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ABSTtLCT. This paper is an exposition of results contained in [2]. The purpose of [2] is

to present a way of viewing of basic topology which unifies quite a few results and concepts

previously seemed not related (quotient maps, product topology, subspace topology, separation

axioms, topologies on function spaces, dimension, metrizability). The basic idea is that in order

to investigate an unknown space X, one either maps known spaces to X or maps X to known

spaces.
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0. INTRODUCTION

In [1] the author presented certain results of basic topology from the point of view of Extension

Theory. In [2] we broaden the approach of [1]. Namely, extension theory can be viewed as part

of the contravariant approach, and it makes sense to ponder its dual, the covariant approach.

Suppose we have a class of known spaces K, and we are faced with an unknown space X. We
may choose one of the following strategies:

1. (Covariant approach) X will be investigated by considering maps f K X from known

spaces to X.

2. (Contravariant approach) X will be investigated by considering maps f :X K from X to

known spaces.
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The covariant approach is widely used in the clasical homotopy thco.ry and leads to homo-

topy/homology groups (see [11]). The contravariant approach is the mainstay of shape the-

o.ry (see [10]), (’ohomological dimension theo.ry (see [12]), and leads to cohomology/cohomotopy

groups. However, in basic topology the prevalent approach is that of intrinsic definitions/theorems
in terms of open sets/covers.

The purpose of this paper is to translate the intrinsic approach of basic topology into co-

variant/contravariant approaches in an effort to unify various concepts which seemed unrelated

up to now (quotient maps, product topology, subspace topology, separation axioms, dimension,

metrizability). We believe that it brings better understanding and better results. Also, it al-

lows to integrate basic topology with category theory at an earlier stage. Let us explain this

statement in the case of function spaces.

One of the fundamental concepts in category theory, is that of adjoint functors (see [6]),
and in algebra one creates the tensor product .s a left adjoint to the Hom functor. Thus,

one proves the Adjoint Associativity Theorem of "algebra (see Theorem 5.10 in [5] on p.214)"

Homn(M (R)n N,P) Homn(M, Homn(N,P)). In the category of sets a left adjoint to the

i-Iom functor is the cartesian product functor. In the category of topological spaces the problem

is reversed: the cartesian product functor is well-understood and one has difficulty defining

the Horn functor. The difficulty lies in choosing a natural topology on the function space yx
of all maps from X to Y. Through various trials and errors topologies created the so-called

compact-open topology which works very well on the category of compactly generated spaces

(also known as k-spaces or Kelley spaces). In [2], a more natural approach was chosen: Since the

bijection adj)f "Homs,(X, Homsct(Y, Z))--, Homst(X x Y, Z) is given by adjy(f)(x,y)=

f(x)(y), let us declare f" X HomTov(Y, Z) to be continuous if adj.(f) is continuous. This

leads to the basic covariant topology on function spaces. Thus, the goal of [2] is, from the

beginning, to discuss topologies on function spaces so that the resulting Horn functor is a right

adjoint to the cartesian product functor via the function adjy, i.e. we are aiming at adj).

HomTo(X, HomTo(Y,Z)) HomTo(X x Y,Z) to be a natural homeomorphism. In the

terminology of [6], adj). is the adiugant equivalence (or ad_iugant) and,one is led to the front

adjunction (the resulting natural transformation from the identity functor to the composition

Horn o x and the rear adjunction (the resulting natural transformation from the composition

x oHom to the identity functor). The front adjunction corresponds to the function 13 adj)" (id)
X (X x Y)" given by B(x)(y) (x, y) and is clearly continuous by the definition of the basic

covariant topology. The rear adjunction eval X x yX y is the well-known evaluation

function: eval(x, f) f(x). Thus, the question of Horn being right adjoint to the cartesian

product reduces to the question of continuity of the evaluation function. It turns out that it

is connected to the Whitehead-Michael [9] characterization of locally compact spaces as those

spaces Z for which f x idz is a quotient map if f is a quotient map. This leads quickly to

establishing that, on the category of locally compact spaces, the functor Hom defined as the

function space equipped with the basic covariant topology is a right adjoint to the cartesian

product functor. Since most questions regarding compactly generated spaces can be reduced to

the locally compact case, one can apply the functor k Top kTop from the topological spaces
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to the k-spaces and obtain Horn on the category, kTop which is right adjoint to the product

functor (in kTop). Obviously, this particular functor Hom mst be yX with the compact-open

topology (by the uniqueness of adjoint functors) but the approach of [2] is much better integrated

with thc category theory and, thcrehre, allows natural and functorial proofs.

There is a dual approach to the one described above: given a way of assigning topologies

on function spaces we try to find topologies on the cartesian product so that one obtains a left

adjoint functor to G(Z) MapTo,(Y, Z) if Y is fixed. There are two cases of interest; Top PC

being the point convergence topology or Top CO being the compact-open topology. It is shown

in [2] that one can introduce the PC-product X x PC Y and the CO-product X xco Y so that

if Top {PC, CO}, then one has a natural equivalence

adjv MaPTop(X XTop Y, Z) MapTo(X, MapTop(Y, Z)

for all spaces X, Y, Z. One may say that those products are topological analogs of the temor

product in algebra. It turns out that the PC-product is commutative and the CO-product is

not commutative.

In the next two sections we discuss the basic results of [2] without proofs. The detailed proofs

can be found in [2] as well as an extended discussion of various topologies on the function spaces.

1. COVARIANT AND CONTRAVARIANT TOPOLOGIES

1.1. Definition. The topology T on X is called the covariant topolo__gv_ induced by the

of functions :F {f XI X} if each XI is a topological space and T is the largest of all

topologies on X under vchich all .f :F are continuous.

Notice that the covariant topology exists and consists of all sets U such that f-l(U) is open

for each f E -. This leads to:

1.2. Example. A surjective function X Y is a quotient map iff the topology on Y is the

covariant topology induced by the single function {}.

1.3. Example. Given a set {Xs},es of topological spaces, the classical topology on the disjoint

union H xs is the covariant topology induced by inclusions it Xt H x,, s.
ES ES

1.4. Example. Given a simpficial comple K, the ea topology IKI is the ccrearian topology

c bya mmsoas !1 IKI, ee sp Ka I1 I1 qPP
ith the standard metric topology.

One of the basic classes of topological spaces are Fchet spaces (see Section 1.6 of

1.5. Proposition. X is a Ecet space i_ff its topology is tb,e covariant topology induced by

The dual to the notion if the covariant topology is the contravariat topology:

1.6. Definition. The topology T o X is caed the contrvariat topolo_,_ iduced by te

class o? fimctions { X XX ff eac X! is topological space ad T is the smallest

a topologies on X trader hch a j " are contmuoas.
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Notice that the (;ontravariant topology exists and its sub-basis consists of all sets f-l(u),
where U is open in Xf for some f E ’.

1.7. Example. /f A is a subset of a topological space X, then the subspace topology on A is

the contravariant topology induced by the inclusion iA A X.

1.8. Example. An injective map f X Y is a homeomorphic embedding iff the topology

on X is the contravariant topology induced by {f}.

1.9. Example. The product topology on the cartesian product I-I x. is the contravariant

topology induced by projections {Tr 1-I x, xt }tes.

The basic property of covariant topologies is:

1.10. Proposition. Suppose the topology ofX is the covariant topology induced by a class of

functions {f X X}iej. Then, a function g X Y is continuous iff g o f, is continuous

for a//zE J.

The basic result regarding covariant topologies is:

1’.11. Theorem. Suppose the topology on X is the covariant topology induced by a class of

maps {f, X, X},es so that X (J f,(X,). If Z is locally compact, then the covariant

topology induced by {f, idz X, Z X Z},Es is the product topology on X Z, where

each X, Z is equipped with the product topology.

The basic property of contravariant topologies is:

1.12. Proposition. Suppose the topology of X is the contravariant topology induced by a

class of functions {f, X X,}ij. Then, a function g Y X is continuous iff f, o g is

continuous for each J.

2. BASIC CONCEPTS IN TOPOLOGY FROM COVARIANT/CONTRAVARIANT
POINTS OF VIEW

Let us assume that the following spaces are well-understood:

1. Anti-discrete spaces (spaces with the smallest topology possible),

2. Discrete spaces (spaces with the largest topology possible), including the integers Z and

natural numbers N,
3. S (the 0-dimensional sphere or the simplest direte space which is not anti-discrete),
4. The unit interval I with the standard topology,

5. The real numbers R with the standard topology. Q c R are rationals.

It is well known that connected spaces X are precisely those, so that all maps f X
So are constant. Thus, connectedness is a contravariant property. On the other hand, path

connectedness is a covariant property as X is path connected iff any map f S X extends

over I. Let us analyze basic concepts of topology from those two points of view.

2.1. Proposition.

1. X is To i/it any map f A X from an anti-discrete space A to X is constant.

2. X is T ifi any non-constant map f So X is a homeomorphic embedding.
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3. Suppose X is T1. Then, X is T2 (Hausdorff) iff S is an absolute neighborhood extensor of

X with respect to finite subspaces.

4. Suppose X is To. Then, X is Ta1/2 (Tychonoff) iff the topology of X is the contravariant

topology induced by a family of functions {f X I}s.
5. Suppose X is TI. Then, X is T4 (normal) iff SO is an absolute neighborhood extensor of X.

6. Suppose X is T1. Then, X is collectionwise normal iff all discrete spaces D are absolute

neighborhood extensors of X.

The purest contravariant approximation of compactness is pseudo-compactness (see 3.10 of

X is called pseudo-comxact if any map f X P from X to reals is bounded.

The following result summarizes well-known characterizations of Hausdorff compact spaces

in terms which are contravariant in spirit:

2.2. Theorem. Suppose X is Hausdorff. The following conditions are equivalent:

1. X is compact,

2. X is regular and any map f X Y from X to a Hausdorff space is closed,

3. X is regular and f X is closed in Y for any map f from X to a Hausdorff space Y,
4. X is regular and f is a homeomorphic embedding for any injective map f from X to a

Hausdorff space Y.

The following well-known result of Tamano (see Theorem 5.1.38 in [3]) can be interpreted

that paracompactness is a contravariant property:

2.3. Theorem (Tamano). X E T2 is paracompact iff X x C is normal for all compact

Hausdorff spaces C.

The following metrizability criterion proved by the author in [1] means that metrizability is

a contravariant property:

2.4. Theorem. X To is metrizable iff the topology of X is the contravariant topology

induced by a set of maps {fs X I}ses such that

Theorem 2.4 was improved in [1] as follows:

2.5. Theorem. X To is metrizable il7 there is a set of maps {f5 X I}es such that

=
and {f-l(0, 1]}ses is a basis ofX.

Theorem 2.5 implies the well-known metrizability criteria, Kuratowski-Wojdystawski Theo-

rem, and Arens-Eells Theorem (see [1]).
Completness in the sense of (ech is a covariant property (see Theorem 3.9.1 of [3]):

2.6. Proposition. Suppose X is a Tychonoff space. Then, X is complete in the sense of (ech

iff any map f A X from a subset A of a Tychonoff space Y extends over a G subset of Y.

Being a k-space is a covariant property. (see Theorem 3.3.18 of [3]):
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2.7. Proposition. X is a k-space (Ms() known as compactly generated) iff the topology of X

is the covariant topology induced by a functiors of maps

{f: c., x}
from h)cally compact spaces to X.

The following well-known result underscores the importance of Theorem 1.11 (see Theorem

3.3.27 of [3]):

2.8. Corollary. HX is a k-space and Y is locally compact, then X x Y is a k-spacc.

Being of covering dimension n is a contravariant property (see [7]):

2.9. Theorem (Hurewicz-Wallman). dim(X) <_ n iff S e AE(X).

Theorem 2.9 explains why the covering dimension is the most widely used of all theories of

dimension.

In [1] the author proved the following generalization of Tietze-U.rysohn Theorem and U.rysohn

Lemma:

2.10. Theorem. Suppose Y {point} is a Hausdorff space. Then, the following conditions

are equivalent:

1. Cone(Y) e AE(X),
2. (Cone(Y),Y) e AE(X),
3. Y e AWE(X).

Traditionally, the Cone(Y) of Y is understood as the quotient space Y x I/Y x (0}. That

would mean that the topology of the cone i.s introduced in a covariant manner. If one wants to

map spaces to the cone, then as seen in Proposition 1.13; it is better to introduce a topology on

the cone in a contravariant manner. Notice that there are two natural functions: the projection

p Cone(X) I and the projection px Cone(X)- pt X. These two functions define a

contravariant topology on the cone Cone(Y) which is equivalent to the one introduced in [1].
Thus, for general spaces Y, one has two kinds of cones: the covariant cone and the contravariant

cone. In the case of a metric space Y, the covariant cone may not be metrizable but the

contravariant cone is metrizable (use 2.4). Theorem 2.10 deals with con’travariant cones.
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