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ABSTRACT. In this work, we give an adaptive grid generation method which allows a single point to be

added in the regions of large variation. This method uses a quadrature rule as a weight function. Our

Weight fimction measures the variation ofthe solution function on each subinterval ofthe solution domain.

The method is applied to obtain the numerical solutions ofsome differential equations. A comparison of

the numerical solution obtained by this method and other methods is given.
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1. INTRODUCTION

It is well known that the choice ofthe mesh points plays an important role in the accuracy ofthe

numerical solution ofdifferential equations. For example, when the solution has large variations like large

gradients, peaks, or boundary layers in some parts ofthe solution domain, we need more grid points in

such regions than in regions where the solution changes smoothly. This type omesh generation is known

as adaptive grid generation.

During the last two decades, a significant interest in generating and applying adaptive grids to the

numerical solutions of differential equations is surfaced (see for example Denny and Landis ]; Eiseman

[2]; Lentini and Pereyra [3]; Matsuno and Dwyer [4]; and Thompson [5]). The common property ofmost

adaptive grid methods is that they divide the solution domain into subintervals such that some positive

weight function has roughly equal value over each subinterval. Most adaptive grid generation methods

differ from each other in the choice ofthe weight fimction and agree in calculating the value ofthe given

weight function at a single point. Most forms ofthe weight functions used in literature depend on the first

derivative, or the second derivative, or the tnmcation error ofthe solution.

Equidistdbution schemes in literature usually use a cm4tinear coordinate transformation to

transform the physical domain into a computational domain where the mesh points are equally spaced and

then construct the adaptive mesh by using the differential equation
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wx +x 0
w

where w is the given weight function. In the nxt section, we show that the use of such techniques

introduces a numerical diffusion to the solution ofthe problem under consideration.

In this paper, we give an adaptive grid generation method based on using a quadrature rule as a

weight function If the variation ofthe solution is large on a subinterval, then the quadrature will be

large. The advantage of our weight function is that it is calculated on a subinterval ofthe solution

domain, not at a single point ofthat domain. To avoid the numerical diffusion introduced in most adaptive

methods, we use finite differences on irregular grid to solve the given problems in the physical domain

without the use ofany transformations.

2. FINITE DIFFERENCES AND TRUNCATION ERRORS

Adaptive methods in literature usually use a curvilinear coordinate transformation to transform the

physical domain into a computational domain where the mesh points are equally spaced. A one

dimensional transformation can be written as

x(= p(- 0_<<N (2.1)

where N is the number ofsubintervals in the solution domain, i.e., h l/N, h is the step size in the uniform

mesh. The first and second derivatives ofthe solution in physical domain take the form

and

uu,, (2.2)
xg

ugg ugxg
(2.3)xx x x

in the computational domain. Hoffman [6] compared the tnmcation errors ofthe first derivatives ofthe

solution function in the physical and computational domains. Thompson et al. [7] proved that if u is
x

approximated in the physical domain by using a central difference for u and the exact value of x, then

the truncation error in equation (2.2) is given by

T
-1 oo -1 oo

g(D- XDx)2n +1u Y + u (2.4)
(2n+1)! 2n+1 (2n+1)x Xn_l Xn=l

The dominant part of T is
x

h2p
u h2pu h2pUxxx (2.5)T1 =-6--- x-- xx -g

The first term of T contains a numerical viscosity UxWhich usually causes troubles and may distroy the

solution. This term can be eliminated ifwe use central difference approximation for x. In this case, we

have

U U(’+I U(’-I +T. (2.6)u
Xg X+ X,_
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The dominant part of isx

l(Xi+l xi)3 _xi)3-(xi_T2=--(xi+l-2xi+x )uxx 6 o+l-Xi_l
u (2.7)

In the physical domain, the first derivative u
x

as follows (see fig. 2.1)

can be approximated by using the central difference

u(x )-u(x
u +1 -1 Tx hl +h2 x

where the dominant part ofthe mmcation error is given byx

(2.8)

-(h12-h +h22)u (2.9)T3 -(h2 hl)Uxx lh2 xxx

The dominant part of the tnmcation error in equation (2.9) is the same as that given in equation (2.7).

Hence, the central difference approximation of the first derivative u has the same truncation error inx

both physical and computational domain.

Now, we compare the truncation errors for the central difference approximation of the second

derivative u in the physical and computational domains. In the physical domain, we have

2[hlU(X +h
2 )+h2u(xi_l )]

u +1 -(hl )u(xi +T (2.10)xx hlh2 (h +h2 x

(2.11)

The main part ofthe mmcation error T is

T
4 =-(h2 -hl)Uxxx -’2(h12- hlh2 +h)Uxxxx

In the computational domain, we have

u

u(i+l)-2u(i)+u(_ 1) (u(i+l)-U(i_l)XX +l-2Xi +xt_ 1)

Xi+l-Xl-1 2 x/+l-Xi-
2 2

where the dominant part ofthe truncation error T is given by

/T (2.12)
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(h2 -h)
2 (h2 -h)

2

T5 (h +h2)2 Uxx --(h2 -hl)[1 )2 ]Uxxx
(2.13)

(h +h2

The first term in equation (2.13) is troublesome since it depends on the derivative u which is being

approximated. Tiffs term vanishes only when h h
2 This leads to uniform mesh in the physical domain

which is not our interest in this work.

Hence, the use ofcentral differences for the derivatives ofthe transformation which eliminate the

term u in the tnmcation error ofthe first derivative now introduces an error that depend on u Thisx xx

error introduces a numerical diffusion.

From the above discussion, it is clear that the truncation errors ofthe first derivative u and the
x

second derivative u (as shown in equations (2.7) and (2.13)) contain a numerical diffusion term in the

computational domain while in the physical domain, there is a numerical diffusion term only in the

truncation error of the first derivative (see equation (2.9)). De Rivas [8] suggested the following

approximation

x hlh2 (h +h2)
which has the main pan ofthe truncation error

T6 hlh2Uxxx
Therefore, it is preferable t solve a problem in the physicaldthan t solve it in the cmpttil

domain. A compariso f the maximum error between the exact sotuti and the uerical soluti

btained in physical and compmatial dmains is given in exale 4.1.

Manteffel and WNte [9] showed that the difference scheme obtained by using equations (2.10)

ad (2.14) yields a second order accate solutio deite the fct that the trcati error is flwer

rder.

3. CONSTRUCTION OF ADAPTIVE MESH

In this section, we describe our procedure for constructing the adaptive mesh. To illustrate this,

let us consider the differential equation

au +bu +cu=g 0<x_<l (3.1)xx x

where a, b, c, g are, in general, functions ofx and the boundary values u(0) and u(1) are given.

Let u(x) eC4[0,1] be an approximate solution of equation (3.1) obtained by some interpolation of

the discrete numerical solution obtained on crude uniform mesh. For example, the function u(x) can be

approximated by using spline or any piecewise polynomial approximations. In this work, we use quadratic

spline polynomial to approximate the solution. Then by considering the midpoint Xm=(Xi + xi +1) 2.

the error of Sknpson’s rule applied to the subinterval [xi, x + is given by

-1E,(u) ’"u(x)dx--g(x,+-x)[u(x,)+4u(x.,)+u(x,+)]=-(Xi+l-Xi)5Uxxxx(i (3.2)
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%vhere x.< i < x.+l If we consider the two points xg=(3xi+xi+l)/4 and

x
r =(x +3xi+ 1)/4, then the error becomes

EZ, (u) I" u(x)dx+ f.,,..... u(x)dx- --(x,+,l x,)[u(x,)+4u(xt)+2u(x,,)+4u(x,.)+u(x,/i)

..1where x < ’i < x
- (c,)] (3.3)

92160 (xi+ xi)5[Uxxxx ()+Uxxxx

m
and x

m
< ’i’2 < xi+ 1. By subtracting equation (3.2) from equation (3.3), we get

-(x,/ x, lu(x, )-4u(xe) + 6u(xm )- 4u(xr + u(x, + 1)

_-19216__ xi + xi)5[Uxxxx (;) + uxxxx (;)-32uxxxx (;i)[ (3.4)

Hence El,U) <
17

4i080 (xi + xi )5u()

of Equation (3.4)

rret e e=or of Sneone btewal [xi,x + 1]. ffefodaeu has a

ge vue on a btaL we have a gevofe or tion (3.4). hs ca,

we add e dpot x to e m pots d reateprocededme goppg cdte is
m

fisfied. R woatenmedcal retsdd one propeRies ofe d. ffe me ratio

is ge, e converg ofekae lufion modybe log. h work, we

ratio Mn to be 4 S Mn 4. sworLeprocede ofcongadapemwas to op

wh en of adapte me pots is e e as eom. procedec be

ehed efoflog algo

ALGOM

approte fion u of equation (3.1) obtmed on a omepots {x },

i=0,1,2 N. eapeme {z be COhered as e foRog ,s

1. Stm eomepots z x i=0,1,2,...,N.

2. Co,mee e=or E. eqfion (3.4) on each btewal [z zi
3.Deebtalofeor, ym

4. Updateemepots {zi} to cludeedpot of [Zm_ 1,Zm].
5. geat gs 2-4 tfle oppg cdt tfied.

4. NUMERICAL RESULTS

In this section, we give the numerical solution of some examples on adaptive mesh which is

generated by the above algorithm. A comparison ofthe numerical solution obtained on the adaptive mesh

and on a uniform mesh is given.
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d2u
EXAMPLE 4.1. --+4u 20x +4x 0_< x <

dx

In this example, we compare the numerical results obtained in the physical and computational domain. The

boundary conditions are obtained fi’om the exact solution u(x)= x5. The results are given in table 4.1.

Also, a comparison of the numerical results obtained by our method and some other methods is given in

table 4.2. The adaptive mesh is shown in fig. 4.1.

d2u du
0 0_<x_<lEXAMPLE 4.2.

dx
q
dx

with the boundary conditions u(0) 0 and u(1)= 1. This example is considered by Lick and Gaskins

[10]. It has a boundary layer ofthickness 1/q near the fight boundary. Numerical results for q=20 are

given in table 4.3, and the adaptive mesh is shown in figure 4.2.

rx d2u duEXAMPLE 4.3. +-- 0 0 _< x _<
r- dx dx

where the boundary conditions are u(0) 0 and u(1) 1. The first and higher order derivatives ofthe

solution function have singuhdfies at x=0 for r > 1. The numerical readts obtained for 1.25 are given

in table 4.4, and the adaptive mesh distribution is shown in figure 4.3.

d2u duEXAMPLE 4.4 --+re+m=0 0<x<l t>l/4
dx dx

with boundary conditions u(0) 0 and u(1) sm(x/- 1). Numerical results given in table 4.5 are due

to t=l0. The adaptive mesh is shown in figure 4.4.

REMARK. In all tables, adaptive, adaptive2, and adaptive represent the numerical results on

adaptive grid obtained by using the first derivative, second derivative, and our quadrature rule (equation

(3.4)) as a weight function.

Transformation

x() (e 1)/(e- 1)

x()=’

No. of Subintervals Abs. Max. Error in
Phys. Domain

32 23 x 10-5

64 59 x 10- 50x 10-5

32 18 x 10-6 30x 10-5

64 4 x 10-6 75 x 10-6

Table 4.1. Numerical Results of Example 4.1 in Physical and Computational domain

Mesh Type Absolute Maximum Error

Abs. Max. Error in
Comp. Domain

20x10-4

80 Subintervals 160 Subintervals 320 Subintervals
uniform 48 x 10-6 25 x 10-6 14 x 10-6

adaptive 29 x 10-6 16 x 10-6 7 x 10

adaptive 13 x 10 8 x 10-6 3 x 10-6

adaptive 67 10-7 39 x 10-7 12 x 10

Mesh Type

Table 4.2. Numerical Results of Example 4.1

Absolute Maximum Error
80 Subintervals 160 Subintervals 320 Subintervals

umform 20 x 10- 49 x 10-5 15 x 10-adaptive 14 x 10 42 x 10-5 13 x 10-5

adaptive 72 x 10-5 30 x 10-5 48 x 10-adaptive 10 x 10-5 29 x 10-.6 8 x 10-6

Table 4.3. Numerical Results of Example 4.2
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Mesh Type bsolute Maximunn Error
80 Subintervals 160 Subintervals 320 Subintervals

uniform 30)< 10.4
18 10-4 x 10

adaptive 26 10.4 13 10 97 0-adaptive 21 10.4 98 0- 73 0-adaptive 14 x 10.4 53 x 10- 24 x 10-
Mesh Type

uniform

adaptive’
adaptive
adaptive

Table 4.4. Numerical Results of Example 4.3

Ab"s’o’iute Mai’mm Error
80 Subintervals 160 Subintervals

17 x 10-J 72 x 10
40x 10.4 18x I0-23 x 10.4 6 x 10-4
6 x 10.4 20 x 10-Table 4.5. Numerical Results of Example 4.4

320 Subintervals

llx 10-4
71 x I0-16 x I0-6xlO-

Fig. 4.1. Adaptive Mesh for Example 4.1
with 80 Subintervals

Fig. 4.3. Adaptive Mesln for Examifle 4.3
with 80 Subinten,ais

Fig. 4.2. Adaptive Mesh for Example 4.2
with 80 Subintervals

Fig. 4.4. Adaptive Mesh fr Example 4.4
with 80 Subintervals
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5. CONCLUSIONS

In this work, we have analyzed the numerical solution of differential equations in the physical and

computational domains. The difference approximations ofthe first derivatives have the same truncation

errors in both domains while the difference approximations ofthe second derivatives introduce artificial

viscosity in the computational domain. The artificial viscosity can be avoided by solving the differential

equations in the physical domain.

The adaptive grid generation methods generates a well suited mesh for the problems under

consideration specially ifthe solution ofthese problems has a large variation in some parts ofthe solution

domain. Also the use of adaptive methods does not require any priori knowledge about the solution or

even the locations ofks large variations.

The numerical results presented in this paper show that the error obtained by using our adaptive

method is ofalmost 50% ofthe error obtained by using other methods.
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