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ABSTRACT. i this article we will mvestigace te reflection and dissipation of Alfven waves, resulting
from a uniform vertical magnetic field, in a viscous, resistive and isothermal atmosphere. It is shown that
the atmosphere may be divided into two distinct regions connected by an absorbing and reflecting
transition layer. In the transition layer the reflection, dissipation and absorption of the magnetic energy of
the waves take place and in it the kinematic viscosity changes from small to large values. In the lower
region the effect of the resistive diffusivity and kinematic viscosity changes from small to large values. In
t.he lower region the effect of the resistive diffusivity and kinematic viscosity is negligible and in it the
solution can be represented as a linear combination of two, incident and reflected, propagating waves
with different wavelengths and different dissipative factors. In the upper region the effect of the resistive
diffusivity and kinematic viscosity is large and the solution, which satisfies the prescribed boundary
conditions, will behave as a constant. The reflection coefficient, the dissipative factors are determined
and the conclusions are discussed in connection with solar heating.
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1. INTRODUCTION

It is well known that the solar corona is extremely hot, the typical temperature is 2 x 10°K, at heights
in excess of 2000 Km, compared with 5 x 10°K, temperature minimum, in the atmosphere (see Priest [3]
for references). As a result, thermal energy must be continually supplied to maintain this temperature
against radiative cooling. The old ideas for coronal heating were that of sound waves being generated in
the convection zone that could propagate through the solar chromosphere, steeping into shocks and to
give global heating. Sound waves have been ruled out in connection with coronal heating, however,
because their low group velocity means that they cannot supply the necessary energy However, the
remnants of this idea remain. Recent theories of the solar heating invoke, strongly, the magnetic energy
dissipation as a source of thermal energy. In particular, recent investigations are focusing on the
dissipation of magnetic energy, resulting from a vertical magnetic field, and its role in the heating process
of the solar atmosphere.

The aim of this paper is to investigate the combined effect of the electrical conductivity and the
viscosity on the reflection and dissipation of Alfvén waves, resulting from a uniform vertical magnetic
field, in an isothermal atmosphere. It is shown that if the effect of the viscosity is small compared to that
of the resistive diffusivity the atmosphere can be divided into two different regions. In the lower region
the influence of the resistive diffusivity and kinematic viscosity is negligible and the solution can be
written as a linear combination of incident and reflected waves with different wavelengths and different
dissipating factors. In fact the wavelength factor of the reflected wave is smaller than that of the incident
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wave. This indicates that the magnetic energy which dissipates from the incident wave is larger than that
of the reflected wave and the difference in the magnetic energy of the reflected and the incident waves
represents the dissipated energy in the transition region. Moreover, the dissipative factors are a function
of the electrical resistivity and the dynamic viscosity. In the upper region the effect of the resistive
diffusivity and the kinematic viscosity is large. As a result, the solution, which satisfies the dissipation
condition, behaves as a constant. The lower and the upper regions are connected by a transition layer in
which the kinematic viscosity changes from small to large values because of the exponential decrease of
the density with height. Moreover, in the transition region the reflection and dissipation of Alfvén waves
take place. The differences in both, wavelengths and dissipating factors, result from the absorption and
dissipation process of the magnetic energy in the transition layer. the reflection coefficient and the
dissipative factors are determined. The conclusions are discussed in connection with the process of the
heating of the solar atmosphere.

2. MATHEMATICAL FORMULATION OF THE PROBLEM

We will consider an isothermal atmosphere, which is viscous and resistive, and occupies the upper
half-space z > 0. It will be assumed that the gas is thermally non-conducting and under the influence of a
uniform vertical magnetic field. We will investigate the problem of small oscillations about equilibrium,
i.e. oscillations which depend only on time %, on the vertical coordinate 2 and on the horizontal
coordinate z.

Let the equilibrium pressure, density, temperature and magnetic field strength be denoted by Py(z),
po(z), To, and By(x), where Py(z), po(z) and Ty satisfy the gas law Py(z) = RTppo(z) and the
hydrostatic equation Fj(z) + gpo(z) = 0. Here R is the gas constant, g is the gravitational acceleration
and the prime denotes differentiation of the pressure with respect to z. The equilibrium pressure and
density,

Fy(z) = B(O)exp( - z/K), po(x) = po(0)exp( - z/K), @n

where K = RTy/g is the density scale height.

Let p(z, 2,t), p(z, 2,t), V(z,2,t), and h(x,z,t) be the perturbations quantities in the pressure,
density, velocity, and the magnetic field strength.

Alfvén waves are incompressible because they have motions transverse to the magnetic field, i.e. they
do not couple to slow or fast magnetohydrodynamics waves in a homogeneous medium, Priest [3]. Asa
result, they can be described only by the induction and momentum equations and dissipation of linear
waves is not affected by thermal conduction or radiation. Thus, the equations of motion are'

H
—aa-T-!- v x(HxV) = — vx[(ﬁ) vxﬂ], 22)

Po[%:l"'*(v'v)v] + vp—g/r>+4i,r [Hx( v xH))
=vyiV+(vr-v)V+v v (v V) (23)

where H(x,z,t) = B(x)e, + h(x,z,t)e,, v =& % +e a% +e 2, V(x) =v(z,2t)ey and u is the
permeability of the magnetic field, Alkahby [3,8]. Here v and v~ are, respectively, the incompressible
and compressible viscosities. Moreover, ¢ denotes the speed of light in vacuum and o is the Ohmic
electrical conductivity. The induction equation (2.2) balances magnetic field oscillation, velocity
transport along the magnetic field lines and compressibility against resistive dissipation by Ohm effect, the
Hall effect being omitted. The momentum equation (2.3) balances the inertia force and pressure gradient
against weight, magnetic and viscous forces.
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In thxs amcle we will consider the case of a uniform vemcal magnetic field Bo(x) = Bo, as well as

n= 41rp<7
Alfvén speed can be written in the followmg form
v(z) = (v/po(0))e*/¥, (2.9)
ca(z) = ca(0)e*/*, 2.5)

where c4 = \/p1/4mpg(0) By. Moreover, the linear forms of equations (2.2) and (2.3) are:
D,h(z, 2,t) — n[D,.h(z, 2,t) + Dyzh(z, 2,t)] = ByD,v(z, 2,t), (2.6)

Dyv(z, 2,t) — v(z)[D,,v(z, 2,t) + Dypv(z, 2,t)] = (c4/Bo) D.h(z, 2, t). 2.7

In addition, the velocity v(z, 2, t) can be eliminated to obtain an equation for h(z, 2,¢,) only This can
be accomplished by differentiating equations (2.6) and (2.7) with respect to ¢ and using equation (2.7).
The resulting differential equation is

Dyh(z, z,t) — 4e*/¥ D,,h(z, 2,t) = (n + ve*/X) D,[D..h(z, 2,t) + Dih(z, 2,t)).  (2.8)

BOUNDARY CONDITIONS. To complete the problem formulation certain boundary conditions
must be imposed to ensure a unique solution. Since the gas is viscous and resistive the dissipation
condition will be necessary and sufficient, as an upper boundary condition, to ensure a unique solution.
the dissipation condition requires the finiteness of the rate of the energy dissipation in an infinite column
of fluid of a unit cross-section. This implies,

00
/0 |R(z, k,t)[*dz < oo, (2.9)

where R(z, k,t) denotes the magnetic field spectrum of a wave with frequency w, wavelength k and at
the position z (see equation 3.5). This boundary condition will not be applicable if v = o = 0, but it will
be applicable if v # 0 or o # 0. Moreover, a boundary condition is also required at z = 0, and we shall
set

R0, k,t) =1, (2.10)

by suitably normalizing h(z, k,t). It will be seen that these boundary conditions will ensure a unique
solution to within a multiplicative constant.
3. SOLUTION OF THE PROBLEM

In this section we will investigate the behavior of the solution of the differential equation (2.8) and we
shall determine a series solution and obtain the asymptotic behavior of the solution. We can use Fourier
representation in z and t for the magnetic field perturbation h(z, z,t) because the properties of the
atmosphere depend on z only. In other words the magnetic field h(z, 2,t) is given by the following
Fourier representation

h(z, 2,t) = /w dm/oo R(z, k,t)exp[i(kz — wt)]dk, 3.1)

where R(z, k,t) denotes the magnetic field perturbation spectrum for a wave of frequency w, transverse
wavenumber k at a position z. Moreover, we will introduce the following dimensionless parameters,

' =z/K, B=kK, a;=wK/cs(0), ar =ww/c4(0), a3z =ney/v, a =az/a3. (3.2)
where the prime on the dimensionless variable = is omitted for simplicity. After the substitution of

equation (3.1) and the dimensionless parameters, defined in equation (3 2), into equation (2.8), we have
the following differential equation
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(1+e7*/a)D*R(z, k,w) — [B2(1 — ias) + (B /a — i1 /as)e | R(z, k,w) = 0, (33)

where d = d/dx. Since the solution will depend on p/a, it will be convenient to introduce a new
dimensionless variable x defined by

xX= —€e7%/q, 34
then the operator D? goes over into

D? = x2d2/dx2 + xd/dx.

For fixed value o > 0 the point x = 0 corresponds to z = oo, the point xo = — 1/a to z = 0 and the
segment connecting these points in the complex x-plane to z > 0. Moreover let
R(x, k,w) = x"®(x), (3.5)

then differential equation (3.3) can be written in the following form where the prime denotes the
derivative of ® with respect to x,

x(1=x)®"(x) +[1+2r — 01 +2r)x]®’ — i(a?/a3 — fPag)®(z) = 0, (3.6)

provided that the parameter r satisfies the following relation

r=6y/1—1ia,. (€)]
It is clear that he differential equation (3.3) is a special case of the hypergeometric equation
[x(1 = x)D* + (c - (1 +a+b)x)D — ab] &(x) =0, (3.8)
with
c=1-2r, a+b=2r, ab=i(al/a3— Bray). (3.9)

Moreover, equation (3.6) has three regular singular points, x = 0, x = 1, and x = oo. The intermediate
regular singular point x =1 corresponds to the reflecting layer. Solving for the dimensionless

parameters a and b we have
a-—ﬁ[ 1—iag +\/l—ia%/ﬁ2a3], (3.10)
b=ﬂ[\/l—ia2 - \/1-’5&%/@03]. ) 311

For |x| < 1, the hypergeometric equation (3.6) has two linearly independent solutions of the following
form:

@1(x) = F(a,b,2,x), (3.12)
O(x)=xTFla—c+1,b—c+1,2~¢,x), (313)
where
= (@b x* _ T(e) Fa@+nl(+n) x*
F(a,b,2,x) =) O W = T@r® Z Tern) ot (3.14)

n=0 n=0

For |x| > 1 and |arg( — x)| < =, the solution of equation (3.6) can be written in the following form:
<I>¢(x)=(—x)'“F(a,l—c+a,1—b+a,x‘l), (315

& (x) = (—x)*F(b,1-c+b1—a+bx?). (3.16)
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The second solution ®5(x) will be eliminated by the boundary condition (2.9) because it increases to
infinity as z — oo. As a result, the solution of the differential equation (3.6), which satisfies the
dissipation condition, is a multiple of $,(x), i.e.

®(x) = C®1(x) = CF(a,b,cx), (3.17)
where C is a constant which can be determined from the boundary condition (2.10). For |x| > 1,

larg( — x)| < 7, the analytic continuation of the solution of the differential equation (3.6) can be written
like:

gg:))g((?:—: Z; (=x)F(b,1—c+b1—a+b, x'l)]. (3.18)

For |x| > 1 and |arg( — x)| < 7 the asymptotic behavior of the solution, defined in equation (3.8), as
a — 0 can be obtained by retaining the most significant terms in equation (3.18), the resulting equation is

Le)'b—a —e , L(e)'(a—b) -
@(x)=0[m(—x) +r—(am(—x) "]~ (3.19)

4. MAGNITUDE OF THE REFLECTION COEFFICIENT AND CONCLUSIONS

In this section we will investigate the behavior of the solution of the differential equation (3.6) defined
by the hypergeometric function (3.17) and its asymptotic expansion defined by equation (3.19). In
particular, we will determine the reflection coefficient and the dissipative factors To do this we have to
make use of the dimensionless parameters a and b. It is easy to see that

a=ﬂ[ 1—ia2+,/1—ia'~{/ﬁ2a3] = d; — id,, @.1)

b= ﬂ[\/l —da; —4/1 —ia’{/ﬁ?as] = —dy +1d,. 4.2)

It is clear that d; > dy and d, > d;. Reintroducing the original variable z via (3.4), the equation (3.19)
can be written in the following form

T'(c)T'(a — b)exp( — ds + idy)loga
L'(a)['(c — b)

() ~ c[ ] fexpl( = dp + idy)z] + Rexpl(ds — idg)zl], (4.3)

where R denotes the reflection coefficient obtained from the ratio of the amplitudes of the reflected and
incident waves and defined by

_T@(c-br'®-a) _ .

R= o) (c —a)T(a—b) exp( 2ﬂ(1/ 1 za%/ﬁzay,)loga). 4.4)

The constant C can be determined from the boundary condition (2.10). As a result,
¢ = L(@T(c — blexp(dp — idy)logex

I'(c)l'(a — b)[1 + R] ’ @5)
and equation (4.3) can be written in the following form
&(z) ~ [1 i R] [exp[( — d2 + idp)z) + Rexp[(d; — id,)z]]. “46)

As a consequence of the above results and discussion we have the following conclusions.
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[A] Equation (4.3) represents the behavior of the solution of the differential equation (3.6), which
satisfies the prescribed boundary conditions, in the lower region. It indicates that the solution can be
written as a linear combination of an incident and a reflected wave. In the upper region the solution,
which satisfies the dissipation condition, should behave like a constant. These two regions are connected
by a transition region.

[B] In the transition region the reflection, dissipation and modification of the waves takes place.
Moreover, the kinematic viscosity changes from small to large values because of the exponential decrease
of the density with z.

[C] The incident wave decays exponentially like exp( — doz), while the reflected wave decays like
exp( — dyz). Since d; > do, the dissipative factor of the incident wave is larger than that of the reflected
wave. On the contrary, the wavelength of the reflected wave A\, = 2m/d, is smaller than that of the
incident wave A, = 27/d,, because d, > d;. This indicates that the larger part of the dissipated magnetic
energy comes from the incident wave.

[D] The dissipative factors are functions of the dynamic viscosity and electrical conductivity and they
behave like exponentially decaying waves. This indicates that the magnetic energy of the wave dissipates
as the wave propagates, upward and downward, but still most of the dissipation of the magnetic energy
takes place in the transition region.

[E] The reflected wave, from the transition region, will be reflected upward at the boundary of
z = z = 0. Reflection and dissipation of the waves will continue, in the lower region, until the energy of
the waves dissipates completely.
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