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I. Introduction.

We recall that an approximate identity in a Banach algebra A is a net {ca a E I} in A
where I is a directed set such that lira eax x limxea for every x in A. If there is a finite

constant M such that Ileall _< M for all a, then the approximate identity is said to be bounded.

Let A be a Banach algebra. For each x in A, let

DA(X)- {f e A’ ll/ll I f(x)}.

By a corollary of the Hahn-Banach theorem, DA(X) is non-empty. We denote S(A) {x A

For each a A, we call the set VA(a) {f(ax) f DA(X), x S(A)} the spatial

numemcal range of a.

We recall [5] that the relative numerical range of a in A with respect to x E A, is defined as

x(A,a) {/(ax) f e DA(x)}.

Thus we see that VA(a)=U{x(A,a)’xe S(A)}, which is a bounded subset of the complex

numbers bounded by Ilall.
If A has an approximate identity of norm less than or equal to one then A can embedded,

isometrically and isomorphically, in a unital Banach algebra A+ in such a way that for each a

in A
V(A+,) Y(),

where Y(A+,a)= (f(a) f e (A+)’, Ilfll 1 I(a)- Ilall). For details see [4], Theorem 2.3.
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An element h of a Banach algebra A is said to be Hermitian if VA(a) C R. We denote
by H(A) the set of all Hermitian elements of A. A B*-algebra is a Banach algebra A with an

involution, a - a* satisfying the following conditions:

(1) (a + b)" a" + b*;

() ()* ,.;
(3) (aa)* (a*;

(4) a** a; and

() I*1 I1
for all a, b in A and a in C.

An element a in a B*-algebra is said to be self-adjoint if a a*. The set of all self adjoint
elements will be denoted by S(A). Each element a E A can be written uniquely in the form
a h + ik where h, k e S(A). Some of the well known properties of S(A) are the following:

a) The set S(A) is a real partially ordered Banach space,

b) each of its elements has real spectrum,

c) if h, k e S(A) then i(hk kh) e S(A), and

d) for each h e S(A), the spectral radius p(h) ]lhll.
It is clear that the set of Hermitian elements, H(A), of a Banach algebra with a bounded

approximate identity of norm less than or equal to one has many of the properties of S(A) in a

B*-algebra.

In this note we prove that in an arbitrary B*-algebra A, H(A) S(A) in Theorem 2.1.
This results mimics a result by Bohnenblust and Karlin [2].

In [8], Vidav has shown that a unital Banach algebra A with the following conditions:

(1) A H(A) + ill(A);

(2) for each h in H(A) there exists hi, h2 in H(A) such that hl +ih2 h2 and hlh2 h2hx
is a B*-algebra with Vidav-involution. Combining the results of Vidav [8], Berkson [1], and
Glickfeld [6] we obtain the result that if A is a unital Banach algebra such that A H(A)+iH(A)
then A is a B*-algebra under the Vidav-involution. Here, we extend this result to the nonunital
case in the form of Lemma 3.1.

Finally, combining the results of Theorem 2.1 and Lemma 3.1 we have a characterization
of B*-algebras with bounded approximate identities.

2. Some Results.

We now prove the following theorem.

Theorem 2.1 Let A be a B*-algebra with a bounded approximate identity o norm less than

or equal to one. An element of A is Hermitian if and only i[ it is self-adjoint.

Proof. Case 1. Suppose that A has a unit element 1. Let f DA(1). Then it is known

that such a functional has the property that f(h*) f(h), for every h in A. Thus if h is a

self-adjoint element of A, .f(h) f(h*) f(h) and hence f(h) is real for all f in DA(1). Hence,
S(A) C_H(A).

Case 2. If A has no identity element then it will have an approximate identity of norm less

than or equal to one. Also, with the involution defined by (a, a)* (a*, () for (a, a) E A+, and
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by Theorem 2.3 in [4], A+ becomes a unital B*- algebra containing as a sub-B*-algebra, ([3],
..s).

Let h be a self-adjoint element of A. Then (h, 0) is self-adjoint and hence Hermitian in the

unital B*-algebra A+. Hence h E H(A). We have therefore for any B*-algebra, S(A) C_ H(A).

Suppose conversely that h H(A). Then for hi and h2 in S(A), h hl + ih2. This implies

that (h2) 0 (where (x) sup{IAI A e VA(x)} and is called numerical radius of x in A)
and hence h2 0. Thus h h so that h is self-adjoint. That is H(A) C_ S(A) and hence the

theorem.

Remark 2.1 The above theorem shows that in a B*-algebra the Hermitian elements generate

the whole algebra in the sense that each element a may be written in the form a hi + ih2 with

h and h2 in H(A). In an arbitrary Banach algebra A this is not true. We therefore consider

the set J(A) H(A) + ill(A). Since H(A) is a real space it follows that J(A) is a complex

linear space. If A has no unit element then by Theorem 2.3, [4], J(A) x C J(A+). We define

a map a --> a" from J(A) into itself by

(hi + ih=)* hi ih2, for all h., h2 H(A).

The linear map a --> a* is known as the Vidav-involution on J(A).

Remark 2.2 If A has no unit element then it is a simple matter to verify that the Vidav-

involution on J(A+) is an extension of the Vidav-involution on J(A). The space J(A) is a

complex Banach space and a --> a* is a continuous linear involution on J(A). In general, the

Banach space J(A) is not an algebra, and if J(A) is an algebra under some conditions, then the

Vidav-involution has the additional property

(ab)* a’b*, for all a, b J(A).

3. Characterization.

Vidav has shown in [8] that a unital Banach algebra A with the following conditions:

(V1) A H(A) + ill(A),

(V2) for each h in H(A) there exists hx, h2 in H(A) such that h. +ih2 h2 and hh2 h2h,

is a B*-algebra with Vidav-involution and a norm equivalent to the original norm on A.

According to Palmer [7], the condition (V1) implies (V2). Also Berkson [1], Glickfeld [6],
and Palmer [7] have shown that if (V1) is satisfied by the algebra A the equivalent norm by

Vidav is equal to the original norm on A. So by these results we have the result that if A is a

unital Banach algebra satisfying (V1) then A is B*-algebra under the Vidav-involution. The

following lemma extends this result to the non-unital case.

Lemma 3.1 Let A be a Banach algebra with a bounded approximate identity ofnorm less than

or equal to one. Suppose that every a in A has the form a hl + ih, for all h, h2 in H(A).
Then with the Vidav-involution, A is a B*-algebra.

Proof. From Remark 2.1 we have that J(A+) J(A) C. Since J(A) A (by the

hypothesis) we have J(A+) A+. Therefore A+ is a unital B*-algebra under the Vidav-

involution. Furthermore, A is a closed and self adjoint subalgebra of A+, and is therefore a

B*-algebra under the Vidav-involution.
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Finally, combining the results of Theorem 2.1 and Lemma 3.1 we have the following:

Theorem 3.2 Let A be a Banach algebra with a bounded approximate identity of norm less

than or equal to one. Then A is a B*-algebra under some involution if and only if each element

a of A can be written in the form a hi + ih2 where hi and h2 are Hermitian elements of A.
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