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1. INTRODUCTION.
Throughout, by a space we shall mean a topological space. No separation axioms are assumed and

no map is assumed to be continuous or onto unless mentioned explicitly; cl(A) will denote the closure of
the subset A in the space X. A space X is said to be Tlat its subset _A if each point of A is closed in X. X
is said to be B-W Compact 1I.!1 if every infinite subset ofX has at least one limit point. A point x in X is

said to be a cluster point limi___t in the terminology of Thron 1]) of a subset A ofX if every
neighbourhood of x contains an infinite number of points of A. X is said to be a Frechet space if

whenever x e cl(A), there is a sequence of points in A converging to x.A map f:X Y is said to be

perfect if it is continuous, closed, and has compact fibers f-1 (y), y ey. For study of perfect maps, see

[2] and its references.

The prima_,’y purpose of this paper is to give relationships between continuous maps,closed maps,
perfect maps, and maps with closed graph. A generalization and an analogue of theorem 5 of Piotrowski

and Szymanski [3] and analogues of theorem 1.1.17 and corollary 1.1.18 of Hamlett and Herrington [4]
are also obtained.

NOTE. The definitions of subcontinuous and inversely subcontinuous maps can be found in Fuller

MAIN RESULTS.
THEOREM [4] .Let f:X Y be continuous, where Y is Hausdorff. Then f has closed graph.

THEOREM 2. Let f:X Y be closed with closed (compact) fibers,where X is regular (Hausdorff).

Then f has closed graph.
PROOF. We prove only the parenthesis part; the other part, which can also be proved in a simple

manner by using our proof of the parenthesis part, has been proved by Fuller [5,corollary 3.9]and by

Hamlett and Herrington [4, theorem 1.1.17] by different techniques. Let xeX, yeY, yCf(x). Then

xf-l(y), which is compact. Since X is Hausdorff, there exist disjoint open sets U and V containing
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x and f-1 (y) respectively. Then f is closed implies there exists an open set W containing y such that

f- (W)cV and therefore, f(U)W=. It follows that f has closed graph.
Combining theorems and 2, we get the following
THEOREM 3. Let f:X Y be perfect, where either X or Y is Hausdorff. Then f has closed graph.
The following theorem 4(theorem 5), part (b) of which is a generalization (analogue) of theorem 5

of Piotrowski and Szymanski [3], gives sufficient conditions under which the converse of theorem

(theorem 2) holds.

THEOREM 4. Let f:X Y have closed graph. Then f is continuous if any one of the following
conditions is satisfied.

(a) Y is compact,

(b) X is Frechet and Y is B-W compact,

(c) f is subcontinuous.

PROOF. We give the proof of part (b) only; part (a) is well known (corollary 2(b) of Piotrowski

and Szymanski [3],and theorem 1.1.10 of [4]), while part (c) is theorem 3.4 of Fuller [5]. Let F be a

closed subset of Y and let xeclf- l(F)-f- I(F). Since X is a Frechet space, there exists a sequence {Xn} of

points in f- (F) such that xn x. Since f has closed graph, the set H of values of the sequence f(xn) is

an infinite subset of the B-W compact set F and F is T at H. Therefore, H has a cluster point yeF,
y f(x), and the set U=X-f-1(y) is an open set containing x. Then xn x implies there exists a positive

integer no such that xneU for all n_>no. Again fhas closed graph and the set K={xn:n_>no}U{x} is

compact; it follows that f(K) is closed, which is a contradiction since it is easy to see that yeclf(K)-f(K).
Hence f must be continuous.

THEOREM. 5. Let f:XY have closed graph. Then f is closed if any one of the following
conditions is satisfied.

(a) X is compact,

(b) X is countably compact and Y is Frechet,

(c) f is inversely subcontinuous.

PROOF. We give the proof of part (b) only; part (a) is well known (corollary 2(a) of Piotrowski

and Szymanski [3]), while part (c) is theorem 3.5 of Fuller [5].Let F be a closed subset of X and let

yeclf(F)-f(F). Since Y is Frechet and T at f(X), there exists a sequence f(xn) }of distinct points

converging to y where xnF.Now the set of values of the sequence xn is an infinite subset of the

countably compact set F and therefore, it has a cluster point xeF, y f(x). Since Y is T at f(X), the set

V =Y-{ f(x) is an open set containing y. Then f(xn) y implies there exists a positive integer no such

that f(Xn)eV for all n_>o. Since fhas closed graph and the set K ={f(Xn):n_.>no}U{y is compact, it

follows that f- I(K) is closed, which is a contradiction since it is easy to see that xeclf- l(K)-f- I(K).
Hence f must be closed.

Combining theorems and 5(theorems 2 and 4), we obtain the following theorem 6 (theorem 7),

giving a relationship between continuous and closed maps. Theorem 6 includes theorem 16.19 of Thron

], while theorem 7 includes and gives analogues of corollary 1.1.18 of Hamlett and Herrington [4].
THEOREM 6. Let f:XY be continuous, where Y is Hausdorff and one of the conditions (a), (b),

(c) in theorem 5 is satisfied. Then f is closed.

The condition that X is countably compact in theorems 5(b)and 6(b) cannot be replaced by the

weaker condition that X is B-W compact,as the following example shows.

EXAMPLE. Let X=N, the positive integers, with a base for a topology on X the family of all sets

of the form {2n-l,2n},neN, and Y={0,1,1/2 l/n as a subspace of the real line. The map f:X Y,

defined by f(2n-1)=l/n-l=f(2n) for >n.2 and f(1)---0=f(2), is a continuous surjection which is not closed,

although X is B-W compact and Y is Frechet, Hausdorff.
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THEOREM 7. Let f:X Y be closed with closed (compact) fibers, where X is regular (Hausdorff)
and one of the conditions (a), (b), (c) in theorem 4 is satisfied. Then f is continuous(perfect).

Combining theorems and 4, we obtain the following relationship between continuous maps and

maps with closed graph.
THEOREM 8. Let f:X -Y be any map, where Y is Hausdorff and one of the conditions (a), (b),

(c) of theorem 4 is satisfied. Then f is continuous if and only if it has closed graph.

Combining theorems 2 and 5, we obtain the following relationship between closed maps and maps
with closed graph.

THEOREM 9. Let f:XY be any map with closed (compact) fibers, where X is regular
(Hausdorff) and one of the conditions (a), (b), (c) of theorem 5 is satisfied. Then f is closed if and only

if it has closed graph.
Combining theorems 3,4 and 5, we obtain the following relationship between perfect maps and

maps with closed graph.
THEOREM 10.Let f:X -Y be any map with compact fibers, where either X is Hausdorff or Y is

Hausdorff and one of conditions (a), (b), (c) of theorem 4 and one of the conditions (a), (b), (c) of

theorem’5 are satisfied. Then f is perfect if and only if it has closed graph.
COROLLARY. Let f:X -Y be a bijection and one of the conditions (a), (b), (c) of theorem 4 and

one of the conditions (a), (b), (c) of theorem 5 be satisfied.Then f has closed graph if and only if it is a

homeomorphism and both X,Y are Hausdorff.

Combining theorems 8,9,and 10 we obtain the following

THEOREM 11. Let f:XY be any map with closed (compact) fibers,where X is regular

(Hausdorff), Y is Hausdorff, and one of the conditions (a), (b), (c) of theorem 4 and one of the

conditions (a), (b), (c) of theorem 5 are satisfied. Then the following conditions (i) to (iii) (i) to (iv)}

are equivalent.

(i) f is continuous.

(ii) f is closed.

(iii) f has closed graph.
(iv) f is perfect.
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