REGULAR *L*-FUZZY TOPOLOGICAL SPACES AND THEIR TOPOLOGICAL MODIFICATIONS

T. KUBIAK and M. A. DE PRADA VICENTE

(Received 6 November 1996)

ABSTRACT. For *L* a continuous lattice with its Scott topology, the functor ι_L makes every regular *L*-topological space into a regular space and so does the functor ω_L the other way around. This has previously been known to hold in the restrictive class of the so-called weakly induced spaces. The concepts of *H*-Lindelöfness (á la Hutton compactness) is introduced and characterized in terms of certain filters. Regular *H*-Lindelöf spaces are shown to be normal.

Keywords and phrases. Fuzzy topology, regularity, the functors ι_L and ω_L , *H*-Lindelöf property.

2000 Mathematics Subject Classification. Primary 54A40.

1. Introduction. The two functors that provide a working link between the category **TOP**(*L*) of *L*-(fuzzy)-topological spaces and **TOP** are the Lowen functors ι_L and ω_L . For a wide class of lattices *L*'s, ι_L is a right adjoint and left inverse of ω_L . Therefore, it is of interest to know how various *L*-topological invariants behave with respect to these functors.

In this paper, we show that when *L* is a continuous lattice with its Scott topology then ι_L maps the category **Reg**(*L*) of *L*-regular spaces onto the category **Reg** of regular spaces. This improves upon and extends a result of Liu and Luo [6] which showed (with different but equivalent terminology) that ι_L maps weakly induced *L*-regular spaces to regular spaces (with *L* a completely distributive lattice with its upper topology). As a consequence, we have that ω_L (**Reg**) consists precisely of *L*-regular spaces of ω_L (**TOP**). Some generalities about *L*-regular spaces are included and stated in a slightly more general situation, viz. for *L*-topologies that admit a certain type of approximating relation. This captures complete *L*-regularity and zero-dimensionality.

We also introduce the concept of *H*-Lindelöfness (compatible with compactness in the sense of Hutton [2]) and characterize it in terms of closed filters. Finally, we prove that *H*-Lindelöf and *L*-regular spaces are *L*-normal.

2. Notation and some terminology. All the fuzzy topological concepts that concern us are standard. We nevertheless recall some of them.

Let L = (L, ') be a complete lattice (bottom denoted 0) endowed with an orderreversing involution '. Thus *L* satisfies the de Morgan laws. For *X* a set, L^X is the set of all maps from *X* to *L* (called *L*-sets). Then $(L^X, ')$ is a complete lattice under pointwisely defined ordering and the order-reversing involution. The de Morgan laws are also inherited by L^X . An *L*-topology on *X* is a family of elements of L^X (called open *L*-sets) such that any supremum and any finite infimum of open *L*-sets are open. The *L*-topology of an *L*-topological space (*L*-ts) *X* is denoted o(X). Members of $\kappa(X) = \{k \in L^X : k' \in o(X)\}$ are called closed. For each $a \in L^X$, we let $\operatorname{Int} a = \bigvee \{u \in o(X) : u \leq a\}$ and $\overline{a} = (\operatorname{Int}(a'))'$. If *X* and *Y* are two *L*-ts's, then $f: X \to Y$ is continuous if uf (the composition of *f* and *u*) is in o(X) whenever $u \in o(Y)$. The weakest *L*-topology on *X* making *f* continuous is denoted by $f^-(o(Y))$. We say that $S \subset L^X$ generates o(X) if $o(X) = \bigcap \{T: S \subset T, \text{ an } L$ -topology on $X\}$. If \mathcal{T} is a family of *L*-topologies on *X*, then the supremum *L*-topology $\bigvee \mathcal{T}$ is generated by $\bigcup \mathcal{T}$. In particular, $\bigvee_{j \in J} \pi_j^-(o(X_j))$ is the product *L*-topology on $\prod_{j \in J} X_j$ (π_j being the *j*th projection). The set of all restrictions $\{u \mid A: u \in o(X)\}$ is the subspace *L*-topology on $A \subset X$.

Given $\alpha, \beta \in L$ we let $\alpha \ll \beta$ whenever for any $B \subset L$ with $\beta \leq \bigvee B$ there is a finite $B_0 \subset B$ such that $\alpha \leq \bigvee B_0$. Then *L* is called continuous if $\alpha = \bigvee \{\beta \in L : \beta \ll \alpha\}$ for every $\alpha \in L$. We write $\frac{1}{2}\alpha = \{\beta \in L : \beta \ll \alpha\}$ and dually for $\frac{1}{2}\alpha$. Each continuous *L* has the interpolation property: $\alpha \ll \beta$ implies $\alpha \ll \gamma \ll \beta$ for some $\gamma \in L$. The Scott topology $\sigma(L)$ on a continuous *L* is one which has $\{\frac{1}{2}\alpha : \alpha \in L\}$ as a base. We write ΣL for $(L, \sigma(L))$ (see [1] for details).

We also recall that *L* is a frame provided $\alpha \land \forall B = \forall \{\alpha \land \beta : \beta \in B\}$ for every $\alpha \in L$ and $B \subset L$.

Given $a \in L^X$ and $\alpha \in L$, we let $[a \gg \alpha] = \{x \in X : a(x) \gg \alpha\}$, $[a \nleq \alpha] = \{x \in X : a(x) \not \preccurlyeq \alpha\}$, etc. The constant member of L^X with value α is denoted α as well, and $\alpha 1_A = \alpha \land 1_A$, where 1_A is the characteristic function of $A \subset X$. If $\mathcal{A} \subset L^X$, we let $\mathcal{A}' = \{a' : a \in \mathcal{A}\}$, $\overline{\mathcal{A}} = \{\overline{a} : a \in \mathcal{A}\}$, and similarly for Int \mathcal{A} . We include for record.

REMARK 2.1. Let *L* be a complete lattice and *X* a nonempty set. The following statements are equivalent:

(1) *L* is continuous;

(2) $a = \bigvee_{\alpha \in L} \alpha \mathbb{1}_{[a \gg \alpha]}$ for every $a \in L^X$;

(3) $[a \leq \alpha] = \bigcup_{\beta \leq \alpha} [a \gg \beta]$ for every $a \in L^X$ and $\alpha \in L$.

3. *L*-topologies with approximating relation. Let L = (L, ') be a complete lattice. An *L*-ts *X* is called *L*-*regular* [3] if for every $u \in o(X)$ there exists $\mathcal{V} \subset o(X)$ such that $u = \bigvee \mathcal{V}$ and $\overline{v} \leq u$ for all $v \in \mathcal{V}$. This is the case if and only if $u = \bigvee \mathcal{V} = \bigvee \overline{\mathcal{V}}$.

It is clear that *X* is *L*-regular if and only if for every basic open *u* one has $u = \bigvee \{v \in o(X) : \overline{v} \le u\}$.

To avoid repetitions of some argument used in [5], we introduced an auxiliary relation \prec on the *L*-topology o(X) of an *L*-ts *X*.

DEFINITION 3.1. Let \prec be a binary relation on o(X) satisfying the following conditions for all $u, v, w_1, w_2 \in o(X)$:

(1) $0 \prec u$;

- (2) $v \prec u$ implies $v \leq u$;
- (3) $w_1 \leq v \prec u \leq w_2$ implies $w_1 \prec w_2$;
- (4) $w_1 \prec u$ and $w_2 \prec u$ imply $w_1 \lor w_2 \prec u$;
- (5) $u \prec w_1$ and $u \prec w_2$ imply $u \prec w_1 \land w_2$.

We say *X* is \prec -*regular* if for each open *u* there exists $\mathcal{V} \subset o(X)$ such that $u = \bigvee \mathcal{V}$ and $v \prec u$ for all $v \in \mathcal{V}$.

EXAMPLES. (1) *X* is *L*-regular if and only if it is \prec -regular with $v \prec u$ defined by $\overline{v} \leq u$.

(2) *X* is completely *L*-regular [3] if and only if it is \prec -regular, where $v \prec u$ if and only if $v \leq L'_1 f \leq R_0 f \leq u$ for some $f \in C(X, I(L))$; see [5] for details and notice that (4) and (5) of Definition 3.1 require *L* to be meet-continuous (cf. Section 5).

(3) *X* is zero-dimensional if and only if it is \prec -regular and $v \prec u$, whenever $v \leq w \leq u$ for some closed and open *w* (cf. [9]).

PROPOSITION 3.2. Let *L* be a complete lattice and let *X* be any of \prec -regular spaces of Example 3. The following hold

(1) If $f: Y \to X$ is continuous, then Y is \prec -regular with respect to $f^-(o(X))$.

(2) Every subspace of X is \prec -regular.

If L is a frame, then

(3) $u = \bigvee \{v : v \prec u\}$ for every subbasic open $u \in L^X$.

(4) If \mathcal{T} is a family of \prec -regular *L*-topologies on *X*, then $\bigvee \mathcal{T}$ is \prec -regular.

(5) \prec -regularity is preserved by arbitrary products.

PROOF. The argument given in [5, Remark 2.5 and Lemma 2.3] for the case (2) of Example 3 goes unchanged in the remaining cases.

PROPOSITION 3.3. Let *L* be a continuous lattice. For *X* an *L*-topological space, the following are equivalent:

(1) X is \prec -regular.

(2) $u = \bigvee \{v : v \prec u\}$ for every (basic) open u.

(3) $[u \gg \alpha] = \bigcup_{v \le u} [v \gg \alpha]$ for every (basic) open u and $\alpha \in L$.

(4) $[u \leq \alpha] = \bigcup_{v \leq u} [v \leq \alpha]$ for every (basic) open u and $\alpha \in L$.

PROOF. (1) \Rightarrow (2). Obvious.

(2) \Rightarrow (3). Let $\alpha \ll u(x) = \bigvee \{v(x) : v \prec u\}$. Select $\beta \in L$ such that $\alpha \ll \beta \ll u(x)$. There is a finite family $\mathcal{V} \subset o(X)$ such that $\beta \leq (\bigvee \mathcal{V})(x)$ and $w \prec u$ for every $w \in \mathcal{V}$. Put $v = \bigvee \mathcal{V}$. Then $v \prec u$ and $\alpha \ll \beta \leq v(x)$. Thus $\alpha \ll v(x)$ with $v \prec u$. This proves the nontrivial inclusion of (3).

(3) \Rightarrow (4). If $u(x) \leq \alpha$, there is a β such that $\beta \ll u(x)$ and $\beta \leq \alpha$. By (3), $\beta \ll v(x)$ for some $v \prec u$. Then $v(x) \leq \alpha$, i.e., $[u \leq \alpha] \subset \bigcup_{v \prec u} [v \leq \alpha]$. The reverse inclusion is obvious.

(4)⇒(1). Let $u \neq 0$. Then $\Delta = \{(x,\beta) \in X \times L : u(x) \leq \beta\} \neq \emptyset$. For every pair $(x,\beta) \in \Delta$ select $v_{x\beta} \prec u$ such that $v_{x\beta}(x) \leq \beta$. Clearly, $\bigvee \{v_{x\beta} : (x,\beta) \in \Delta\} \leq u$. To show the converse, assume there exists $y \in X$ such that

$$\gamma = \bigvee \{ v_{x\beta}(\gamma) : (x,\beta) \in \Delta \} \ge u(\gamma).$$
(3.1)

Then $(\gamma, \gamma) \in \Delta$, hence $v_{\gamma\gamma}(\gamma) \nleq \gamma$. But from (3.1) we have $v_{x\beta}(\gamma) \le \gamma$ for all $(x, \beta) \in \Delta$, in particular $v_{\gamma\gamma}(\gamma) \le \gamma$, a contradiction.

REMARK 3.4. (1) The proof of $(4) \Rightarrow (1)$ is a complete lattice proof. Since there is a direct and obvious complete lattice argument for $(2) \Rightarrow (4)$, therefore $(1) \Leftrightarrow (2) \Leftrightarrow (4)$ hold true for any complete lattice *L*.

(2) With *L* a complete chain without elements isolated from below (e.g., with *L* = [0,1]), conditions (3) and (4) coincide. When expressed in terms of fuzzy points (these are *L*-sets of the form $\alpha 1_{\{x\}}$) and with $v \prec u$ if and only if $\overline{v} \leq u$, these conditions become the definitions of fuzzy regularity given by numerous authors, e.g., [10], thereby showing that all those definitions are equivalent to the one of Hutton-Reilly [3].

(3) For *L* a frame, the open *L*-set *u* in conditions (3) and (4) of Proposition 3.3 can be assumed to be in any family that generates the *L*-topology (on account of Proposition 3.2(3)); cf. [8, Lemma 3(iii)].

Now we show that the regularity axiom of Liu and Luo [6] is equivalent to the *L*-regularity for any complete *L* in which primes are order generating. We recall that $p \in L$ is called prime whenever $\alpha \land \beta \leq p$ implies $\alpha \leq p$ or $\beta \leq p$. The set of all primes is order generating if $\alpha = \bigwedge \{p \geq \alpha : p \text{ is prime}\}$ for every $\alpha \in L$. The dual concept is that of a coprime element. In our case, i.e., in (L, '), an element $q \in L$ is coprime if and only if q' is prime. We have the following.

REMARK 3.5. Let *L* be a complete lattice in which primes are order generating. For *X* an *L*-ts, the following are equivalent:

(1) X is L-regular.

(2) (Liu and Luo [6]) for every $x \in X$, coprime q, and $k \in \kappa(X)$, whenever $k(x) \not\ge q$, there exists $h \in \kappa(X)$ such that $h(x) \not\ge q$ and $k \le \text{Int } h$.

PROOF OF REMARK 3.5(2). Observe that condition (4) of Proposition 3.3 (cf. also Remark 3.4(1)) can be written as follows (with $v \prec u$ if and only if $\overline{v} \leq u$) : $[u \leq p] = \bigcup_{\overline{v} \leq u} [v \leq p]$ for every open u and each prime p. And this is just the dual form of (2).

4. The topological modifications of *L*-regular spaces. The main topic of this paper requires the lattice *L* to carry a topology such that C(Y,L) is an *L*-topology for every topological space *Y*. Among examples of such lattices are the continuous lattices with their Scott topologies.

If *L* is a continuous lattice, then ΣL is a topological lattice (see [1, Chapter II, Corollary 4.16, Proposition 4.17]). The family $[Y, \Sigma L]$ of all continuous functions from a topological space *Y* to ΣL is, therefore, closed under finite suprema and finite infima (both formed in L^Y). However, by using the interpolation property of the relation \ll , for every $\alpha \in L$ and $\mathfrak{A} \subset [Y, \Sigma L]$ one has $[\bigvee \mathfrak{A} \gg \alpha] = \bigcup \{[\bigvee \mathfrak{V} \gg \alpha] : \mathfrak{V} \subset \mathfrak{A}$ is finite}, an open subset of *Y*. Thus $[Y, \Sigma L]$ is an *L*-topology on the set *Y*. For every topological space *Y*, $\omega_{\Sigma L} Y$ denotes the set *Y* provided with the *L*-topology $[Y, \Sigma L]$. One then says that $\omega_{\Sigma L} Y$ is *topologically generated* from *Y*.

Now, for *X* an *L*-topological space, let $\iota_{\Sigma L} X$ be the topological space with *X* as the underlying set and with the weak topology generated by o(X) and ΣL , i.e., $\iota_{\Sigma L} X$ has $\bigvee \{ u^-(\sigma(L)) : u \in o(X) \}$ as a topology. It is called the *topological modification* of *X*.

Then $\omega_{\Sigma L}$: **TOP** \rightarrow **TOP**(*L*) and $\iota_{\Sigma L}$: **TOP**(*L*) \rightarrow **TOP** (with preservation of mappings) are the Lowen functors (cf. [4, 5]).

We have $o(X) \subset o(\omega_{\Sigma L} \iota_{\Sigma L} X)$ and $\iota_{\Sigma L} \omega_{\Sigma L} = id_{TOP}$. Hence $\omega_{\Sigma L}$ is an injection. We also recall that if *Y* is a topological space, then χY denotes the set *Y* endowed with the *L*-topology {1_{*U*} : *U* open in *X*}. Clearly, $\iota_{\Sigma L} \chi Y = Y$.

Sometimes it may be more convenient to write $(X, \omega_{\Sigma L}(T))$ for the space topologically generated from (X, T), and similarly for $t_{\Sigma L}$.

LEMMA 4.1. Let *L* be a continuous lattice. For every *L*-regular space *X*, $\iota_{\Sigma L} X$ is a regular topological space.

PROOF. It suffices to show that every point of an arbitrary subbasic open set of $\iota_{\Sigma L} Y$ has an open neighborhood whose closure is in the set (this is Proposition 3.2(3) with $L = \{0, 1\}$). So, let u be open in X, $\alpha \in L$, and let $x \in [u \gg \alpha]$. By Proposition 3.3(3) there is an open v in X such that $\overline{v} \le u$ and $x \in [v \gg \alpha]$. Select $\gamma \in L$ such that $\alpha \ll \gamma \ll v(x)$. Then

$$x \in [v \gg \gamma] \subset [\overline{v} \ge \gamma] \subset [u \gg \alpha]. \tag{4.1}$$

Now it suffices to note that, by Remark 2.1,

$$[\overline{\boldsymbol{v}} \ge \boldsymbol{\gamma}] = X \setminus [\operatorname{Int}(\boldsymbol{v}') \not\leq \boldsymbol{\gamma}'] = X \setminus \bigcup_{\beta \nleq \boldsymbol{\gamma}'} [\operatorname{Int}(\boldsymbol{v}') \gg \beta].$$
(4.2)

Thus $[\overline{v} \ge \gamma]$ is closed, hence $\iota_{\Sigma L} X$ is regular.

Now it is more convenient to write (X, T) for an *L*-ts *X* with the *L*-topology *T*. In [6], (X, T) is said to be *weakly induced* if $1_{[u \neq \alpha]} \in T$ for every $u \in T$ and $\alpha \in L$. Let $[T] = \{U \subset X : 1_U \in T\}$. In what follows, we write "*L*-regular" on account of Remark 3.5.

COROLLARY 4.2 [6]. Let *L* be completely distributive. If (X,T) is a weakly induced *L*-regular space, then (X,[T]) is regular.

PROOF. First, recall that a completely distributive *L* is continuous and the sets $\{\beta \in L : \beta \nleq \alpha\}$ ($\alpha \in L$) form a subbase for its Scott topology (see [1, e.g., Chapter IV, Exercise 2.31 and Chapter III, Exercise 3.23]). Thus (*X*, *T*) is weakly induced if and only if $\iota_{\Sigma L}(T) \subset [T]$. Finally, notice that $[T] \subset \iota_{\Sigma L}(T)$ always since $[1_U \gg \alpha] \in \{\emptyset, U, X\}$ for every $\alpha \in L$.

THEOREM 4.3. Let *L* be a continuous lattice. Then the following hold:

$$\iota_{\Sigma L}(\operatorname{Reg}(L)) = \operatorname{Reg}.$$
(4.3)

$$\omega_{\Sigma L}(\mathbf{Reg}) = \mathbf{Reg}(L) \cap w_{\Sigma L}(\mathbf{TOP}). \tag{4.4}$$

PROOF. (1) That $\iota_{\Sigma L}$ maps **Reg**(*L*) into **Reg** is stated in Lemma 4.1. The mapping is onto since for any topological regular *X*, χX is *L*-regular and $\iota_{\Sigma L} \chi X = X$.

(2) If *X* is a regular topological space and *u* is open in $\omega_{\Sigma L} X$, then for every $\alpha \in L$ there is a family \mathcal{W}_{α} of open subsets of *X* such that

$$[u \gg \alpha] = \bigcup \mathcal{W}_{\alpha} = \bigcup \overline{\mathcal{W}}_{\alpha}. \tag{4.5}$$

By Remark 2.1 and the first equality of (4.5), we obtain

$$u = \bigvee_{\alpha \in L} \alpha 1_{[u \gg \alpha]} = \bigvee_{\alpha \in L} \left(\alpha \land \bigvee_{W \in \mathcal{W}_{\alpha}} 1_{W} \right)$$

$$= \bigvee_{\alpha \in L} \bigvee_{W \in \mathcal{W}_{\alpha}} \alpha 1_{W} \le \bigvee_{\alpha \in L} \bigvee_{W \in \mathcal{W}_{\alpha}} \overline{\alpha 1_{W}}.$$
(4.6)

(Note that there is no distributivity used in arriving at the third equality: always $\alpha \land \forall B = \bigvee \{ \alpha \land \beta : \beta \in B \}$ provided $B \subset \{0, 1\}$ as is the case above).

Since $\overline{\alpha 1_W} \le \alpha 1_{\overline{W}}$, the same argument shows, by using the second equality of (4.5), that we actually have

$$u = \bigvee_{\alpha \in L} \bigvee_{W \in W_{\alpha}} \alpha 1_{W} = \bigvee_{\alpha \in L} \bigvee_{W \in W_{\alpha}} \overline{\alpha 1_{W}}.$$
(4.7)

This shows that $\omega_{\Sigma L} X$ is *L*-regular.

Conversely, if $\omega_{\Sigma L} X$ is *L*-regular, then $X = \iota_{\Sigma L} \chi X$ is regular by Lemma 4.1.

REMARK 4.4. (1) Let *L* be a continuous frame (then it becomes completely distributive on account of the order reversing involution; cf. [1, Chapter I, Theorem 3.15]). Then the inclusion $\omega_{\Sigma L}(\mathbf{Reg}) \subset \mathbf{Reg}(L)$ obviously follows from Proposition 3.2(4). Indeed, for *X* a regular space, the *L*-topology of $\omega_{\Sigma L} X$ is the supremum of two *L*-regular *L*-topologies: the one of χX and the one consisting of all constant *L*-sets (cf. [5, Proposition 1.5.1(7)]).

(2) The equality (4.4) of Theorem 4.3 is available in [12] with L = [0, 1] and in [6] with L completely distributive. Theorem 4.3 is also a supplement to the discussion about regularity in fuzzy topology given in [7].

(3) We recall that an *L*-ts *X* is an *L*-*T*₃ space if and only if it is *L*-regular and points of *X* can be separated by open *L*-sets. By [5, Remark 8.4], we obtain: $\iota_{\Sigma L}(L-T_3) = T_3$ and $\omega_{\Sigma L}(T_3) = L-T_3 \cap \omega_{\Sigma L}$ (**TOP**).

We close this section with some remarks about maximal *L*-regular spaces. Following [11], we say that *X* is *maximal L*-regular if the only *L*-regular *L*-topology on the set *X* which is stronger than the original one is L^X (the discrete *L*-topology).

PROPOSITION 4.5. Let *L* be a continuous lattice. Every maximal *L*-regular space with a nondiscrete topological modification is topologically generated (from a maximal regular space).

PROOF. Let (X, T) be maximal *L*-regular and let $\iota_{\Sigma L}(T)$ be nondiscrete. We have $T \subset \omega_{\Sigma L}(\iota_{\Sigma L}(T))$ and the latter *L*-topology is *L*-regular by Theorem 4.3. Assume $\omega_{\Sigma L}(\iota_{\Sigma L}(T)) = L^X$. Then, by acting with $\iota_{\Sigma L}$, we have $\iota_{\Sigma L}(T) = \iota_{\Sigma L}(L^X)$, a discrete topology. This contradiction shows that $T = \omega_{\Sigma L}(\iota_{\Sigma L}(T))$. Thus (X, T) is topologically generated from $(X, \iota_{\Sigma L}(T))$. The latter space is maximal regular. For, if $\iota_{\Sigma L}(T) \subsetneq S \subsetneq \mathcal{P}(X)$ with *S* regular, then $T = \omega_{\Sigma L}(\iota_{\Sigma L}(T)) \subsetneq \omega_{\Sigma L}(S) \subsetneq \omega_{\Sigma L}(\mathcal{P}(X)) = L^X$. Since $\omega_{\Sigma L}(S)$ is *L*-regular, this contradicts the maximality of *T* (recall that $\omega_{\Sigma L}$ is injective).

REMARK 4.6. From the above proof it is clear that Proposition 4.5 can be stated for any topological property **P** and any *L*-topological property *L*-**P** for which there holds a counterpart of Theorem 4.3. This is, for instance, the case of complete *L*-regularity by [5, Theorem 8.5]. See also Remark 4.4(3).

5. *H*-Lindelöfness. An *L*-ts *X* is called *H*-Lindelöf if for every $k \in \kappa(X)$, whenever $k \leq \bigvee \mathcal{U}$ with $\mathcal{U} \subset o(X)$, there exists a countable subfamily $\mathcal{U}_0 \subset \mathcal{U}$ such that $k \leq \bigvee \mathcal{U}_0$. If \mathcal{U}_0 is finite, then *X* is called *H*-compact [2]. It is clear that *H*-Lindelöfness is preserved under continuous surjections. Also, the characterizations of *H*-compactness in terms of certain filters have their counterparts for *H*-Lindelöf spaces.

DEFINITION 5.1 (cf. [2]). Let $\mathcal{F} \subset L^X$ be nonempty and let $a \in L^X$. We say that:

- *F* has the countable intersection property relative to *a* if *AF*₀ ≤ *a* for every countable *F*₀ ⊂ *F*,
- (2) \mathscr{F} is a filter if it is closed under finite infima and such that if $f \in \mathscr{F}$ and $f \leq a$, then $a \in \mathscr{F}$. (A filter \mathscr{F} is called closed if $\mathscr{F} \subset \kappa(X)$.)

THEOREM 5.2. Let *L* be a complete lattice and let *X* be an *L*-ts. The following are equivalent:

(1) X is H-Lindelöf.

(2) Every family $\mathcal{K} \subset \kappa(X)$ with the countable intersection property relative to an open u satisfies $\bigwedge \mathcal{K} \leq u$.

(3) Every closed filter \Re with the countable intersection property relative to an open u satisfies $\bigwedge \Re \leq u$.

PROOF. (1) \Rightarrow (2). Assume $\bigwedge \mathcal{H} \leq u$. Then $u' \leq \bigvee \mathcal{H}'$ and there is a countable $\mathcal{H} \subset \mathcal{H}'$ such that $u' \leq \bigvee \mathcal{H}$, a contradiction with the countable intersection property of \mathcal{H} .

 $(2) \Longrightarrow (3)$. Obvious.

(3)⇒(1). Let $k \leq \bigvee \mathcal{U}$. Assume that \mathcal{U} does not have a countable subfamily which covers *k*. Let $\langle \mathcal{U}' \rangle$ be the closed filter generated by \mathcal{U}' , i.e., let

$$\langle \mathfrak{U}' \rangle = \{ f \in \kappa(X) : \exists \text{ finite } \mathscr{C}_f \subset \mathfrak{U}' \text{ s.t. } \bigwedge \mathscr{C}_f \le f \}.$$

$$(5.1)$$

We claim that $\langle \mathfrak{A}' \rangle$ has the countable intersection property relative to k'. Suppose that this is not the case. Then for some countable $\mathcal{F} \subset \langle \mathfrak{A}' \rangle$ one has $\bigwedge \mathcal{F} \leq k'$. Thus

$$k \leq \bigvee \mathcal{F}' \leq \bigvee_{f \in \mathcal{F}} \left(\bigwedge \mathcal{C}_f\right)' = \bigvee \left(\bigcup_{f \in \mathcal{F}} \mathcal{C}'_f\right)$$
(5.2)

and $\bigcup_{f \in \mathcal{F}} \mathscr{C}'_f$ is a countable subfamily of \mathscr{U} , a contradiction with our assumption about \mathscr{U} . Therefore $\langle \mathscr{U}' \rangle$ has the countable intersection property relative to k', i.e., $\wedge \langle \mathscr{U}' \rangle \not\leq k'$. Hence $k \not\leq \vee \langle \mathscr{U}' \rangle'$ and since $\vee \mathscr{U} \leq \vee \langle \mathscr{U}' \rangle'$, we conclude that $k \not\leq \vee \mathscr{U}$. This contradiction completes the proof.

REMARK 5.3. There is no counterpart of Theorem 4.3 for *H*-Lindelöfness and Lindelöfness:

(1) The set X = L = [0,1] (with $\alpha' = 1 - \alpha$) equipped with the *L*-topology $[0,1/4]^X \cup \{1_X\}$ is *H*-Lindelöf (as each open cover of a nonzero closed *L*-set must contain 1_X), while $\iota_{\Sigma L} X$ is an uncountable discrete space.

(2) An *L*-ts topologically generated from a Lindelöf space need not be *H*-Lindelöf. Indeed, let *X* be an uncountable Lindelöf topological space. Put $L = \mathcal{P}(X)$ with usual complement as its order-reversing involution (note that $\mathcal{P}(X)$ is a continuous lattice). Then the cover of 1_X consisting of all constant *L*-sets having values $\{x\}$ with $x \in X$ (these are all open in $\omega_{\Sigma L} X$) does not have a countable subcover. Therefore $\omega_{\Sigma L} X$ fails to be *H*-Lindelöf.

(3) However, if $\omega_{\Sigma L} X$ is *H*-Lindelöf, then *X* is Lindelöf. Indeed, χX carries a weaker *L*-topology than $\omega_{\Sigma L} X$, so that χX is *H*-Lindelöf, and the latter is equivalent to the statement that *X* is a Lindelöf space.

(4) All the above discussion applies unchanged to the case of *H*-compactness and compactness.

It is clear that for any complete *L*, every *H*-compact and *L*-regular space *X* is *L*-normal, i.e., whenever $k \le u$ (*k* is closed and *u* is open), there exists an open *v* with $k \le v \le \overline{v} \le u$ [3]. In what follows we show that *H*-compactness can be replaced by *H*-Lindelöfness provided *L* is meet-continuous, i.e., for every $\alpha \in L$ and every directed subset $\mathfrak{D} \subset L$ there holds: $\alpha \land \bigvee \mathfrak{D} = \bigvee \{\alpha \land \delta : \delta \in \mathfrak{D}\}$. We recall that every continuous *L* is meet-continuous [1]. Also, on account of the order-reversing involution, the dual law is valid too.

THEOREM 5.4. *Let L be a meet-continuous lattice. Then every L-regular and H- Lindelöf space is L-normal.*

PROOF. Let *k* be closed, *u* be open, and $k \le u$ in an *L*-regular *H*-Lindelöf space *X*. By *L*-regularity there exist $\mathfrak{U} \subset o(X)$ and $\mathfrak{K} \subset \kappa(X)$ such that $u = \bigvee \mathfrak{U} = \bigvee \overline{\mathfrak{U}}$ and $k = \bigwedge \mathfrak{K} = \bigwedge \operatorname{Int} \mathfrak{K}$ (the latter on account of the de Morgan laws). By *H*-Lindelöfness, there exist two countable subfamilies $\mathfrak{U}_0 \subset \mathfrak{U}$ and $\mathfrak{K}_0 \subset \mathfrak{K}$ such that $k \le \bigvee \mathfrak{U}_0$ and (again by the de Morgan laws) $\bigwedge \mathfrak{K}_0 \le u$. Thus

$$k \leq \sqrt{\mathcal{U}_0} \leq \sqrt{\mathcal{U}_0}$$
 and $k \leq \sqrt{\operatorname{Int}\mathcal{H}_0} \leq \sqrt{\mathcal{H}_0} \leq u.$ (5.3)

The rest of the proof is exactly the same as that of [5, Theorem 9.11] which shows that second countability plus *L*-regularity implies *L*-normality. Note that the proof in [5] uses a result holding for *L* a meet-continuous lattice.

REMARK 5.5. By [5, Lemma 3.7], every second countable *L*-ts is *H*-Lindelöf for any complete *L*. Therefore Theorem 5.4 extends [5, Theorem 9.11].

ACKNOWLEDGEMENT. This work was done while the first author was visiting the University of the Basque Country, in Summer 1996, supported by the Government of the Basque Country.

REFERENCES

- G. Gierz, K. H. Hofmann, K. Keimel, J. D. Lawson, M. W. Mislove, and D. S. Scott, A Compendium of Continuous Lattices, Springer-Verlag, Berlin, 1980. MR 82h:06005. Zbl 452.06001.
- B. Hutton, *Products of fuzzy topological spaces*, Topology Appl. 11 (1980), no. 1, 59–67. MR 80m:54009. Zbl 422.54006.
- B. Hutton and I. Reilly, Separation axioms in fuzzy topological spaces, Fuzzy Sets and Systems 3 (1980), no. 1, 93–104. MR 81k:54008. Zbl 421.54006.
- T. Kubiak, *The topological modification of the L-fuzzy unit interval*, Applications of category theory to fuzzy subsets (Linz, 1989), Kluwer Acad. Publ., Dordrecht, 1992, pp. 275-305. MR 93f:54007. Zbl 766.54006.
- [5] _____, On L-Tychonoff spaces, Fuzzy Sets and Systems 73 (1995), no. 1, 25–53. MR 96g:54013. Zbl 867.54005.

- [6] Y. M. Liu and M. K. Luo, Separations in lattice-valued induced spaces, Fuzzy Sets and Systems 36 (1990), no. 1, 55-66. MR 91e:54021. Zbl 703.54004.
- M. Macho Stadler and M. A. de Prada Vicente, *Strong separation and strong countability in fuzzy topological spaces*, Fuzzy Sets and Systems 43 (1991), no. 1, 95–116. MR 92m:54017. Zbl 760.54004.
- [8] Y. W. Peng, Topological structure of a fuzzy function space—the pointwise convergent topology and compact open topology, Kexue Tongbao (English Ed.) 29 (1984), no. 3, 289-292. MR 86g:54014. Zbl 551.54006.
- [9] L. Pujate and A. Šostak, On zero-dimensionality in fuzzy topology, Serdica 16 (1990), no. 3-4, 285–288. MR 91k:54009. Zbl 724.54010.
- [10] M. Sarkar, On fuzzy topological spaces, J. Math. Anal. Appl. 79 (1981), no. 2, 384-394.
 MR 82h:54005. Zbl 457.54006.
- [11] A.K. Steiner, *The lattice of topologies: Structure and complementation*, Trans. Amer. Math. Soc. 122 (1966), 379–398. MR 32#8303. Zbl 139.15905.
- [12] G. P. Wang and L. F. Hu, On induced fuzzy topological spaces, J. Math. Anal. Appl. 108 (1985), no. 2, 495-506. MR 86j:54014. Zbl 578.54004.

KUBIAK: WYDZIAL MATEMATYKI I INFORMATYKI, UNIWERSYTET IM. ADAMA MICKIEWICZA, MATEJKI, 48/49, 60-769 POZNAŃ, POLAND *E-mail address*: tkubiak@math.amu.edu.pl

DE PRADA VICENTE: DEPARTAMENTO DE MATEMÁTICAS, UNIVERSIDAD DEL PAÍS VASCO - EU-SKAL HERRIKO UNIBERTSITATEA, APDO. 644, 48080 BILBAO, SPAIN *E-mail address*: mtpprvia@lg.ehu.es