
Internat. J. Math. & Math. Sci.
VOL. 20 NO. 3 (1997) 457-464

457

ON THE SOLUTION OF NEVANLINNA PICK PROBLEM WITH SELFADJOINT
EXTENSIONS OF SYMMETRIC LINEAR RELATIONS IN HILBERT SPACE

A. A. EL-SABBAGH

Department of Mathematics
Faculty of Engineering

Zagazig University, Shoubra
108 Shoubra Street, Cairo, Egypt

(Received June 19, 1995 and in revised form December I, 1995)

ABSTRACT. The representation of Nevanlinna Pick Problem is well known, see [71, [8] and [111.
The aim of this paper is to find the necessary and sufficient condition for the solution of Nevanlinna

lick Problem and to show that there is a one-to-one correspondence between the solutions of the

Nevanlinna Pick Problem and the minimal selfadjoint extensions of symmetric linear relation in

Hilbert space. Finally, we define the resolvent matrix which gives the solutions of the Nevanlinna

Pick Problem.
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1. INTRODUCTION
The Nevanlinna Pick Problem consists of finding a function f(), E , analytic in Im > 0,

Im (t) having a fixed sign there, to take assigned values at an infinite sequence of points in Im(t) > 0,
see [13].

We define the Nevanlinna class IN" as the class of all n x n matrix functions N(t), which

are holomorphic in \ IR, satisfying N(t)* N(t), IR, and for which the kernel:
N(t)-N()* , A iR # X, is nonnegative.K(e,) t-X

It is well known that for each N(e) CIN" there exist n x n matrices A and B with A A" and

B B" 0, d a nondecreasing n x n matrix function E onlR with [ (t + 1)-dE(t) <

such that: N(e) A + Be + t- t +
With this so-cled Riesz-Herglotz reprentation the kernel K(e, ) tak the form K(e, a)

R dC(t)+
( e)(t )’ e,A e.

This is the general ce, but now our reprentation for Nevanlinna function takes such different

cases.

To construct the solution function of the Nevanlinna Pick Problem in this paper we define the
suitable Hilbert space which we need and define on it the linear relation which is symmetric and
find the minimal selfadjoint extension of that relation in order to show that there is a one-to-one

correspondence between the solutions of the Nevanlinna Pick Problem and the minimal selfadjoint
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extensions of the symmetric linear relation we have. This will form the contents of the first two

sections. In the last section, we give a description of the resolvent matrix which gives the solutions

of the Nevanhnna Pick Problem and shows that there is a one-to-one correspondence between the

solutions of the Nevanlinna Pick Problem and all Nevanlinna pairs (PL) defined in [8], [9] and [10].
In this paper we shall use the following notations:
IR Set of real numbers,

Set of complex numbers,
(+/- { E i:l: Im() > 0},
0 \IR
N {0,1,2,...},

{fEl?D}whereDC,
(g" Space of n x vectors with entries from ,
7/, K: Hilbert spaces,

L[7/, K:] Set of all bounded linear operators from 7"/to K:,
[7-/] Set of all bounded hnear operators from 7/to 7/,
2 7/7/,
J, U Unitary operators on 7"/2,

If S, T are linear subspaces in 7-/2 we define:

S / T {{f,g / k}l{.f,g}S, {f,k}T},
S- I {{f,g- gf}l{f,9) - S}, for E ),
T4-S {{/+ h,g + k}l{f,g} e T, {h,k} S},

The sum T-]-S is called direct if S f3 T {{0,0}},
T S ThrS, T and S orthogonal in 7/,
T @ S {{f,g} e T orthogonal to S},
T+/- H @ T,
I {f, f} 7/2} identity operator on 7/2,
(P(g) Q(g)) a Nevanlinna pair, for more detail related to (P(g)Q(g)), we refer

to [8], [9], [10] and [12].

2. PRELIMINARIES
In this section, we collect several basic observations concerning our subject. If 7-//is a Hilbert

space over the complex numbers , we let 7-/- 7"/q) 7-/, considered as the Hilbert space of all pairs

{f, g with f, g e 7t. A linear relation in H is a linear manifold T in 7/,. The domain of T, D(T),
is defined by D(T) {f 7"ll{f, g} T for some g E 7-/}, and the range of T, R(T), is given by

R(T) {g E 7-/[{f,g} E T for some f E }. For f E R(T), we let T(f) {g]{f,g} E T}, and
thus R(T) is the union of all T(f), for f e R(T). The inverse of T, T-1, is the linear relation

T-1 {{g,f}]{f,g} G T}. The null space of T, v(T), is defined by v(T) {f e 7/]{f, 0} e T}.
A hnear relation T in 7-/is a (linear) operatorin 7"l if T(0) {0}. If T is an operator in 7-/we shall

abbreviate T(f) by the usual Tf.
If S and T are linear relations in 7/, we define their product ST by ST {{f,k}l{Y,g}

T, {g, k} S, for some g 7}. For each c E we can associate an operator in 7-/(which can

be thought of as a times the identity operator I) given by {{f, af}[f 7}. If we identify this

operator with a, then we have aT {{f, ag}[{f,g} T}.
The linear relations which are of most interest to us are those which are closed linear manifolds

in 7"/2, and we shall call these just subspaces in 7/2. Unless otherwise stated, all of the linear relations

we consider in the remainder of this work will be subspaces.
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The adjoint T" of a subspace T in 7"/2 is defined as the linear relation

T" {{h,k} 72119, hi [f, k], for all {f,#} T}.

Here [-,-] denotes the inner product defined in 7. A convenient way to analyze the properties of

the adjoint is to introduce the two operators J, U defined on all of 7"/2 as follows:

J{f,g} {g,-f},
U{f,g}- {g,f}.

Both d and U are unitary operators on 7"/2, and it is easily checked that

j2 -I, U I, UJ -JU,
T" 7"l e JT (JT)+/- J(T),
T-1 UT.

We refer to [2], [3], [4] and [5].
The subspace T C H is called symmetric if T C T" and selfadjoint if T T’. Recall that if

T C 7"/ is a subspace, the resolvent set p(T) of T is defined by

p(T) {e I(T- e)-’

and the resolvent operator RT(g)’p(T) [7"/] of A is defined by

RT(g.) (T- g)-, p(T).

A symmetric subspace S in f2 always has selfadjoint extensions in a suitably larger Hilbert

space, but there exist selfadjoint extensions of S in 2 if and only if for some g + (and hence

for all t +) the defect numbers of S are equal. Let ‘4 be selfadjoint extension of S in a larger
Hilbert space K:, K: D /’/with nonempty resolvent set p(A). Then on p(‘4) we study the locally

holomorphic [H]-valued function R defined by

R,(e) P(A- e)-’l
{{g gf, Pf}l{f,g} ‘4,g gf TI}, g p(‘4),

where P denotes the orthogonal projection from K: onto (K: D 7"/). This function R1 is called the

compressed resolvent of ,4 in 7"/. If S is symmetric, one can easily verify that R(e) is a holomorphic

mapping with values in [7-/], with domain of holomorphy Dnl which is symmetric with respect to

the real axis: Dal D.1, also RI(e)* R(). Finally (R(e)f, eR(e)f + f} s" for

see [6]. In this case the compressed resolvent R (g) of .4 in is called a generalized resolvent of S,
or the generalized resolvent of S associated with .4, see [6] and [7].

Finally, if T D 7"/2 is a closed linear relation, v (go. We define the Cayley transform C(T) of

T and the inverse Cayley transform F(T) of T with respect to u by:

C,(T) {{g-vf, g--fff}l{f,g} T)
F,(T) {{g-f, vg--gf}[{f,g} T}.

We refer to [1], [4] and [14]. We may see that the description of Coddington for all selfadjoint
extensions in possibly larger spaces is based on the corresponding results for unitary extensions of

isometric operators, see [6].
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3. SOLUTION OF THE NEVANLINNA PICK PROBLEM
Our interest will be in selfadjoint extensions of a given symmetric subspace (closed linear rela-

tion) and this has been discussed, for instance see [3], [5], and [6], when one of that extensions is

minimal and its connection with Resolvent has been discussed in [9], [10, [12] and [13]. Then taking
into consideration [5], [61 and [7l, we come to the following.
THEOREM 3.1. If we have two sets of points Zo and Wo defined as: Zo {zi]zi E 17, +,

1, 2,..., n}, Wo {wi]w, E (13+, 1, 2,..., n} and the matrix G, defined as G0 w -_% if
2; Z

the matrix G0 >_ 0, we can find an f defined from + up + such that f(zi) o, that will solve

the Nevanlinna pick problem.
PROOF.
1. Necessity: Since f INn, then f permits the representation

f(z) $tz + + L. + tZ
da(t) (see [1])

t, u e IR, $t > 0, a(t) nondecreasing, f a(t) <with

== Z, t + (t z,)(t- 2) da(t)

( + () >_ o.

2. Sufficient. We build the Hilbert space 1"/as

and two inner products on 7 defined by

i=l,...,n}

So
[y,] (cy, )=

[,, ,] C,, % ’._
2 Z

Define the linear operators Z and W on 7-/and a relation S in 7"{ by

w[,] ,e,

s {{,Z}l=,,,,=0},
e (1,1,1,...,1)=e,
u (1,0,0,...,0)

Straightforward calculations will show that S is symmetric.
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This implies that for x and y e D(S) that is (z, e) (y, e) O, that

[z, ]- [, z] 0.

Let A be a minimal selfadjoint extension of S. With this A we will now define a solution f(z) of

the original interpolation problem and show that this f(z) satisfies all the conditions.

f(i) =w, + (g, z,)G,l + (e- z,)(e- ,)[(A e)-’u,u]

1. f z wl trivial

2. f(z)
/(z.)

We know: (Z a )(q ca) ( )q + ( a)a

(s ,)(, ,) (, ,),

1 + (Z zI)Gll (z, 1)[1, (1 3)]

3. Ira(g) > 0 Im(/(g)) > 0

(e

(A

-(t- ,) + (A ,,)(A

-(e- ,) (A- z,) + (A ,,)(A t)-’(A )

( ,)(e z,)(A
-g + , A + z, + (A z)(A g)-’(A- ,) +- z,’+ A- , +

+(A ,)(A )-’(A
; t + (A ,)(A

(e )[(A z,)(A e)-’(A )-’(A ) I]
Im(f(g))/Im(g) [(A z,)(A g)-’(A g)-’(A Z,)u, u]

[(A )-’(A z,),, (A )-’(A z,),] a 0.

4. f(g) is analytic for

This follows immediately from the fact that A is selfadjoint. This completes the proof.
THEOREM .2. There exists a ontne correspondence betwn all solutions of the Nevan-

linna Pick Problem constructed in THEOREM 3.1 and all minimal selfdjoint extensions of S.
PROOF. Assume f(t) is a solution of the Nevanlinna Pick Problem

There exists a Hilbert spce (, (, }), an element u and an unitary operator U from to such

that f(g) s + (z ,)((I + p(g)U)(I p(g)U)-’u, u) with 61R and p(g) ( z,)(g ,)-’,
s [S].
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We can take K: minimal in which case U is unique up to isomorphism

f(z) =wl = s Re@) and (u,u)= (wl 1)(zl t)-1.

Take A Fz1(U), the inverse Cayley transform of U.

=>. f(g) wl + (e- zl)(u,u) + (- zl)(g-I)((A-

We wish to show that 3 F isomorphism 7"/ K: such that FS C_. A F.

Define U

el+(-l)(A-)-lel j_>2

=} (A )-1el (% e,)( 1)-1

:: A(e e) ze e.

Define and Ar(e el) A(e el) 5ej ,el

F(3e, q)

FS(e -e) for j 2,...n

FS C AF

[ei, %] (e,, %), for these cases we have"

(b) (el,e3) can be constructed as follows:

f(%) % =

(c) (e,,%) can be constructed as follows:
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From the above, we get

From (a), (b) and (c) and the above, every solution can be written in the form f() wl + (g-
zl)Gn + (l z)(g- :)[(A $)-1u, u] with A a selfadjoint extension of S. As we have seen

before every selfadjoint extension gives a solution of the Nevanlinna Pick Problem This completes
the proof of the one-to-one correspondence of f(g) and A.
LEMMA 3.1. Let Y (Y0) and W (w,j) with i,j 1,2,... and (P()Q(g)) a Nevanlinna

pair. If f() is defined as f(g) {yl(g)P() + yIu(g)Q(g)}{y2:(OP(i) + yu(g)Q()}- gives a on

tone corrpondence betwn aH solutions of the Nevanlinna Pick Problem and all Nevlinna
prs (P(0Q()). We refer to [11], [13] and [14].
LEMMA 3.2. If W(g) is defined as W(g) [(A g)-Xu, u], then [(A g)u, u] {wx()P() +

w()Q(g)}{w(g)p(g) + w(g)Q(l)}- gives a ontone correspondence betwn the nimM

selfadjoint extensions of S and all the Nevanlinna prs (P(g)Q(g)). This W() is called the resolvent
matrix of S, see [9], [10] and [11].
DEFITION 3.1. If the function f(z)is defined as f(g) w+(g-z)G+(-z)(g-,)W()

where W(g) is defined in mma 3.2, then we define the solution matrix of the Nevanlinna Pi
Problem :

y()
(- zl)(g- :)

0

Wl+(--zl)Gll ] W()"
The conntion betwn the solution matrix Y() and the rolvent matrix will be the coming
paper.
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