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ABSTRACT. We evaluate Fourier transform of a function with Hermite polynomials involved.

An elementary proof is based on a combinatorial formula for Hermite polynomials.
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In this note, by using elementary means, we prove the identity

e-"cqh,.,(x + )h(x )dx e-o’+q2)/2L,.,(p + q2) (1)

which was previously known in special cases p 0 or q 0, cf. [3, p.503 (10)] and [I, Section

1.10, (10)]. In the above formula h,,(x), n 0, 1,..., are the normalized Hermite functions

h,,(x) (2"r’/:n!)-’/e-"P-H,,(x),

H,.,(x) denotes the n-th Hermite polynomial, [5, p. 102] and L(x) denotes the n-th Laguerre
polynomial of order a, [5, p. 97]. When a 0 we write L(x) rather than n(x). The proof of

(1) reduces to showing the identity

,,e-"/’"H,,,(x + -. --)e-" 2"r’/n! (p + q). (2)

The proof of (2) is based, in turn, on the combinatorial formula

P )H,,(x-
p 1.--L-’H,.,(x + -) 2"n!

2,j!
3=0

(3)

which will be proved in a moment (we were not able to find the above formula in the literature).
Substituting (3) into the integral to be evaluated in (2) and using the known values of the
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integral in (2) for p 0 and j O, 1,..., we get

: e-’V’ZH,(x + -)H, (x -)e-X2dx

e- H,(x)e-’

3=0

2r/ne-q/L. + q).

The lt step required using the well-known identity

n:_()n(u) n:++’( + )

with a =-1 and b 0.

We were motited to consider the inteal (1) by the interestg work of Strichtz [4] where
he considered the Heite functions

I the above formula, N, , Z, e 1 and

for (z,,...,z) and (, ...,). It is clear that (1) gives

.....(,) -/exp
IpI= + IWI)n,%L= + q).

Let us alto add that a outheoretic approach allows to d explicit form of =,,,(,),
with bitrary a, , of. [2, p.].

The rest of the note devoted to the proof of (3) which we now write in the form

L_(+y)H( y) = , _(y’)B,()’. (4)

Applying Mehler’s formula for Hermite polynomials

2.nH.(x)m(y)t" (1 t)-’z exp - t, Itl < ,
0

and the generatg function formula for Laguerre polynomials

()t (1 t)-- exp Itl < ,
for -1 one gets

)L:l(2Y2)t g(x)t
2m

k=O m=O

,in:i,(=)g,()"
n=O =0
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Comparing the coefficients gives (3). Note that an application of the Cauchy multiplication of

the two series above is being possible by the fact that both are, for fixed y and x, absolutely
convergent for [t[ < 1. This is easily seen once we use the well known estimate L-l(2y)
0(k-3/4), el. [5, (7.6.10)], and a similar estimate for H,(x).
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