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ABSTRACT. By factorizing the equation z2 + 2% = y™, n > 3, k-even, in the field Q(3), various
theorems regarding the solutions of this equation in rational integers are proved. A conjecture regarding
the solutions of this equation has been put forward and proved to be true for a large class of values of k
and n.
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1. INTRODUCTION

In his recent paper Cohn [1] has given a complete solution of the equation z? + 2F = y™ when k is
an odd integer and n > 3. He proved that when kis an odd integer there are just three families of
solutions. This equation is a special case of the equation az? + bz + ¢ = dy", where a, b, c and d are
integers, a # 0, b — 4ac # 0, d # 0, which has only a finite number of solutions in integers z and y
whenn > 3, see [2].

The first result regarding the title equation for general n is due to Lebesgue [3] who proved that
when k = 0 the equation has no solution in positive integers z, y and n > 3, and when k = 2, Nagell [4]
proved that the equation has the only solutionsz =2, y=2,n=3andz =11, y=5n=3

In this paper we prove some results regarding the equation z2 + 2 = y", where k is even, say
k = 2m and since the results are known for m = 0, 1, we shall assume that m > 1 The various results
proved in this paper seem to suggest the

CONJECTURE. The diophantine equation

242 =y", n>3, m>1 an

has two families of solutions given by z = 2™, y* = 22™+1 andbym =3M +1,n =3, z = 11.23¥,
y =52
In this paper we are able to prove the above conjecture for all values of m when n = 3,7 and when
7 has a prime divisor p # 7 (mod 8), but we are unable to prove that if m = 3%+ . m’, (m’,3) =1, and
all prime divisors of n are congruent to 7 modulo 8, then equation (1.1) has no solution in z odd integer
In the end we have verified that the conjecture is correct for all m < 100 except possibly for 30
values of m The values m = 2, 3 are solved in [5].
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2. CASE WHEN n IS AN EVEN INTEGER

We first consider the case when 7 is an even integer We prove the following

THEOREM 1. If nis even, then the diophantine equation (1.1) has no solution in integers z and y

PROOF. Let n=2r,r>2, then 22 +2*™ =¢* If z is odd, then also y is odd By
factorization (y" + z)(y" — z) = 2", we get y" +z = 2%, y" — x = 2%, where « and G have the same
parity and & > 8> 1. Thus y” = 2°71(2°7# + 1) and then y" = z? + 1 where z; = 2i*~#) yielding
no solution for » >3 [3] and if » =2 it is easy to check that there is no solution. If z is even
then writing z = 2°X, y = 2Y, wherea > 0, b > 0 and both X and Y are odd Then 226 X2 + 22m =
92rby2r

If a=m, we get 22(X2+1)=2""Y¥.  Since X is odd let X2=8T+1 then
220+1(4T + 1) = 227Y?" which obviously is not valid

If a # m, then 2rb = min(2a,2m) If a < m, then 2rb = 2a, and we get X2 + 22(m-a) — y?r
which is not soluble for X and Y odd as we proved in the first part of this theorem, and if a > m then
2rb = 2m and we obtain (2°"™X)? + 1 = Y?" which has no solutions [3]

3. CASE WHEN = IS AN ODD INTEGER

Now we proceed to consider the case where n is an odd integer.

We first prove that it is sufficient to consider z odd. Because if  is even, then also y must be even
and if = 2*X, y = 2"Y where both X and Y are odd, we obtain from (1.1) 224 X2 4 22™ = Qvny™
and therefore of the three powers of 2, 2u, 2m and vn which occur here, two must be equal and the third
is greater. There are thus three cases:

Case a: 2u > 2m = vn; then (2"™X)? 4+ 1 = Y™ and this has no solution by [3]

Case b: vn > 2u = 2m; then X2 + 1 = 2*"~2¢Y™ Here modulo 8 we see that X2 +1 = 2Y™
and this equation has been proved by C Stérmer to have no solution except X =Y =1,s0z = 2™

Case ¢: 2m > 2u = vn, then X% + (2™ %)2 = Y™, and the problem is reduced to the one with X
odd.

THEOREM 2. If n is an odd integer, the diophantine equation (1.1) has no solution in odd integer
z if m = 3%m/, where k > 0, (m/,3) = 1.

PROOF. It is sufficient to consider n = p, an odd prime. The field Q(\/—_l) has unique prime
factorization and so we may write equation (1 1) as

(z+2'"\/ - 1) (z -2V - 1) =9y
where the factors on the left hand side have no common factor Thus for some rational integers a and b

z+2"/—1= (a+b\/——l)P G1)

so that y = a® + b® and exactly one of a and b is even and the other is odd. From (3.1), we have

1/2(p-1) » ot .
m p— r— —_ r
2™ =b ; (2r+1>a (=65 %,

the case when a is even and b is odd can be easily eliminated. Hence a is odd and b is even. Since the
term in brackets is odd, we get b = + 2™ and

+1=pa” ! - (g) BaP3 4+ (—1)T bl (32)

By Lemma 5 in [5] the plus sign is impossible Since m > 1, by Lemma 4 in [5] the minus sign implies
that p = 7 (mod 8) and 2™ = 1 (mod 9) which implies that 3|m. So
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ezl

—1=3 (%i 1) @ (=2 33)

r=0

Now we consider the two cases 3|a and (3,a) = 1 separately. If (a,3) = 1, then from (3 3) we get
_(rp\_ (P pY_ _ (P
_1_(1) (3)+(5) (p) (mod3)

_ (A4 —=(1 =2
—l=— N
27

which can be written as

(mod 3),

but since p = 7 (mod8), we find that ﬁ%(l—“-z = 1(mod 3) which is a contradiction. So 3|a, say
a=23%, where (a’,3) =1 and S >1 Now let p=1+2.3°N, where (N,2)=(N,3)=1 and
6 >0 We canrewrite (3.3) as

=l
r=1

The general term in the right hand side is

N 2r—2

p 2r/ _om\p—2r—1 __ p 2r (_omyp—2r-1 _ pa p—2 2 p—l __om\p-2r-1
(p—%)" (2= (4) e T (42) @ B

Since 3%"~2 > r(2r — 1), for r > 1, this right hand side is divisible by at least 325+¢  that is

2™PD) =1 (mod3?5+%).

Since 2 is a primitive root of 325 ¢(325*%)|m(p—1), that is 3*5-%-m'N.  But
(m',3) = (N,3) =1, 502S — 2k — 1 = 0, which is impossible

COROLLARY 1. If (3, m) = 1, then the diophantine equation (1.1) has no solution in z odd

COROLLARY 2. The diophantine equation (1.1) has no solution in = odd integer if n has a prime
divisor p # 7 (mod 8).

From Corollary 2 and Case b in Section 3, we can deduce the following theorem:

THEOREM 3. The equation z2 + 22™ = y?, m > 1, p is an odd prime p % 7 (mod8), p # 3 has
a solution only if 2m + 1 = 0 (mod p) If this condition is satisfied then it has exactly one solution given
byz=2"y= 2"

For n = 3,7, we are able to solve the equations completely. We prove:

THEOREM 4. The equation z2 + 2™ =3 has solutions only if m = 1(mod3) and if this
condition is satisfied it has exactly two solutions given by

z=2" y= 2&3-&_1 and z = 11.2111—1' y= 5.2’-("‘3—‘11 )

PROOF. From Corollary 2 it is sufficient to consider = even. From Case b we get z = 2™ as a
solution, and Case c gives X% + 22™~%) =¥3  If m —u = 0, then there is no solution [3], and if
m—u=1, then we get X =11,Y =5 [4], so z =11.2¢ =11.2™"! and y = 5.2 =5.2"F is a
solution. Finally for m — u > 1, the equation has no solution (Corollary 2)

THEOREM 5. The diophantine equation z2 + 22™ = y7 has a solution only if m = 3 (mod 7) and
the unique solution is given by z = 2™ and y = 2*%".

PROOF. If z is odd, then by using the same method as in [6] we can prove that the equation has no
solution Ifzisevenwegetz = 2™, y = 25" as the unique solution.

From the above three theorems we deduce that
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THEOREM 6. The diophantine equation (1 1), where n has no prime divisor p = 7 (mod 8) greater
than 7 and n|2m + 1 has a unique solution given by z = 2™ and y = 255 if (3,n)=1 Andif3|nit
has exactly one additional solution z = 11.2™ and y = 5.2%5

NOTE We consider two solutions of the equation (1.1) different if they have different values of z.

THEOREM 7. The diophantine equation z2 + 22™ = y” for given m > 0 and prime p has at most
one solution with z odd.

PROOF. We know that the solution is y = a® + 2™ where a is odd and

2=l
—1= S: ( p )ap-zr-x (_22m)f
2r+1 !

=0

if two different solutions were to arise from odd a; > a > 0, we should obtain

7 p-2r-1 __ _p-2r-1 I
= p al—_q__ __92m\T _ a, a
0—§<2r+1> @ —a? (-2 =p-g—g— (mod2) G4
Since p = 3 (mod 4) the number
a”—l —_ al’_l _ . -
S e b AL AL

is odd, so (3 4) is impossible
We need the following lemma to prove the next theorem.
LEMMA (Cohn [S]) If g is any odd prime that divides a, satisfying (3 3), then

2™ =1 (modg?).

THEOREM 8. If m is even and (5,m) = 1, then the diophantine equation (1.1) has no solution in
z odd.

PROOF. First suppose that 5|a in (3.3), then by the last lemma 28™ = 1(mod25) But ord(2)
mod 25 is equal to 20, so 20|8m, hence 5m, and so if (5,m) = 1, then (a,5) = 1. Since m is even so
22™ = 1(mod5) Ifa® = 1(mod5) then from (3.3)

12 ()-0)-(0)-~(3)

IS ST EL S
—3 (mod5)

which is impossible
Ifa®? = — 1 (mod5), then from (3.3)

1e=()-(5)-2)--() men

So, 1 = 27~! (mod 5) which is impossible since p = 7 (mod 8), and the theorem is proved.
NOTE. We can easily prove that: If m is odd, then equation (1.1) may have a solution in z odd
only if a> = 1 (mod5) Because if we suppose 5|a, then from equation (3.3) we get
2™PD =1 (mod25).

Hence 20|m (p — 1), showing thereby that m is even, and if we suppose that a> = — 1(mod5) then for
m odd 2™ = — 1(mod5), so (3.3) gives
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c1= = (2)+(B) - (7)ot

like before 1 = — 3 (mod 5) which is not true

THEOREM 9. The diophantine equation 22 + 2™ = y?, m > 1, (m,7) = 1 may have a solution
in z odd only if p = 7 (mod 24)

PROOF. Since 3|m, 2™ =1(mod7) Now (a £3)® = a? + 1(mod7), so if p = 7 + 8k and by
using (3.3) we have

_(@a+9P—(a—1)P
~1= S (mod?)

ko (a+4)" = (a—1)

= (2
= (a® +1) 5

(mod 7).
So (a? + l)k =1(mod7) We consider the different values of a If
1 a? =0(mod7), then from the last lemma 2'2™ = 1 (mod 49) but ord(2) mod 49 is 21, so 7|, hence
if (7,m) = 1, there is no solution in this case.
2. a®>=1(mod7), then 2* = 1(mod7),so k =0(mod3)andp=1 (mod3)
3 a?=2(mod7),then3* =1 (mod7),s0o k =0(mod6)and p=1 (mod3)
4. a® =4(mod7), then 5 = 1(mod7), so k = 0(mod6) andp=1 (mod3).
So if p =2 (mod3), there is no solution. Combining p = 7(mod8) and p = 1 (mod3) we get
p = 7(mod 24)
EXAMPLES. The equations z2 + 230 = 323 22 4 254 = 447 have no solutions in z odd

4. PARTICULAR EQUATIONS

In this section we consider some particular equations and solve them completely

EXAMPLE 1. Consider the equation z2 + 28 = 3 By Theorem 1 and Corollary 1 it suffices to
consider » odd and z even. Then Case b gives u=4, X =Y =1, ie z =2% Case c gives
8 > 2u = nv; then X? + (2“‘“)2 =Y", with X odd For 3|n the sole solution is X =11, u =3
whence r = 11.23, y =522, n = 3.

By using methods similar to the above and considering the equation X2 + 22(™~%) = Y™ in X odd
for 3 < u < m — 1 we can solve the equation z2 + 2™ = y* completely for 4 < m < 14 For the other
values of m > 15 we need also Theorems 4, 5, 6 and 9 to solve the case when z is even and n is odd.

EXAMPLE 2. Consider the equation z2 + 2% = y*  As in Example 1 we get from Case b
u=43, X =Y =1,ie z = 2% Case c gives 86 > 2u = vn, then X2 + (23-*)* = ¥, with X odd
For 3|n the sole solution is X = 11, u = 42 whence z = 11.242. Otherwise, all the prime factors of n
must be congruent to 7 modulo 8 but be unequal to 7 Thus since n < 86, n must be prime p Next, the
new m = 43 — u must be divisible by an odd power of 3, and v a multiple of p. The only possibility
would be u = p = 31, m = 12, so X? + 2% = Y3!, which has no solution by Theorem 8

EXAMPLE 3. Consider the equation z? + 21% =y As we solved before we find z = 2%,
y=2,n=199 Casec gives 198 > 2u = vn, then X? + (2%*)? = Y™ with X odd. For 3|n there is
no solution (Theorem 4). Otherwise as in Example 2, we get the only possibility u = 69, p = 23,
m = 30, so X? + 250 = Y23 which has no solution (Theorem 9).

By using the above methods we are able to verify the conjecture for m < 100 except possibly for the
values m = 3, 15, 21, 27, 30,33, 39, 44, 46, 51, 52, 57, 58, 60, 61, 64, 67, 68, 69, 70, 75, 77, 82, 83, 87,
88, 90, 91, 93, 94
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