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ABSTP,CT. A generalized Fock space is introduced as it was developed by Schmeelk [1-5],
also Schmeelk and Takai [6-8]. The wavelet transform is then extended to this generalized
Fock space. Since each component of a generalized Fock functional is a generalized function,

the wavelet transform acts upon the individual entry much the same as was developed by
Mikusinski and Mort [9] based upon earlier work of Mikusinski and Taylor [10]. It is then

shown that the generalized wavelet transform applied to a member of our generalized Fock

space produces a more appropriate functional for certain appfications.
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1. INTRODUCTION
Wavelet transform techniques are rapidly becoming a primary mathematical theory

being implemented in many applications. The current development by the Federal Bureau of

Investigation (FBI) in establishing a proper wavelet transform to store its 30 million criminal

fingerprints now stored in filing cabinets illustrates the wavelet applicational importance.

The advantage will not only be to compress the data files but to develop a faster and superior

method to facilitate the matching process. These techniques are developed and discussed in a

work of Strange [11].

Wavelets are also shown to be of significant importance in the music industry. A
linear combination of three wavelets are shown to be an excellent model for the sound of the

crash of cymbals in an orchestra shown by Von Bseyer [12]. The application of wavelets to

seismic data developed by Grossmann and Morlet in reference [13] also illustrates the

marvelous analysis of what the authors of this paper will term, "rough data". Perhaps in some

situations the removal of the "overshoot" known as the Gibbs phenomenon in Fourier analysis

gives wavelet analysis a key advantage in approximating our so called "rough" data discussed

by Walter [14].
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A natural question to ask is how can we apply wavelets to distributions? In particular
how to apply them to singtdar distributions or non-regular distributions such as the Dirac
delta functional which again in the authors opinion is a very "rough" object. Several research

papers regarding the implementation of wavelets to distributions can be found in the research
done by Walter [14-20] and Mikusinski and Mort [9]. We will extend several of these results.

The application of wavelets to image processing has been developed as a convolution

operator in the work of Mallat [21-24] and further developed in a mathematical milieu in the
work of Mikusinski and Mort [9].

We will first give a general overview of wavelet transforms considered as convolution
operators for real valued functions belonging to the space, L2(goq), q > 2. We will not repeat
here the marvelous multiresolution analysis conducted in the space, L2(9O2), by Mallat [21-
24] and Meyer [25] and generalized to the space, L2(goq), q > 2 in the work of Daubechies [26].
We are also interested in the space L2(9O2) since an immediate application can then be made
to image processing. The real valued functions in this application take on integer values
ranging from 0 to 255 depending on the shade of gray contained in a black and white image
,and its argument is a member of 9o2 designating the location within the image developed in

Lim [27].

Moreover many signals in signal processing are bounded real valued functions on 9oq

and are also members of the space, LI(goq). Thus we are naturally lead to study the space,

L1B(%q), namely the space of bounded functions which are also members of L2(goq). Moreover
it is well known that the convolution of two functions belonging to LI(goq) exists almost
everywhere.

We then move on and consider the wavelet transform applied to classical distributional
spaces. This then ctdminates by applying generalized wavelet transforms to our so-called
generalized Fock spaces. The generalized Fock spaces are developed by Schmeelk [1-5] and
Takai [6-8]. A rapid review of the key features for these spaces are included in section 3.
The three representations of our generalized Fock functionaJs will enable us to consider a form
of classical Fock spaces as well as generalized Fock spaces. These so-cMled generalized Fock
functionals contain functionals oftentimes non-linear which may consist.of an infinite array of
translated Dirac delta functionals. This statement will become clear as the paper develops the
surrounding mathematical considerations. It is the wavelet transform generalizations to these
spaces which will provide us with the authors so-called "somewhat smooth" or "very smooth"

representations for the "very rough" functionals.

2. SOME NOTIONS AND NOTATIONS

We recall some properties for our sequences of real numbers, p (mq)qeNo and
sequences of functions, Ah=(Mp(. ))peN0. The sequences of real numbers, p=(mq)qeNo
satisfy the Komatsu conditions [28], namely

(M.I)

(M.2)

(M.3)

m2q<_mq_l mq+ 1, qeN;

there exist real numbers, A and H, such that mq + < A Hq mq, q e NO
oo mq_
q=l
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These conditions are commonly called logarithmic convexity, stability under ultra differential

operators and strong non-quasi analyticity respectively. It is convenient to select m0 1.

One easily verifies, for instance, the sequence,

mq qqs s > 1,
satisfies the three conditions.

We next select a sequence of continuous functions, ., =__(MP(’))PeN0 on q, q _> 1.

We require the traditional conditions. (P),(M) and (N) hold (see Gelfand and Shilov [29] or

Pilipovic and Takai [30] as well as the inequalities,

1 A MO (tl t) _< .--_< Mp (tl tq) _<---. (2.1)

Then an infinitely differentiable function, (t t), is in the test space, %(Jo), if and only
if for each peN0 the following norms are finite;

where

Oq t, {1@(’ )1 (h tq) lMp (t tq)"

tRq, ji<p, <i<q}

4(jl Jq)(t tq) Oil +’"+ jq

ojlt...Ojqtq
(t

andt=(t tq) E Rq

(2.2)

The family of norms, (11" ),v0, defines a locally convex topology on the vector space,

%(Mr,) which in view of condition (P) turns it into a Fr6chet space. The classical test

functions, @(q), consisting of infinitely differentiable functions having compact support
equipped with its usual topology is then dense in %(.hh). This implies that the space of hnear
continuous functionals referred to as generalized functions on the test space, %(.Ah), and
denoted %’(.At,) is in fact a countably normed space equipped with norms,

II-p sup {I (,) p _< 1, b %(MI,), p. e NO}. (2.3)

Moreover we observe that

o I1. >’-- > I1. >’"
for any z /%’(.At,). During our sequel we will occasionally use the functions, __(MP)PeNo
to be defined as

Mp (t tq) [(I + tl) (i + tq)]
p

(2.4)

whereby the test space, %(.A) then becomes the test space of rapid descent, Y(q) and

%’(.,11,) becomes the Schwartz space of tempered distributions, Y’(Rq).

3. GENERALIZED FOCK SPACES

Let z q %’(Mh) and consider
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,- %’() x... x ’(.,r.,) c

a multihneax continuous functional on q-copies of %’(.At,) to C. By definition we take a0 / C.
We define

aq p {laq [, 11" e %’(), II- -< P }- (3.2)

Then the infinite column vector,

ao
a

4-

aq
(3.3)

is in the space, Fs’p’, s > 1, if and only if the norm

IIN, III
<p)

sup
aq IIp rnq

s,t,.Al q NO
sq (3.4)

is finite for every p /N0.

Clearly the canonical inclusion,

Fs’/’Mb Fs’’g’Mh (3.5)

is continuous provided s’ > s > 1.

DEFINITION 3.6. A generalized Fock space, F/’’At’, is the inductive hmit of the spaces,

Fs’/’lt’, which is denoted as

FI’Mb ind Fs’t’’At’

It was shown by Schmeelk [2] that each functional, q F/’’At’, has a kernel representation.

This representation was shown to be

b0
bl(t1). (3.7)

dPq(tl tq)

where @0 ao E C and @q(gl gq), q > i are symmetric rapid descent test functions

whenever the functions, M1, =(./p(.))pe.,Vo are defined as in expression (2.4). Moreover our

functional representation given in expression (3.7) will then satisfy the norm conditions,

sup < c, (3.8)
s, I.t ./&, q NO

sq

for every p E NO where is the norm defined in expression (2.2). The representations
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(3.3) or (3.7) enjoy a generalized square summable property as seen in the following theorem

oftentimes postulated for classical Fock functionals.

THEOREM 3.9. Given a e rs’/z,tt, s > i then its kernel representation given in expression

(3.7) satisfies

[l I0l2 /q-1 jq ICq(t tq)l dt dtq < oo.

PROOF: See Schmeelk [6], Theorem 3.1.

sp= , ’, [3S-40] e =h

F E (r/z’-), was shown to have the representation,

F-[FO, F1, Fq, ...], (3.10)

where F0 E C and each Fq, q >_ 1 belongs to the generalized function space, %(.), and they
all have an order _< p. Moreover it was shown that each F satisfies the condition,

oo sq ](p)Fq II-p Wq [III < cx, (3.11)
q 0 s,p,

for some fixed order, p.

The duality between r/z’MI’ and F (/ (r/z,-A) is then defined by

<(FI,))= (Fq, Cq)q. (3.12)

The notation in expression (3.12) given as (Fq, dpq)q denotes the duality between the test

space, %(), and its corresponding generalized function space,

We now observe that our dual space, (r/z, Mb) can be equipped with the norms,

ii
(’p) qIIIFI - Fq II-p (3.13)
s,/z,.A q 0

where p _> order of all {Fq}q= in the representation given in expression (3.10). Moreover
whenever the series in (3.13) converges, our generaSzed Fock functional is a member of

4. WAVELEt TRANSFORMS

For this section and hereafter we consider the following space inclusions,

(q) C Y(q) C LB(q) C L2(q) C Y’(q) C (q). (4.1)

Here again LB(q is the space of bounded functions on q, q >_ which are also members of
L2(q). The tempered distributions, Y(q) and distributions, (q) are acting on rapid
descent and compact support test functions respectively having independent variables

belonging to q. Moreover we want to preserve the mathematical analysis surrounding the
Fourier analysis developed in Y(q). A principle result oftentimes termed the exchange
principle is that the Fourier transform of a convolution is the product of the Fourier
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transforms. This is very important in applications since many software packages contain

algorithms for Fast Fourier transforms, but do not support wavelet transform techniques.
After we establish the wavelet transform to be a form of convolution, then these software
packages via the exchange principle can be extended to do wavelet transforms.

The wavelet analysis surrounding this section to include the mother wavelet, the
admissibility condition and multiresolution analysis can be found in Akansu [31], Benedetto
and Frazier [32], Beylkin et al [33], Holschneider [34], Kaiser [35], Koornwinder [36], Ruskai

[37] and Schumaker and Webb [38]. Also the inversion of the wavelet transform stemming
from the admissibility condition can also be found within these references. We will begin our

analysis by considering the wavelet transform as a special type of convolution as in Mallat
[21-24] and Milusinski and Mott [9]. To this end we will adopt the following notation

conventions.

If a function, $(t) E L2(q), together with two q-tuples of real numbers, a (ai)
a # O, (1 < < q) and r (ri) are given, then the dilation and

tq- rq
(4.2)aq

t=l
translation of $(t) is

a,(t i

Moreover we denote by a(t) the function defined as

ba(t) 1 tl tq ) (4.3)

Throughout our sequel we will always require the dilation sequence, a (ai)= satisfy the
requirements, a # 0, (1 < _< q).

LEMMA 4.4 Given a function, $(t) E L2(q)

then b(t)]I L2(tq) a’r(t) L2Otq) a(t) L2(q), where

is the standard norm on the equivalence classes contained in L2(q).
PROOF. Follows directly from the change of variables, T tiT-’iai and T "-i
(1 _< < q) respectively. This 1emma shows us that the energy in a real valued signal remains

unchanged under the constructions, ba’r(t) and cka(t).

We now select a mother wavelet, b(t) LB(q), and define the wavelet transform of a

function, f(t) Ll(q), to be

-oo -oo
a aq ] dtl...dq

f(t ,tq) --q ’\ -a -aq ] dtl"’dtq- - i=lai
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If(t)

where denotes the convolution product of the functions, f(t) and a(t) as defined by
Zemanian [39].

As an example of a mother wavelet we consider a form of the Meyer wavelet presented
by Saitoh [40],

q -t-...-t
(t ,tq)=

F 7|2r_//4 | -t2)..-(1- t)e (4.6)
L v,, .J

which satisfies the aAmissibility condition,

and moreover

The mother wavelet given in expression (4.6) is a rapid descent test function giving us a clear
comeetion between wavelet analysis and tempered distributions. By applying the Schwtz

inequality in the space, L
2
(q), we immediately have for our mother wavelet (4.6) and any

f(t) E L2(q) the following inequality.

(4.8)

This inequality will remain valid for any mother wavelet, Ca, r(t), which has been normalized

in the L2(q) norm.

5. WAVELET TRANSFORMS OF GENERALIZED FUNCTIONS

We briefly recall the definition of the convolution product for two generalized functions

developed by Vladimirov [41] and Zemanian [39].
DEFINITION 5.1. Given two generalized functions, F, G, then their convolution product is

(F G,) <F(t ,tq), (G(’r ,’rq) (tl + "rl ,tq + rq))> (5.2)

I I F(tl ,tq) G(v ,Tq) (t + r ,tq + rq) dt ,dtq dr ,drq

provided the above equality (5.2) is well defined for all test functions, (t)E 2)(q). The

integral representation given in (5.2) is valid only for regular generalized functions.
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Inherent in definition 5.1 is the problem with the construction (t + r) which destroys

the compact support and polynomial growth condition when the test function, (t), belongs to

(Rq) or Y(q) respectively. To overcome this difficulty it is shown by Vladimirov [41] and

Zemanian [39] that if F and G both have compact support, or both have bounded supports on

the left or the right, then the convolution product is well defined. Moreover it is shown by
VlaAimirov [41] that the convolution product remains well defined for F
generalized function having compact support.

Since the convolution of the translated generalized derivative of the Dirac functionaJ,
(Jl Jq)(7.1 _.0 7.q- rq), and a distribution, F, is important to our sequel, we compute it

q

implementing the notation convention,

This gives us

/F * (Jl Jq) (7.1_ 7.01 7.q_ 7.q0), (5.3)

<F(t, ,tq), <5(jl Jq) (7.1-7.10 7-q-

<F(, ,,q), <(Jl Jq) (7.1,’",7.q),

/F(ti ,tq), <(7.1,’;’,7.q), (-1) ’j’g(jl Jq) (txq-7.1q’7.10

<F(Jl Jq) (t1_7.10 ,,q_7.q0),

Since this holds for all test functions, )(q), we have

F, (J Jq) (’1-7.10 7.q_ 7.q0)= F(J J) (tx- 7.? ,tq_ 7.q0). (8.4)

We now consider a mother wavelet, (t) L2(q) or Y(q) such as the one in

expression (4.6). We consider a distribution, F(t), where the support of F(t) intersects the

support of =(t) and (t + 7.) in a bounded set, let us say f C 2q.. We then select a test

function, A(t,7.) (2q) that is equM to one over some neighborhood of

lger region as shown in Zemanian [39]. For such a distribution, F(t), satisfying what we

term the bonndd intcection support pronerty with the functions, =(t) and (t + 7.), we then

define the following wavelet transform for F(t).
DEFINITION 5.5. The wavelet transform of a distributior, F(t) satisfying the bounded
intersection support property with a(t) and ( + 7.) is given by

(WcF)(=) - F( ,), =(m ,)
where
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As in Zemanian [39], this convolution product is well defined making our wavelet transform
well defined.

We compute the wavelet transform of (tl-b tq-bq) with a mother wavelet,

(7-1 ,rq) which satisfies the bounded intersection support property with a(7-) and (t + r)
whenever (t) E (). To this end we have

(t- b) ea(t),)

(t-b), lI a (81 $q) A(t,-as)(t -asl, ...,tq-aqSq) dSl...dsq
=1 -OO -OO

a (s Sq)/(b, as)(b alSl, ...,bq aqSq) dSl...dsq

oo o ,/ft-b tq-bq A(b, b-t)(tl,..,tq) dt1. .dtqI I
(a(t- b),(t))L2(q).

Since this holds for all test functions, (t)E (8q), we have (W(t-b))(a) Ca(t-b).
Clearly the "rough" delta functional is transformed to a "rather smooth" or "smooth" regular
distribution, Ca(t-b) depending on the smoothness of the mother wavelet (t) selected for
the apphcation.

We now extend our wavelet transform to a tempered distribution, F e Y’(q) and a

mother wavelet, (r) e Y(q), following the convolution construction Zemanian [391.
DEFINITION 5.6. Given F Y’(q), a mother wavelet, (r)e Y(q) and a test function

e (q). We then define the wavelet transform of F to be

(WcF)(a) & F(t ,re), Ca(r ,rq)
where

F(t tq) a(7-1 ,rq), (t tq)> -
F(t lq) x (7"1, ...,7"q), )t(7" ,7"q) ea(7"1-tl ,7-q-tq)>

where/\(7"1 ,7"q) e (q) and equals one over a neighborhood of the support of



666 J. SCHMEELK AND A. TAKACI

6. WAVELET TRANSFORMS OF GENERALIZED FOCK SPACES

The technique of extending the wavelet transform to our generalized Fock spaces is in

the spirit of extending the Fourier and Hankel transforms to generalized Fock spaces as

conducted by Schmeelk [4.5] respectively.

For this section we consider the functions, (Mp(.))peNo to be

Mp(tl, ...,lq) [(1 + t12)... (1 + $q2).
We now define the wavelet transform on functional, q, having the representative,

0

, (.)
q(tl, .,tq

and satisfying the norm conditions,

sup sq < o, (6.2)

for all peN0.
DEFINITION 6.3 Given a normalized mother wavelet (t) L2(q), q >_ i, the wavelet

transform of @ denoted W(a,r) is

Wv(a, r):

0
l(tl)

Cq(t tq)

0
[l(tl) *

[q(t tq) * d2al aq(tl tq)](r

(6.4)

LEMMA 6.5. The wavelet transform of q, W@(a,r), is well defined for every q e rg,,s,
having the representation given in expression (6.1) together with a normalized mother

wavelet.
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PROOF: Let F" ’’ for some s > 1. We consider

-< Iol / bq(tl,.. tq) _al
q=l

q
-00 -00

rq- tq
-aq ) dr1, ...dtq

where s ’s2. In view of Lemma 3.1 found in Schmeelk and Takai [6], page 268, the last

sum is finite.

We now consider the space, (Fg’") defined in expression (3.10) and recall that an F
(F’)’ has representation,

F[F0 Fq (6.5)

where F0 C and Fq ’(.At,), q > 1 and all have order < p. Moreover the F then satisfies

the norm condition

Fq <
q=O -P

As an example of such a generalized Fock functional, we consider
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(t -b1)

$(t -bl) 6(tq-bq)

x sqwhere it is clear that + a(ta -bl) x... (tq-bq) il- < for every p.
q=l

We then define the wavelet transform of our generalized Fock functional to be

(WcF)(a)

Fo

W(FI)(al)

W(Fq)(a aq)

(6.7)

We compute the wavelet transform of the generalized Fock functional given in expression

(6.6) with a normalized mother wavelet and obtain

F0

Cal(t -b1)

ba1,a2,.. .,aq( bl tq bq)

We observe that each entry in expression (6.3) for q > satisfies the following norm

condition.

I1,,, aq(tl -h, ...,tq- ) -p

sup
II,/, ,_< -oo’"- --:’-] (tl ,tq) dtl...dtq

< sup { .oo’".oo’k-’zi-a a ] dtl"’dtq
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Thus we immediately have that our wavelet transform of our generalized Fock

functional given in example (6.8) satisfies the norm condition,

o sq qsq
1 /e= il,/,,,,,...,% (h-b,...,e-bq)II

_ -< 1 -,e__z.q < . (6.1o)

We conclude with considering the general case given in expression (6.7). We require that our

generalized Fock functional has each entry, Fq, q _> 1, and normalized mother wavelet

satisfying the bounded pport intersection property. For this situation we then have

-P)
W(Fq)(,..,.,)II_p qIIIW()(a)lll_ ,

q o . (.)IF012 + Wb(Fq)(al,...,aq) !1. meq=l

Now for each q > 1 in expression (6.11) we have

W(Fq)(a ,aq) I1_

{(F( Sq) x a(7"1 7"q), (tl q’7"1 7"q) (h/’ / ’e))l" I1 -< 1}

(T Tq)dT dTq) "11 1}
f(tl re) I1.,,,,. -., /

-0<3 -0<3

Tq- tq) (T Tq)dT dTq

I1, -< 1

for all II _< . Since our mother wavelet is normMized and our test functions, , satisfy

b p _< 1 we immediately have our sum in expression (6.11) to be finite.
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