A CHARACTERIZATION OF B*-ALGEBRAS

A. K. GAUR

Department of Mathematics Duquesne University, Pittsburgh, PA 15282

(Received December 11, 1995 and in revised form August 16, 1996)

Abstract. A characterization of B^* -algebras amongst all Banach algebras with bounded approximate identities is obtained.

1991 AMS Subject Classification: 46J99, 46J15

Key Words and Phrases: Approximate identity; B*-algebra; self-adjoint elements; Hermitian elements.

1. Introduction.

We recall that an approximate identity in a Banach algebra A is a net $\{e_{\alpha} : \alpha \in I\}$ in Awhere I is a directed set such that $\lim_{\alpha} e_{\alpha} x = x = \lim_{\alpha} x e_{\alpha}$ for every x in A. If there is a finite constant M such that $||e_{\alpha}|| \leq M$ for all α , then the approximate identity is said to be bounded.

Let A be a Banach algebra. For each x in A, let

$$D_A(x) = \{ f \in A' : ||f|| = 1 = f(x) \}.$$

By a corollary of the Hahn-Banach theorem, $D_A(x)$ is non-empty. We denote $S(A) = \{x \in A : ||x|| = 1\}$.

For each $a \in A$, we call the set $V_A(a) = \{f(ax) : f \in D_A(x), x \in S(A)\}$ the spatial numerical range of a.

We recall [5] that the relative numerical range of a in A with respect to $x \in A$, is defined as

$$\overset{\circ}{V}_{x}(A,a) = \{f(ax) : f \in D_{A}(x)\}.$$

Thus we see that $V_A(a) = \bigcup \left\{ \overset{\circ}{V}_x(A, a) : x \in S(A) \right\}$, which is a bounded subset of the complex numbers bounded by ||a||.

If A has an approximate identity of norm less than or equal to one then A can embedded, isometrically and isomorphically, in a unital Banach algebra A^+ in such a way that for each a in A

$$V(A^+, a) = \overline{co} V_A(a),$$

where $V(A^+, a) = \{f(a) : f \in (A^+)', \|f\| = 1 = f(a) = \|a\|\}$. For details see [4], Theorem 2.3.

484

An element h of a Banach algebra A is said to be Hermitian if $V_A(a) \subset R$. We denote by H(A) the set of all Hermitian elements of A. A B^* -algebra is a Banach algebra A with an involution, $a \to a^*$ satisfying the following conditions:

- (1) $(a+b)^* = a^* + b^*;$
- (2) $(ab)^* = b^*a^*;$
- (3) $(\alpha a)^* = \bar{\alpha} a^*;$
- (4) $a^{**} = a$; and
- (5) $|a^*a| = |a|^2$

for all a, b in A and α in C.

An element a in a B^* -algebra is said to be self-adjoint if $a = a^*$. The set of all self adjoint elements will be denoted by S(A). Each element $a \in A$ can be written uniquely in the form a = h + ik where $h, k \in S(A)$. Some of the well known properties of S(A) are the following:

- a) The set S(A) is a real partially ordered Banach space,
- b) each of its elements has real spectrum,
- c) if $h, k \in S(A)$ then $i(hk kh) \in S(A)$, and
- d) for each $h \in S(A)$, the spectral radius $\rho(h) = ||h||$.

It is clear that the set of Hermitian elements, H(A), of a Banach algebra with a bounded approximate identity of norm less than or equal to one has many of the properties of S(A) in a B^* -algebra.

In this note we prove that in an arbitrary B^* -algebra A, H(A) = S(A) in Theorem 2.1. This results mimics a result by Bohnenblust and Karlin [2].

In [8], Vidav has shown that a unital Banach algebra A with the following conditions:

- (1) A = H(A) + iH(A);
- (2) for each h in H(A) there exists h_1 , h_2 in H(A) such that $h_1 + ih_2 = h^2$ and $h_1h_2 = h_2h_1$

is a B^* -algebra with Vidav-involution. Combining the results of Vidav [8], Berkson [1], and Glickfeld [6] we obtain the result that if A is a unital Banach algebra such that A = H(A) + iH(A) then A is a B^* -algebra under the Vidav-involution. Here, we extend this result to the nonunital case in the form of Lemma 3.1.

Finally, combining the results of Theorem 2.1 and Lemma 3.1 we have a characterization of B^* -algebras with bounded approximate identities.

2. Some Results.

We now prove the following theorem.

Theorem 2.1 Let A be a B^* -algebra with a bounded approximate identity of norm less than or equal to one. An element of A is Hermitian if and only if it is self-adjoint.

Proof. Case 1. Suppose that A has a unit element 1. Let $f \in D_A(1)$. Then it is known that such a functional has the property that $f(h^*) = \overline{f(h)}$, for every h in A. Thus if h is a self-adjoint element of A, $f(h) = f(h^*) = \overline{f(h)}$ and hence f(h) is real for all f in $D_A(1)$. Hence, $S(A) \subseteq H(A)$.

Case 2. If A has no identity element then it will have an approximate identity of norm less than or equal to one. Also, with the involution defined by $(a, \alpha)^* = (a^*, \bar{\alpha})$ for $(a, \alpha) \in A^+$, and

by Theorem 2.3 in [4], A^+ becomes a unital B^* - algebra containing as a sub- B^* -algebra, ([3], 1.3.8).

Let h be a self-adjoint element of A. Then (h, 0) is self-adjoint and hence Hermitian in the unital B^* -algebra A^+ . Hence $h \in H(A)$. We have therefore for any B^* -algebra, $S(A) \subseteq H(A)$.

Suppose conversely that $h \in H(A)$. Then for h_1 and h_2 in S(A), $h = h_1 + ih_2$. This implies that $\nu(h_2) = 0$ (where $\nu(x) = \sup\{|\lambda| : \lambda \in V_A(x)\}$ and is called numerical radius of x in A) and hence $h_2 = 0$. Thus $h = h_1$ so that h is self-adjoint. That is $H(A) \subseteq S(A)$ and hence the theorem.

Remark 2.1 The above theorem shows that in a B^* -algebra the Hermitian elements generate the whole algebra in the sense that each element a may be written in the form $a = h_1 + ih_2$ with h_1 and h_2 in H(A). In an arbitrary Banach algebra A this is not true. We therefore consider the set J(A) = H(A) + iH(A). Since H(A) is a real space it follows that J(A) is a complex linear space. If A has no unit element then by Theorem 2.3, [4], $J(A) \times C = J(A^+)$. We define a map $a \to a^*$ from J(A) into itself by

$$(h_1 + ih_2)^* = h_1 - ih_2$$
, for all $h_1, h_2 \in H(A)$.

The linear map $a \rightarrow a^*$ is known as the Vidav-involution on J(A).

Remark 2.2 If A has no unit element then it is a simple matter to verify that the Vidavinvolution on $J(A^+)$ is an extension of the Vidav-involution on J(A). The space J(A) is a complex Banach space and $a \to a^*$ is a continuous linear involution on J(A). In general, the Banach space J(A) is not an algebra, and if J(A) is an algebra under some conditions, then the Vidav-involution has the additional property

$$(ab)^* = a^*b^*$$
, for all $a, b \in J(A)$.

3. Characterization.

Vidav has shown in [8] that a unital Banach algebra A with the following conditions:

(V1) A = H(A) + iH(A),

(V2) for each h in H(A) there exists h_1 , h_2 in H(A) such that $h_1 + ih_2 = h^2$ and $h_1h_2 = h_2h_1$, is a B^* -algebra with Vidav-involution and a norm equivalent to the original norm on A.

According to Palmer [7], the condition (V1) implies (V2). Also Berkson [1], Glickfeld [6], and Palmer [7] have shown that if (V1) is satisfied by the algebra A the equivalent norm by Vidav is equal to the original norm on A. So by these results we have the result that if A is a unital Banach algebra satisfying (V1) then A is B^* -algebra under the Vidav-involution. The following lemma extends this result to the non-unital case.

Lemma 3.1 Let A be a Banach algebra with a bounded approximate identity of norm less than or equal to one. Suppose that every a in A has the form $a = h_1 + ih_2$, for all h_1 , h_2 in H(A). Then with the Vidav-involution, A is a B^* -algebra.

Proof. From Remark 2.1 we have that $J(A^+) = J(A) \times C$. Since J(A) = A (by the hypothesis) we have $J(A^+) = A^+$. Therefore A^+ is a unital B^* -algebra under the Vidav-involution. Furthermore, A is a closed and self adjoint subalgebra of A^+ , and is therefore a B^* -algebra under the Vidav-involution.

Finally, combining the results of Theorem 2.1 and Lemma 3.1 we have the following:

Theorem 3.2 Let A be a Banach algebra with a bounded approximate identity of norm less than or equal to one. Then A is a B^* -algebra under some involution if and only if each element a of A can be written in the form $a = h_1 + ih_2$ where h_1 and h_2 are Hermitian elements of A.

4. Acknowledgement.

The author expresses his appreciation to the referee for his or her valuable suggestions which improved the clarity of this presentation.

References

- [1] E. Berkson, "Some characterizations of C*-algebras", Illinois J. Math., 10, (1966), 1-8.
- [2] H.F. Bohnenblust and S. Karlin, "Geometrical properties of the unit sphere of Banach algebras", Ann. of Math, 62, (1955), 217-229.
- [3] J. Dixmier, "Les C*-algébres et leurs représentations", Gauthier Villars, 1964.
- [4] A.K. Gaur and T. Husain, "Spatial numerical ranges of elements of Banach algebras", Internat. J. Math. and Math. Sci., 12, (1989), 633-640.
- [5] A.K. Gaur and T. Husain, "Relative numerical ranges", Math. Japonica, 36, (1991), 127-135.
- B.W. Glickfeld, "A metric characterization of C(X) and its generalization to C*-algebras", *Illinois J. of Math.*, 10, (1966), 547-566.
- [7] T.W. Palmer, "Characterization of C^{*}-algebras", Bull. Amer. Math. Soc., 74, (1968), 538-540.
- [8] I. Vidav, "Eine metrische kennzeichnung der selbstad jungierten operatoren", Math. Z., 66, (1956), 121-128.