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ABSTRACT. In this work, we give an adaptive grid generation method which allows a single point to be
added in the regions of large variation. This method uses a quadrature rule as a weight function. Our
‘eight function measures the variation of the solution function on each subinterval of the solution domain.
The method is applied to obtain the numerical solutions of some differential equations. A comparison of

the numerical solution obtained by this method and other methods is given.
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1. INTRODUCTION

It is well known that the choice of the mesh points plays an important role in the accuracy of the
numerical solution of differential equations. For example, when the solution has large variations like large
gradients, peaks, or boundary layers in some parts of the solution domain, we need more grid points in
such regions than in regions where the solution changes smoothly. This type o'fmesh generation is known
as adaptive grid generation.

During the last two decades, a significant interest in generating and applying adaptive grids to the
numerical solutions of differential equations is surfaced (see for example Denny and Landis [1]; Eiseman
[2]; Lentini and Pereyra [3]; Matsuno and Dwyer [4]; and Thompson [5]). The common property of most
adaptive grid methods is that they divide the solution domain into subintervals such that some positive
weight function has roughly equal value over each subinterval. Most adaptive grid generation methods
differ from each other in the choice of the weight function and agree in calculating the value of the given
weight function at a single point. Most forms of the weight functions used in literature depend on the first
derivative, or the second derivative, or the truncation error of the solution.

Equidistribution schemes in literature usually use a curvilinear coordinate transformation to
transform the physical domain into a computational domain where the mesh points are equally spaced and

then construct the adaptive mesh by using the differential equation
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where w is the given weight function. In the mext section, we show that the use of such techniques
introduces a numerical diffusion to the solution of the problem under consideration.

In this paper, we give an adaptive grid generation method based on using a quadrature rule as a
weight function . If the variation of the solution is large on a subinterval, then the quadrature will be
large. The advantage of our weight function is that it is calculated on a subinterval of the solution
domain, not at a single point of that domain. To avoid the numerical diffusion introduced in most adaptive
methods, we use finite differences on irregular grid to solve the given problems in the physical domain

without the use of any transformations.

2. FINITE DIFFERENCES AND TRUNCATION ERRORS
Adaptive methods in literature usually use a curvilinear coordinate transformation to transform the
physical domain into a computational domain where the mesh points are equally spaced. A one

dimensional transformation can be written as

x(&) = p(—]%) 0<E<N 2.1)

where N is the number of subintervals in the solution domain, i.e., h=1/N, h is the step size in the uniform
mesh. The first and second derivatives of the solution in physical domain take the form

u,
u =%, (2.2)
Xg
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in the computational domain. Hoffman [6] compared the truncation errors of the first derivatives of the
solution function in the physical and computational domains. Thompson et al. [7] proved that if u is

approximated in the physical domain by using a central difference for ué and the exact value of xé , then

the truncation error in equation (2.2) is given by
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The first term of T1 contains a numerical viscosity uxwhich usually causes troubles and may distroy the

solution.  This term can be eliminated if we use central difference approximation for xg . In this case, we

have

% _uGu)-u@o) ¢ (2.:6)
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Fig. 2.1. A Mesh Distribution in Physical and Computationa] domain

In the physical domain, the first derivative u_ can be approximated by using the central difference

as follows (see fig. 2.1)

S s T L

u (2.8)
x ]11 +h2 x
where the dominant part of the truncation error T; is given by
N P g2 2
T3 = E(h2 hl)uxx 6(h1 hlh2 +h2 )um 2.9)

The dominant part of the truncation error in equation (2.9) is the same as that given in equation (2.7).

Hence, the central difference approximation of the first derivative u has the same truncation error in

both physical and computational domain.
Now, we compare the truncation errors for the central difference approximation of the second

derivative u in the physical and computational domains. In the physical domain, we have

_ 2[hlu(xi+1)—(h1 +112 )u(xi)+h2u(xi _ l)] oT

u (2.10)
XX hlhz(hl +h2) xx
The main part of the truncation error Txx is
e _ _Lm2o 2
T, = 3(h2 hl)uxxx 5 (b3 h]h2 +h2 ) LN (2.11)
In the computational domain, we have
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where the dominant part of the truncation error T;cx is given by
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The first term in equation (2.13) is troublesome since it depends on the derivative u which is being
approximated. This term vanishes only when h1 = h2‘ This leads to uniform mesh in the physical domain
which is not our interest in this work.

Hence, the use of central differences for the derivatives of the transformation which eliminate the
term u_ in the truncation error of the first derivative now introduces an error that depend on u This

error introduces a numerical diffusion.

From the above discussion, it is clear that the truncation errors of the first derivative u and the
second derivative u (as shown in equations (2.7) and (2.13)) contain a numerical diffusion term in the
computational domain while in the physical domain, there is a numerical diffusion term only in the
truncation error of the first derivative (see equation (2.9)). De Rivas [8] suggested the following
approximation

h2u(x (hf —h%)u(xi)-—hgu(xi )

)-
v =L 2 = (2.14)
iz (B; +hy)

which has the main part of the truncation error

hlhzuxxx
Therefore, it is preferable to solve a problem in the physical domain than to solve it in the computational
domain. A comparison of the maximum error between the exact solution and the numerical solution
obtained in physical and computational domains is given in example 4.1.

Manteuffel and White [9] showed that the difference scheme obtained by using equations (2.10)
and (2.14) yields a second order accurate solution despite the fact that the truncation error is of lower

order.

3. CONSTRUCTION OF ADAPTIVE MESH

In this section, we describe our procedure for constructing the adaptive mesh. To illustrate this,
let us consider the differential equation

auxx+bux+cu=g ) 0<x<1 3.1)

where a, b, ¢, g are, in general, functions of x and the boundary values u(0) and u(1) are given.

Let u(x) € C*[0,1] be an approximate solution of equation (3.1) obtained by some interpolation of
the discrete numerical solution obtained on crude uniform mesh. For example, the function u(x) can be
approximated by using spline or any piecewise polynomial approximations. In this work, we use quadratic

spline polynomial to approximate the solution. Then by considering the midpoint Xn = ( X, +x; 1)/2

the error of Simpson's rule applied to the subinterval [xi X 1] is given by

B = [} )t =, = 5 ) + e, )+, )l = 52 (=X 0 €) (B)
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where X, < Qi < If we consider the two points xe=(3xi+xi+1)/4 and

Xi+1 -
x_=(x. +3x. , ,)/4, then the error becomes
T i i+1

E}(u)= [~ u(e)de + [ ue)ate - 1—12-(:%l - x, Nu(x,) + du(x, ) +2u(x, ) +du(x,) +u(x,,, )]

x,

-1

= 52160 Ni+1 RVl LW (4 B (<9 (3.3)

where X< gil <xp, and X, < Qiz <XLp By subtracting equation (3.2) from equation (3.3), we get

E (u)=|E?(u)- Ell(u)’ = le—(x,ﬂ -x, )’u(xl )-4u(x,)+6u(x ) - 4u(x ) +u(x |, )

) oo EDH o0 €D -32u ) 3.4)

= 92160 Ni+1

Hence E(u)<

5 3
45080(xi +1° xi) 'uxxxx (Ci )

3y : 1 2 .
where U (Qi ) is the maximum valuie of {u (Qi ),u (Ci ),u (Qi )}. Equation (3.4)
represent the error of Simpson rule on the subinterval [xi X, 1]. If the fourth derivative u has a
large value on a subinterval, then we have a large value of the error given in equation (3.4). In this case,
we add the midpoint Xn tO the mesh points and repeat the procedure until some stopping criteria is

satisfied. It is well known that the numerical results depend on the properties of the grid. If the mesh ratio
is large, the convergence of the iterative solution method may be lost. In this work, we restrict the mesh
ratio M, to be 1/4< M, <4. In this work, the procedure of constructing adaptive mesh was to stop
when the number of adaptive mesh points is the same as the uniform mesh . Our procedure can be
explained in the following algorithm.

ALGORITHM

Given an approximate solution u of equation (3.1) obtained on a uniform mesh points {xi ¥,
i=0,1,2,...,N. The adaptive mesh {zi} can be constructed as in the following steps
1. Start with the uniform mesh points z =X, i=0,1,2,...,N.

2. Compute the error Ei in equation (3.4) on each subinterval [zi 1% 1.

3. Determine the subinterval of maximum error, say m.

4. Update the mesh points {zi} to include the midpoint of [zm _ l,zm].

5. Repeat steps 2-4 until the stopping criteria is satisfied.

4. NUMERICAL RESULTS
In this section, we give the numerical solution of some examples on adaptive mesh which is
generated by the above algorithm. A comparison of the numerical solution obtained on the adaptive mesh

and on a uniform mesh is given.
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EXAMPLE 4.1. aF+4u =20x’+4x’ , 0<x<1

In this example, we compare the numerical results obtained in the physical and computational domain. The
boundary conditions are obtained from the exact solution u(x) = x*. The results are given in table 4.1.
Also, a comparison of the numerical results obtained by our method and some other methods is given in
table 4.2. The adaptive mesh is shown in fig. 4.1.

with the boundary conditions u(0)=0 and u(l)=1.
[10]. It has a boundary layer of thickness 1/q near the right boundary. Numerical results for =20 are
given in table 4.3, and the adaptive mesh is shown in figure 4.2.

2
x du du_,

r-1dx*  dx
where the boundary conditions are u(0)=0 and u(l)=1. The first and higher order derivatives of the
solution function have singularities at x=0 for r > 1. The numerical results obtained for r=1.25 are given
in table 4.4, and the adaptive mesh distribution is shown in figure 4.3.

EXAMPLE 4.2. 0<x<1

This example is considered by Lick and Gaskins

EXAMPLE 4.3. 0<x<1

EXAMPLE 4.4 d—x7+—+tu=0 , 0<x<1, t>1/4

with boundary conditions u(0) =0 and u(1) = sin(% v4t-1). Numerical results given in table 4.5 are due

to t=10 . The adaptive mesh is shown in figure 4.4.
REMARK. In all tables, adaptive', adaptive®, and adaptive represent the numerical results on
adaptive grid obtained by using the first derivative, second derivative, and our quadrature rule (equation

(3.4)) as a weight function.

Transformation No. of Subintervals Abs. Max. Error in Abs. Max. Error in
Phys. Domain Comp. Domain
x(8)=(e*-1)/(e-1) 32 23x107° 20x10™
64 59 x107° 50x107°
x(§)=¢* 32 18x107° 30x10~
64 4x107° 75x107°
Table 4.1. Numerical Results of Example 4.1 in Physical and Computational domain
Mesh Type Absolute Maximum Error
80 Subintervals 160 Subintervals 320 Subintervals
uniform 48x107° 25%x10°° 14x107°
adaptive' 29 x 107 16x10~° 7x107°
adaptive’ 13x10~° 8x10~° 3x107¢
adaptive 67 x107 39x1077 12x1077
Table 4.2. Numerical Results of Example 4.1
Mesh Type Absolute Maximum Error
80 Subintervals 160 Subintervals 320 Subintervals
uniform 20x107 49x107° 15x107°
adaptive' 14 x10™ 42x107° 13x10°
adaptive’ 72 x107° 30x107° 48x10°
adaptive 10x 10~ 29 x107° 8x10°

Table 4.3. Numerical Results of Example 4.2
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Mesh Type Absolute Maximum Error
80 Subintervals 160 Subintervals 320 Subintervals
uniform 30x10™ 18x 10~ 11x10~
adaptive' 26x10™ 13x10™ 97x 107
adaptive’ 21x10™ 98x 10~ 73x 107
adaptive 14x 107 53x 107 24 x 107’
Table 4.4. Numerical Results of Example 4.3
Mesh Type Absolute Maximum Error
80 Subintervals 160 Subintervals 320 Subintervals
uniform 17x1072 72x 107 11x10~
adaptive' 40x10™ 18x 107 71x 107
adaptive? 23x10™ 6x10™ 16x 10~
adaptive 6%107* 20x107° 6x107°

.

Table 4.5. Numerical Results of Example 4.4
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Fig. 4.1. Adaptive Mesh for Example 4.1
with 80 Subintervals
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Fig. 4.2. Adaptive Mesh for Example 4.2
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Fig. 4.3. Adaptive Mcsh for Example 4.3
with 80 Subintervals
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Fig. 4.4. Adaptive Mesh for Example 4.4
with 80 Subintervals
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5. CONCLUSIONS

In this work, we have analyzed the numerical solution of differential equations in the physical and
computational domains. The difference approximations of the first derivatives have the same tx‘uncation
errors in both domains while the difference approximations of the second derivatives imtroduce artificial
viscosity in the computational domain. The artificial viscosity can be avoided by solving the differential
equations in the physical domain.

The adaptive grid generation methods generates a well suited mesh for the problems under
consideration specially if the solution of these problems has a large variation in some parts of the solution
domain. Also the use of adaptive methods does not require any priori knowledge about the solution or
even the locations of its large variations.

The numerical results presented in this paper show that the error obtained by using our adaptive
method is of almost 50% of the error obtained by using other methods.
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