’+e + T3()log(), (4 5)

where el 2, e2 1, e3 e4 0 The prime denotes differentiation of a, and the sums are taken from

n 0 to n oo. The coefficients o(e,) are determined from the following three term recursion

formula

po(n + 2 + e)an+2 + Pl (n + 1 + e)an+l + p2(n + e)an 0, (4.6)

where
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Po(Y) 7PrmY2(Y- 1)(y- 2),
Pl(Y) mTPry(y 1) y2(y2 y + 7w2/4),
(v) (v + v + .2/). ( 7)

Following the same procedure as in Part II (Alkahby [9]), the solution of the differential equation, which

satisfies the prescribed boundary conditions can be written in the following form

T(z) clTI(z) + c2T3(z). (4 $)

To determine the linear combination of T(z) in equation (4.8), the behavior ofT1 (z) and T3(z) for small
z must be found Since small z corresponds to large ](] with arg()= 3r/2 + O,, the asymptotic

expansions ofT1 () and T3() about infinity should be found. The differential equation (4 $) is similar to

equation (26) in Alkahby [10]. Since the calculations are similar to those in Alkahby [10], we will omit

them and merely indicate the results Although these problems are mathematically similar, the physical
conclusions are completely different. In Alkahby [$,9], the differential equation (4 4) is solved, only for
small and for large Prandtl number, by matching inner and outer approximations in an overlapping
domain. The matching procedure reduces the three terms rcursion formula, equation (4.6), to a two

term one. This will simplify the computations for obtaining the asymptotic behavior of the solution

defined in equation (4.8). For arbitrary Prandtl number the solution of the problem by Laplace
integration (Alkahby [10]). It follows that the solution of the differential equation (4.8) for arbitrary
Prandtl number can be written in the following form

T(z) Const. [exp[(1/2 d(q,w) + i5)z] + K exp[(1/2 + d(q,w) i5)z]], (4 9)

where K denotes the reflection coefficiem and defined by

g U(d(q,w, iS,5,)exp[L iL2], (4 10)

[r(a a2)r (2 + )r(2 ;h )r(,2 &u Lr--= )r-( + 1)F(al )F(a2 )
L + 2d(q,w(ln(/m}) 2BSm,
L2 2n(]/m[) + rd(q,w) + 2d(q,w)8,
a l/2 d(q,w) + i, a2 -1/2 + d(q,w) i,

-1/2 + i,, -1/2

enNeo cooling is elnated werthe results ofkby 10].
From the ave results d disssio we have the follong conclusions

[I] l the conclusions of seion (3) c be restated in tMs sion. In addition, we indicate the

follong obseations.

[II] Equation (4.9) represents the behaor of the solution below the refling layer, h indicates

tt the oillato process, below e reflexing layer, depends on the eff ofNeo cooling d it

ll be chged to isoth if theNeo cooling cfficient is lge comped to e adiabatic

cutofffrequency ofthe wave.

[III] IfeNeo cling coefficient is lge comped to the adiabatic cutoff ffuency ofe
wave, it ll act directly to elinate the temperature prbation qutiW in a time wMch is sml

comped to a pmod of oiRations. TMs ily bes from equation (2.3) where T/w O(1/q).
us, q m the temperature peculation vmshes, r 7d the equation for W(z) reduced to

(1 i6exp(z))D2W(z) DW(z) + (Tw2/4)W(z) O, (4.11)

where 6 27w>/3cHpo(O). the equation for T is supeffiuous since 0. Moreover, the equation for

W(z) c be trsfoed to the hypergeometfic differentiM equation wMch ho linly independent
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solutions. One solution will be eliminated by the dissipation condition because it increases linearly with z

The second solution has the following asymptotic form

1
W(z) [exp[(1/2 + i,)z + K exp[(1/2 ift,)z]], (4 12)

+K
where Ku denotes the reflection coefficient and defined by

K exp( i,)[cos O + isinO], (4 12)

0 2argr(2iD,) 4argl"(1/2 + iO.

It is clear that the magnitude of the reflection coefficient ]K,] exp( i3) Moreover, if q 0the

magnitude ofthe reflection coefficient will be exp( i3).
[IV] It follows from [III] and the results, which were obtained in Alkahby [8,9], that the effect of

thermal conduction on the reflection and dissipation of the wave will be eliminated if the heat exchange
between the hotter and cooler region in the atmosphere is intense and the oscillatory process is

transformed from the adiabatic form to the isothermal one.

[V] The reflected wave, from the reflecting layer, will be reflected upward at z 0. the reflection

of the waves and the dissipation of the energy will continue until the energy of the waves dissipates

completely. The dissipated energy of the acoustic waves may contribute to the process of the heating of

the solar atmosphere.
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