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A NONLOCAL PARABOLIC SYSTEM WITH APPLICATION
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Abstract. A system modeling the thermoelastic bards contacts is studied. The problem
is first transformed into an equivalent nonlocal parabolic systems using a transformation,
and then the existence and uniqueness of the solutions are demonstrated via the theo-
retical potential representation theory of the parabolic equations. Finally some realistic
situations in the applications are discussed using the results obtained in this paper.
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1. Introduction. In this paper we extend the results obtained in [3, 8] for a nonlocal
parabolic system for two dependent variables to a general system for n such variables.
The result has application to the problem of thermoelastic contact of n rods. We
consider first the existence, uniqueness and continuous dependence of the solutions
of the nonlocal parabolic system of equations governing the temperature distribution
in the rods.

Then consider the quantity

θ = (
θ1(x,t),θ2(x,t), . . . ,θn(x,t)

)T , (1.1)

where

θi
t−ciθi

xx =
bi

|Ωi|
d
dt

max
{
I(θ)+g,0

}
, x ∈Ωi, t ∈ J, (1.2)

µ1θ1
x(0, t)+ν1θ1(0, t)= f1(t), t ∈ J, (1.3)

µnθn
x(1, t)+νnθn(1, t)= fn(t), t ∈ J, (1.4)

Kiθi
x
(
�2i−1, t

)=Ki+1θi+1
x

(
�2i, t

)
, t ∈ J, (1.5)

−Kiθi
x
(
�2i−1, t

)=mi
[
θi(�2i−1, t

)−θi+1(�2i, t
)]

, t ∈ J, (1.6)

θi(x,0)= θi
0(x), x ∈Ωi, (1.7)

where ci > 0, Ki > 0, mi > 0, bi > 0, µ2
1+ν2

1 ≠ 0, µ2
n+ν2

n ≠ 0, and i = 1,2,3, . . . ,n, and
g,f1,fn are known functions. We take

J = (0,T ), T > 0 and Ωi =
(
�2i−2,�2i−1

)
, (1.8)

where

0= �0 < �1 < �2 < ···< �2n−2 < �2n−1 = 1. (1.9)
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The integral operator I(θ) is defined by

I(θ)=
n∑

i=1

ai

∫
Ωi

θi(x,t)dx, ai > 0, t ∈ J. (1.10)

The quantities f1(t), fn(t), θi
0(x) are taken to be known functions.

Definition 1.1. A vector θ is said to be a solution to the problems (1.2)–(1.10) if
θi ∈ C2(Ωi×J)∩L∞(Ωi×J) and satisfies equation (1.2) together with the initial and
boundary conditions almost everywhere.

2. An equivalent problem. The problem described by equations (1.1)–(1.10) can be
reduced to an equivalent problem by setting

wi = θi− bi

|Ωi|max
{
I(θ)+g,0

}
, i= 1, . . . ,n. (2.1)

Multiplying each of equations (2.1) by ai in turn and integrating over Ωi and summing
we have

I(w)= I(θ)−
 n∑

i=1

aibi

max
{
I(θ)+g,0

}
, (2.2)

where w = (w1,w2, . . . ,wn)T . If we add g to either side we have

I(w)+g = I(θ)+g−
 n∑

i=1

aibi

max
{
I(θ)+g,0

}
. (2.3)

Lemma 2.1. If Q= 1−∑n
i=1aibi > 0 then equation (2.1) has the unique inverse

θi =wi+ bi

|Ωi|Q max
{
I(w)+g,0

}
. (2.4)

Proof. Equation (2.3) implies that

I(w)+g > 0⇐⇒ I(θ)+g > 0, (2.5)

and the result follows.

In terms of w the problem described by equations (1.1)–(1.10) may be reformulated
for i= 1,2, . . . ,n as

wi
t−ciwi

xx = 0, x ∈Ωi, t ∈ J, (2.6)

µ1w1
x(0, t)+ν1

(
w1(0, t)+ b1

|Ω1|Q max
{
I(w)+g,0

})= f1(t), t ∈ J, (2.7)

µnwn
x (1, t)+νn

(
wn(1, t)+ bn

|Ωn|Q max
{
I(w)+g,0

})= fn(t), t ∈ J, (2.8)

wi+1
x

(
�2i, t

)= Ki

Ki+1
wi

x
(
�2i−1, t

)
, t ∈ J, (2.9)

wi
x
(
�2i−1, t

)=−mi

Ki

{
wi(�2i−1, t

)−wi+1(�2i, t
)

+Hi

Q
max

{
I(w)+g,0

}}
, t ∈ J,

(2.10)
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wi(x,0)= θi
0(x)+ bi

|Ωi|Q max
{
I(w0)+g,0

}
, x ∈Ωi. (2.11)

Since the initial values θi
0(x), i= 1,2, . . . ,n are known we take

wi(x,0)= Φi(x), x ∈Ωi, (2.12)

to be known quantities.

3. Preliminaries. In this section we list several classical results from [4] and de-
velop solutions to the problems (2.6)–(2.12). We refer to [4] for proofs of the following
lemmas:

Lemma 3.1. If Φ(x)∈ C[0,1], then

V
(
x,t,φ

)= ∫ 1

0

[
Θ
(
x+ξ,t

)+Θ(x−ξ,t
)]
Φ
(
ξ
)
dξ (3.1)

solves the problems

Vt = Vxx, 0 <x < 1, t > 0,

V(x,0)= Φ(x), 0 <x < 1,

Vx(0, t)= Vx(1, t)= 0, t > 0.
(3.2)

Here we have defined

K(x,t)= 1√
2πt

e−x2/4t , t > 0, (3.3)

Θ(x,t)=
∞∑

n=−∞
K(x+2n,t), t > 0. (3.4)

Lemma 3.2. Let w(x,t) be the solution of

wt =wxx, 0 <x < 1, t > 0,

w(x,0)= Φ(x), 0 <x < 1,

w(0, t)= F(t), wx(1, t)=G(t), t > 0,
(3.5)

where F,G ∈ C[0,T ], T > 0, Φ ∈ C[0,1]. Then

w(x,t)= V(x,t,Φ)−2
∫ t

0
Kx(x,t−s)ψ1(s)ds+2

∫ t

0
K(x−1, t−s)ψ2(s)ds, (3.6)

where ψ1,ψ2 are the unique solutions in C[0,T ] of the Volterra system

F(t)= V(0, t,Φ)+ψ1(t)+2
∫ t

0
K(−1, t−s)ψ2(s)ds, (3.7)

G(t)=−2
∫ t

0
Kxx(1, t−s)ψ1(s)ds+ψ2(t). (3.8)

Note. (i) If F,G are piecewise continuous and bounded, then Lemma 3.2 holds
with ψ1,ψ2 piecewise continuous and bounded.

(ii) If F and G have a singularity at t = 0 with F(t)=G(t)=O(t−α), 0 <α< 1, then
ψ1,ψ2 have the same singularity at t = 0.

(iii) If F and G ∈ L1(0,T ), then ψ1,ψ2 ∈ L1(0,T ) and the solution w ∈ L1[(0,1)×
(0,T )].
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Lemma 3.3. Let w(x,t) be the solution of

wt =wxx, 0 <x < 1, t > 0,

w(x,0)= Φ(x), 0 <x < 1,

wx(0, t)=H(t), wx(1, t)= J(t), t > 0,
(3.9)

where F,G ∈ C[0,T ], Φ ∈ C[0,1]. Then

w(x,t)= V(x,t,Φ)−2
∫ t

0
K(x,t−s)H(s)ds+2

∫ t

0
K(x−1, t−s)J(s)ds. (3.10)

Extensions. We require the following corollaries of Lemmas 3.2 and 3.3 to adapt
the solutions to the intervals of interest for the problems (2.6)–(2.12).

Corollary 3.1. With the assumptions of Lemma 3.2 the solution of

w1
t = c1w1

xx, x ∈Ω1, t > 0,

w1(0, t)= F1(t), w1
x(1, t)=G1(t), t > 0,

w1(x,0)= Φ1(x), x ∈Ω1,

(3.11)

is given by

w1(x,t)= V 1(x,t,Ω1,c1,�1
)−2

∫ t

0
Kx

(
x
�1

,
c1

�2
1
(t−s)

)
c1

�1
ψ1

1(s)ds

+2
∫ t

0
K
(
x−�1

�1
,
c1

�2
1
(t−s)

)
c1

�2
1
ψ1

2(s)ds,
(3.12)

where ψ1
1,ψ

2
1 are the unique solutions of the Volterra system

F1(t)= V 1(0, t,Φ1,c1,�1
)+ψ1

1(t)+2
∫ t

0
K
(
−1,

c1

�2
1
(t−s)

)
c1

�2
1
ψ1

2(s)ds, (3.13)

2G1(t)=−2c1
∫ t

0
Kxx

(
1,

c1

�2
1
(t−s)

)
ψ1

1(s)ds+ψ1
2(t), (3.14)

V 1(x,t,Φ1,c1,�1
)= 1

�1

∫ �1

0

{
θ
(
x+ξ
�1

,
c1

�2
1
t
)
+θ

(
x−ξ
�1

,
c1

�2
1
t
)}

Φ1
(
ξ
)
dξ. (3.15)

Proof. Set x̂ = x/�1, t̂ = c1t/�2
1 in equations (3.11), and consider Lemma 3.2 in

terms of the new variables x̂, t̂.

Corollary 3.2. With the assumptions of Lemma 3.3, the solution of

wj
t = cjwj

xx, x ∈Ωj , t > 0,

wj
x
(
�2j−2, t

)=Hj(t), wj
x
(
�2j−1, t

)= Jj(t), t > 0,

wj(x,0)= Φj(x), x ∈Ωj

(3.16)
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for j = 2,3, . . . ,n−1 is given by

wj(x,t)= V 2(x,t,Φj ,cj,�2j−2,�2j−1
)

−2
∫ t

0
K
(

x−�2j−2

�2j−1−�2j−2
,
cj(t−s)
|Ωj|2

)
cjHj(s)ds

+2
∫ t

0
K
(
x−�2j−2

|Ωj| ,
cj(t−s)
|Ωj|2

)
cjJj(s)ds,

(3.17)

where

V 2(x,t,Φj ,cj,�2j−2,�2j−1
)

= 1
|Ωj|

∫
Ωj

θ
(
x+ξ−2�2j−2

|Ωj| ,
cjt
|Ωj|2

)
+θ

(
x−ξ
|Ωj| ,

cjt
|Ωj|2

)Φj(ξ)dξ.
(3.18)

Proof. Set x̂ = (x−�2j−2)/|Ωj|, t̂ = cjt/|Ωj|2 and proceed as in Corollary 3.1.

Corollary 3.3. With the assumptions of Lemma 3.2, the solution of

wn
t = cnwn

xx, x ∈Ωn, t > 0,

wn
x
(
�2n−2, t

)=Gn(t), wn(1, t)= Fn(t), t > 0,

wn(x,0)= Φn(x), x ∈Ωn,

(3.19)

is given by

wn(x,t)= V 3(x,t,Φn,cn,�2n−2
)

+2
∫ t

0
K
(
x−�2n−2

|Ωn| ,
cn(t−s)
|Ωn|2

)
cn

|Ωn|2 ψn
2 (s)ds

+2
∫ t

0
Kx

(
x−�2n−2

|Ωn| −1,
cn(t−s)
|Ωn|2

)
cn

|Ωn|ψ
n
1 (s)ds,

(3.20)

where ψn
1 ,ψ

n
2 are the unique solutions of the Volterra system

Fn(t)= V 3(1, t,Φn,cn�2n−2
)+ψn

1 (t)+2
∫ t

0
K
(

1,
cn(t−s)
|Ωn|2

)
cn

|Ωn|2 ψn
2 (s)ds, (3.21)

|Ωn|Gn(t)= 2cn
∫ t

0
Kxx

(
−1,

cn(t−s)
|Ωn|2

)
ψn

1 (s)ds−ψn
2 (t), (3.22)

V 3(x,t,Φn,cn,�2n−2
)

= 1
|Ωn|

∫
Ωn

{
θ
(
x+ξ−2�2n−2

|Ωn| ,
cnt
|Ωn|2

)
+θ

(
x−ξ
|Ωn| ,

cnt
|Ωn|2

)}
Φn(ξ)dξ.

(3.23)

Proof. Set x̂ = (1−x)/(1−�2n−2), t̂ = cnt/|Ωn|2 first, and proceed as in Corol-
lary 3.1.

We now set

ψj
1 =Hj(t), ψj

2(t)= Jj(t), j = 2,3, . . . ,n−1. (3.24)
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Clearly, once

ψ=
(
ψ1

1,ψ
1
2, . . . ,ψ

n
1 ,ψ

n
2

)T
(3.25)

is determined uniquely, the solution to our problem is known.
We will show that ψ satisfies a matrix Volterra system of the form

ψ(t)=G(t)+
∫ t

0
A(t−s)ψ(s)ds+M max

{
H(t)+

∫ t

0
B(t−s)ψ(s)ds,0

}
, (3.26)

where G,H are suitable vectors and A,M,B suitable matrices. We require the following
lemma:

Lemma 3.4. Let

G(t)= (
G1,G2, . . . ,GN

)T ∈ [�1(0,T )]N,

H(t)= (
H1,H2, . . . ,HN

)T ∈ [�1(0,T )]N,
(3.27)

and let the N×N matrices

A(t)= ((
aij(t)

))
, B(t)= ((

bij(t)
))

, M(t)= ((
mij(t)

))
, (3.28)

i,j = 1,2, . . . ,N , be such that for some constants Ca,Cb,Cm > 0, 0 <α< 1,

‖A‖ =max
i,j

∣∣aij
∣∣≤ Cat−α,

‖B‖ =max
i,j

∣∣bij
∣∣≤ Cbt−α, where t > 0. (3.29)

‖M‖ =max
i,j

∣∣Mij
∣∣≤ Cmt−α,

Then the system (3.26) has a unique solution ψ(t)∈ [L(0,T )]N . In particular if ψ1,ψ2

are two solutions corresponding to dataG1,H1, andG2,H2 respectively then there exists
a constant C = C(Ca,Cb,Cm,α,T) > 0 such that∫ T

0

∥∥ψ1−ψ2
∥∥dt ≤ C

∫ T

0

{∥∥G1−G2
∥∥+∥∥H1−H2

∥∥}dt, (3.30)

where ‖ψ‖ =∑N
i=1 |ψi|.

Proof. See [8].

4. Existence and uniqueness. We rewrite equations (2.7), (2.8), (2.9), and (2.10) in
the form

w1(0, t)= f1(t)− b1

|Ω1|Q S
(
ψ
)
, (4.1)

wn(1, t)= fn(t)− bn

|Ωn|Q S
(
ψ
)
, (4.2)

wj+1
x

(
�2j ,t

)= Kj

Kj+1
wj

x
(
�2j−1, t

)
, (4.3)

wj
x
(
�2j−1, t

)=−mj

Kj

{
wj(�2j−1, t

)−wj+1(�2j ,t
)+ Hj

Q1
S
(
ψ
)}

(4.4)
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for j = 1,2, . . . ,n−1.
Since µ2

1+ν2
1 ≠ 0, µ2

n+ν2
n ≠ 0 we have considered the typical case

µ1 = µ2 = 0, ν1 = ν2 = 1. (4.5)

The general case will follow by similar arguments. Since, as we pointed out earlier,
Φj(x) are known for j = 1,2, . . . ,n we have taken V 1, V 2, V 3 as known quantities. Fur-
ther, since each element wj , j = 1, . . . ,n can be expressed in terms of the appropriate
elements of ψ we have written, for the moment,

S
(
ψ
)=max

{
I∗
(
ψ
)+g, 0

}
, I∗

(
ψ
)= I

(
w
(
ψ
))

. (4.6)

We again note that

Hj =
(

bj

|Ωj| −
bj+1

|Ωj+1|

)
, ψj

1 =Hj, ψj
2 = Jj. (4.7)

Equations (2.10) may now be used to determine equations for ψi
2, i= 1,2, . . . ,n−1 and

the last of equations (2.9) (i=n−1) to determine ψn
2 as follows.

For i= 1 equations (2.10), together with equations (3.14) and (3.17) give

ψ1
2(t)=

m1�1

K1

{
V 2(�2, t,Φ2,c2,�2,�3

)−V 1(�1, t,Φ1,c1,�1
)}

+2c1
∫ t

0
Kxx

(
1,

c1(t−s)
|Ω1|

)
ψ1

1(s)ds

−m1�1

K1

−2
∫ t

0
Kx

(
1,

c1(t−s)
|Ωn|2

)
c1

|Ω1|2 ψ1
1(s)ds

+2
∫ t

0
K
(

0,
c1(t−s)
|Ω1|2

)
c1

|Ω1|2 ψ1
2(s)ds

+2
∫ t

0
K
(

0,
c2(t−s)
|Ω2|2

)
c2ψ2

1(s)ds

−2
∫ t

0
K
(
−1,

c2(t−s)
|Ω2|2

)
c2ψ2

2(s)ds

+m�1

K1Q
H2S

(
ψ
)
,

(4.8)

and for j = 2, . . . ,n−1 we have, using Corollary 3.2 and equation (4.7),

ψj
2 =

mj

Kj

{
V 2(�2j ,t,Φj+1,�2j ,�2j+1

)−V 2(�2j−1, t,Φj ,�2j−2,�2j−1
)}

−mj

Kj

−2
∫ t

0
K
(

1,
cj(t−s)
|Ωj|2

)
cjψj

1(s)ds

+2
∫ t

0
K
(

0,
cj(t−s)
|Ωj|2

)
cjψj

2(s)ds

+2
∫ t

0
K
(

0,
cj+1(t−s)
|Ωj+1|2

)
cj+1ψj+1

1 (s)ds

−2
∫ t

0
K
(
−1,

cj+1(t−s)
|Ωj+1|2

)
cj+1ψj+1

2 (s)ds

−mjHj

KjQ
S
(
ψ
)
.

(4.9)
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Next, from equations (2.9) with i=n−1 and equation (3.22), we have

ψn
2 =−|Ωn| Kn−1

Kn
ψn−1

2 (t)−2cn
∫ t

0
Kxx

(
−1,

cn(t−s)
|Ωn|2

)
ψn

1 (s)ds, (4.10)

where ψn−1
2 is given in equations (4.9).

We next turn to equations (4.8), (4.9), and (4.10) for ψj
1(t), j = 1,2, . . . ,n. Using

equations (4.1), (4.2), and equations (3.13), (3.21) we have

ψ1
1(t)=

{
f1(t)−V 1(0, t,Φ1,c1,�1

)}
−2

∫ t

0
K
(
−1,

c1

|Ω1|2 (t−s)
)

c1

|Ω1|2 ψ1
2(s)ds− b1

|Ω1|Q S
(
ψ
)
,

(4.11)

ψn
1 (t)=

{
fn(t)−V 3(1, t,Φn,�2n−2

)}
−2

∫ t

0
K
(

1,
cn(t−s)
|Ωn|2

)
cn

|Ωn|2 ψn
2 (s)ds− bn

|Ωn|Q S
(
ψ
)
,

(4.12)

while the first of equations (4.3), i= 1, gives

ψ2
1(t)=

K1

�1K2

{
ψ1

2(t)−2c1
∫ t

0
Kxx

(
1,

c1(t−s)
|Ω1|2

)
ψ1

1(s)ds
}
, (4.13)

where again ψ1
2 is given in equation (4.8).

The remaining equations (4.3) for i= 2, . . . ,n−2 give

ψj
1(t)=

Kj

Kj+1
ψj−1

2 (t), j = 3,4, . . . ,n−1 (4.14)

with the right hand sides given in equations (4.9).
Clearly the set of equations for ψ have the form given in equations (3.26) and it

remains to establish suitable estimates.

Lemma 4.1. The unique solution {ψi
1,ψ

i
2}, i = 1,2, . . . ,n, exist for systems (4.8)–

(4.14) and there exists C > 0 such that

n∑
i=1

∫ T

0

(∣∣ψi
1−ψi

1

∣∣+∣∣ψi
2−ψi

2

∣∣)dt ≤ C
∫ T

0

(∣∣g−g
∣∣+∣∣f1−f 1

∣∣+∣∣fn−fn
∣∣)dt, (4.15)

where {ψi
1,ψ

i
2} and {ψi

1,ψ
i
2} are the solutions with the data {g,f1,fn} and {g,f 1,f n},

respectively.

Proof. By Lemma 3.4 it is sufficient to estimate the kernel. Clearly it is from
Cannon [4] that

|K(±1, t)|+|Kxx(±1, t)|+|Kx(±1, t)| ≤ C, t > 0 (4.16)

and

|K(0, t)| ≤ C√
t
, t > 0. (4.17)

Thus, the assumptions of Lemma 3.4 are satisfied and Lemma 4.1 follows.
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Theorem 4.1. The system (1.1)–(1.10) possesses a unique solution which depends
continuously upon the data.

Proof. It follows from Lemma 4.1 and the equivalence analysis in Section 2.

5. Application to thermoelastic bars. Consider n thermoelastic bars lying along
the positive x axis with the ith bar, 1 ≤ i ≤ n, occupying the interval Ωi. We use the
notation of Section 1. The equations describing the displacements and temperature
distributions are given by

Kiαiθ0
(
ui
)
xt+ci

(
θi)

t = ki
(
θi)

xx, x ∈Ωi, (5.1)

σi =
(
λi+2µi

)
(ui)x−Kiαi(θi−θ0), x ∈Ωi, (5.2)

(σi)x = 0, x ∈Ωi (5.3)

for i= 1,2, . . . ,n, t ∈ J. ui(x,t) denotes the displacement and θi(x,t) the temperature
of the ith bar at position x and time t. σi(x,t) represents the corresponding stress
and ci, ki, αi are constants, i = 1,2, . . . ,n, denoting the heat capacity, conductivity
and coefficient of thermal expansion, respectively, of the ith bar. θ0 is a reference
temperature, measured in degrees Kelvin, normally taken as the ambient temperature.
It is convenient to nondimensionalize the quantities of interest and we set

x̂ = x
L
, ûi = πiui

L
, t̂ = k1t

c1L2
,

σ̂i = σi

Ki
, θ̂i = θi−θ0

θ0
, π2

i =
(λi+2µi)k1

c1θ0ki
,

(5.4)

where

Ki = 3λi+2µi (5.5)

for i= 1,2, . . . ,n. The quantities λi, µi are the Lamé elastic constants.
The intervals x ∈ Ωi are replaced with the corresponding intervals x̂ ∈ Ω̂i, i =

1,2, . . . ,n. If the above quantities are substituted in equations (5.1), (5.2), and (5.3)
and subsequently the hats dropped we have the equations in the following nondi-
mensional form

di
(
θi)

t−
(
θi)

xx =−ai(ui)xt, x ∈Ωi, (5.6)

σi = βi
{
(ui)x−aiθi}, x ∈Ωi, (5.7)

(σi)x = 0, x ∈Ωi (5.8)

for i= 1,2, . . . ,n, where

di = cik1

c1ki
, βi= λi+2µi

Kiπi
, ai = αiKik1

c1πiki
. (5.9)

Clearly equation (5.8) implies that

σi = σi(t), i= 1,2, . . . ,n. (5.10)
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Since (5.10) holds this implies that if one end of any of the bars is free then σi(t)= 0,
i= 1,2, . . . ,n whereas if all of the bars are in contact then σi(t)≤ 0, i= 1,2, . . . ,n.

In addition to the governing equations we require the initial and boundary condi-
tions. The conditions on the θi(x,t) are given in equations (1.3) through (1.7). For the
moment we require only the initial conditions, namely,

θi(x,0)= θi
0(x), x ∈Ωi, i= 1,2, . . . ,n, (5.11)

together with the conditions

u1(0, t)= 0, un(1, t)= 0. (5.12)

There are essentially two cases to consider depending on whether all bars are in con-
tact or not. There are then subcases depending on how the bars are grouped in contact.
The difficulties are the same whether we consider n bars or three bars. The latter case
simplifies and clarifies the procedure and we now confine our attention to that case.
The generalization required for n bars then follows.

We consider then three bars lying along the positive x axis lying in the intervals
Ω1 = [0,�1], Ω2 = [�2,�3], Ω3 = [�4,1] where

0 < �1 ≤ �2 < �3 ≤ �4 < 1, (5.13)

and set

g1 = �1−�2, g2 = �4−�3. (5.14)

We begin by considering the initial conditions. Set

Θ1(x,t)= a1

∫ x

0
θ1(s,t)ds, 0≤ x ≤ �1, (5.15)

Θ2(x,t)= a2

∫ x

�2

θ2(s,t)ds, �2 ≤ x ≤ �3, (5.16)

Θ3(x,t)= a3

∫ 1

x
θ3(s,t)ds, �4 ≤ x ≤ 1. (5.17)

From equations (5.11), θi(x,0), i= 1,2,3 are known, so that Θi(x,0) are known. There
are two cases.

Case I. If

u1
(
�1,0

)
<u2

(
�2,0

)+g1 (5.18)

or

u2
(
�3,0

)
<u3

(
�4,0

)+g2, (5.19)

then σi(0)= 0, i= 1,2,3.
Using equations (5.7) and (5.12) we have

u1(x,0)=Θ1(x,0), 0≤ x ≤ �1, (5.20)

u2(x,0)=u2(�2,0)+Θ2(x,0), �2 ≤ x ≤ �3, (5.21)

u3(x,0)=−Θ3(x,0), �4 ≤ x ≤ 1. (5.22)
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If equation (5.18) does not hold but (5.19) does then

u2
(
�2,0

)=Θ1
(
�1,0

)−g1, (5.23)

whereas if (5.18) holds and (5.19) does not

u2
(
�2,0

)= g2−Θ2
(
�3,0

)−Θ3
(
�4,0

)
. (5.24)

Thus if the middle bar is in contact with either of the end bars initially then the
initial stresses, displacements and temperatures are known. If on the other hand the
middle bar has no contact with the other two initially u2(�2,0) is indeterminate and
an additional initial condition must be added. If we define

Ω(t)= g1+g2−Θ1
(
�1, t

)−Θ2
(
�3, t

)−Θ3
(
�4, t

)
(1+λ+µ)

, (5.25)

where

λ= β1
(
1−�4

)
β3�1

, µ = β1
(
�3−�2

)
β2�1

, (5.26)

then in all three of the above subcases

Ω(0) > 0, (5.27)

and conversely if (5.27) holds, then one of these subcases does.
Case II. If both of the conditions

u1
(
�1,0

)=u2
(
�2,0

)+g1, u2
(
�3,0

)=u3
(
�4,0

)+g2, (5.28)

hold, then

σi(0)≤ 0, i= 1,2,3. (5.29)

Again using equations (5.7) and (5.12) we have

u1(x,0)=Θ1(x,0)+ xσ1(0)
β1

, 0≤ x ≤ �1, (5.30)

u2(x,0)=u2
(
�2,0

)+Θ2(x,0)+(x−�2
)σ2(0)

β3
, �2 ≤ x ≤ �3, (5.31)

u3(x,0)=−Θ3(x,0)−(1−x)
σ3(0)
β3

, �4 ≤ x ≤ 1. (5.32)

Then ui(x,0), i = 1,2,3 are known once σi(0), i = 1,2,3 are. u2(�2,0) is determined
from equation (5.28). Since σ1(0)= σ2(0)= σ3(0) it follows that

{
u1

(
�1,0

)−Θ1
(
�1,0

)}β1

�1
= {

u2
(
�3,0

)−u2
(
�2,0

)−Θ2
(
�3,0

)} β2

�3−�2

=−{u3
(
�4,0

)+Θ3
(
�4,0

)} β3

1−�4
,

(5.33)
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and making use of equations (5.28) we find

u3
(
�4,0

)=−λ
{
u1

(
�1,0

)−Θ1
(
�1,0

)}−Θ3
(
�4,0

)
, (5.34)

u2
(
�3,0

)−u2
(
�2,0

)= µ
{
u1

(
�1,0

)−Θ1
(
�1,0

)}+Θ2
(
�3,0

)
, (5.35)

u2
(
�3,0

)−u2
(
�2,0

)=u3
(
�4,0

)−u1
(
�1,0

)+g1+g2, (5.36)

where λ,µ are given in equation (5.26). Substituting from equations (5.34) and (5.35)
into equation (5.36) gives

(1+λ+µ)u1
(
�1,0

)= g1+g2+(λ+µ)Θ1
(
�1,0

)−Θ2
(
�3,0

)−Θ3
(
�4,0

)
. (5.37)

Again substituting back into equations (5.30), (5.31), and (5.32) gives

σ1(0)
β1

= Ω(0)
�1

,
σ2(0)
β2

= µΩ(0)
�3−�2

,
σ3(0)
β3

= λΩ(0)
1−�4

, (5.38)

with Ω(t) given by equation (5.25).
All initial values are now determined. Clearly, if σi(0)≤ 0, i= 1,2,3, then Ω(0)≤ 0.

Conversely, if Ω(0)≤ 0, then Case II holds.
The general situation for t > 0 may be handled in the same manner except that

Θi(x,t), i= 1,2,3 are not known a priori.
Case I. Here equations (5.18) through (5.24) are replaced by the same equations

with t = 0 replaced by the general time t. If both conditions replacing (5.18), (5.19)
hold, that is

u1
(
�1, t

)
<u2

(
�2, t

)+g1, u2
(
�3, t

)
<u3

(
t4, t

)+g2, (5.39)

then u2(�2, t) is indeterminate. In order to make the problem determinate an extra
physical assumption is required as to how the bar expands. The simplest such assump-
tion is that the expansions at either end are equal in magnitude; that is u2(�2, t) =
−u2(�3, t), until at least two of the bars are again in contact.

Since in this case, for i = 1,2,3, σi(t) = 0 and ui(x,t) are given by the updated
forms of equations (5.20) through (5.22), we may substitute in equations (5.6) to give(

di+a2
i
)(

θi)
t−

(
θi)

xx = 0, x ∈Ωi for i= 1,2,3. (5.40)

Case II. In this case we follow the procedure of equations (5.30) through (5.32)
again replacing t = 0 with general t > 0. On substituting the updated values of the
stresses σi(t) into the expressions for the updated values of ui(x,t) we can substitute
into equations (5.6) to obtain

(
di+a2

i
)(

θi)
t+

(
θi)

xx =−
ai

Ωi

d
dt
Ω(t), x ∈Ωi (5.41)

for i= 1,2,3 where Ω(t) is given in equation (5.25).
Since, in this case, σi(t)≤ 0, i= 1,2,3 then Ω(t)≤ 0. If Ω(t) > 0 we have Case I. This

allows us to combine equations (5.40) and (5.41) in the form

(
di+a2

i
)(

θi)
t−

(
θi)

xx =
di

Ωi

d
dt

max(Ω,0), x ∈Ωi. (5.42)
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If we set

bi = ci = 1(
di+a2

i
) , i= 1,2,3,

g =−(g1+g2
)
,

(5.43)

then it is clear that equations (1.2) are a direct generalization of equations (5.42).
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