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Abstract. We study the oscillatory behavior, the periodicity and the asymptotic behavior
of the positive solutions of the system of two nonlinear difference equations xn+1 = A+
xn−1/yn and yn+1 =A+yn−1/xn, where A is a positive constant, and n= 0,1, . . . .
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1. Introduction. In [3] Kulenovic, Ladas and Sizer studied the global stability char-
acter and the periodic nature of the positive solutions of the difference equation

xn+1 = αxn+βxn−1
γxn+δxn−1

, n= 0,1, . . . , (1.1)

where α,β,γ,δ are positive constants and x−1,x0 > 0.
In [1] Amlech, Grove, Ladas and Georgiou studied the global stability, the bounded-

ness and the periodic nature of the positive solutions of the difference equation

xn+1 =A+ xn−1
xn

, (1.2)

whereA is a nonnegative constant andx−1,x0 > 0. Equation (1.2) is different from (1.1)
since in this special case δ is considered equal to zero.
In this paper, we generalize the results concerning equation (1.2) to the system of

two nonlinear difference equations

xn+1 =A+ xn−1
yn

, yn+1 =A+ yn−1
xn

, n= 0,1, . . . , (1.3)

where A is a nonnegative constant and x−1,x0,y−1,y0 are positive numbers.
We note that if (xn,yn) is a solution of (1.3) such that x−1 = y−1, x0 = y0, then

xn =yn, n=−1,0, . . . and so xn is a solution of (1.2).
Moreover, if (µ1,µ2) is a positive equilibrium of system (1.3), then

(µ1,µ2)=



(c,c)= (1+A,1+A), if A �= 1,(
µ,

µ
µ−1

)
, µ ∈ (1,∞), if A= 1.

(1.4)

Observe that if A = 1 we have a continuous of positive equilibriums which lie on the
hyperbola µ1µ2 = µ1+µ2. Moreover, if (xn,yn) is a solution of (1.3) eventually equal
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to (c,c), then (xn,yn) = (c,c) for all n = −1,0, . . . . We call this solution the trivial
solution.
A function zn :N→ R+ oscillates about z ∈ R+ if for every τ ∈N there exist s,m ∈

N, s ≥ τ, m≥ τ such that (zs−z)(zm−z)≤ 0. We say that a solution (xn,yn) of (1.3)
oscillates about (µ1,µ2) if xn (resp., yn) oscillates about µ1 (resp., µ2).
In this paper, first we find conditions so that a positive solution (xn,yn) of sys-

tem (1.3) oscillates about (µ1,µ2). Moreover we prove that system (1.3) has periodic
solutions of period 2 if A= 1 and we find necessary and sufficient conditions so that
a solution of system (1.3) is periodic of period 2. Also, we find conditions so that a
positive solution of system (1.3) tends to (µ1,µ2) as n→∞. Furthermore, if A< 1 we
prove that system (1.3) has unbounded solutions, if A = 1 every positive solution of
system (1.3) tends to a period 2 solution of (1.3) and if A> 1 the positive equilibrium
(c,c) of system (1.3) is globally asymptotically stable.

2. Main results. Now we prove our main results. In the first proposition we study
the oscillatory behavior of the positive solutions of (1.3).

Proposition 2.1. A positive solution (xn,yn) of system (1.3) oscillates about
(µ1,µ2) if there exists an s ∈ {0,1, . . .} such that one of the following conditions is
satisfied:

(i) xs ≥ µ1, ys ≥ µ2, xs+1 < µ1, ys+1 < µ2,
(ii) xs < µ1, ys < µ2, xs+1 ≥ µ1, ys+1 ≥ µ2,
(iii) xs ≥ µ1, ys ≥ µ2, xs+1 ≥ µ1, ys+1 < µ2, ys >−Axs+1+(1/(µ1−A))x2s+1,
(iv) xs ≥ µ1, ys < µ2, xs+1 ≥ µ1, ys+1 ≥ µ2, ys+1 > (1/(µ1−A))xs ,
(v) xs ≥ µ1, ys ≥ µ2, xs+1 < µ1, ys+1 ≥ µ2, xs >−Ays+1+(1/(µ2−A))y2s+1,
(vi) xs < µ1, ys ≥ µ2, xs+1 ≥ µ1, ys+1 ≥ µ2, xs+1 > (1/(µ2−A))ys ,
(vii) xs < µ1, ys < µ2, xs+1 ≥ µ1, ys+1 < µ2, xs ≤−Ays+1+(1/(µ2−A))y2s+1,
(viii) xs < µ1, ys < µ2, xs+1 < µ1, ys+1 ≥ µ2, ys ≤−Axs+1+(1/(µ1−A))x2s+1,
(ix) xs ≥ µ1, ys < µ2, xs+1 < µ1, ys+1 < µ2, xs+1 ≤ (1/(µ2−A))ys ,
(x) xs < µ1, ys ≥ µ2, xs+1 < µ1, ys+1 < µ2, ys+1 ≤ (1/(µ1−A))xs ,
(xi) xs ≥ µ1, ys < µ2, xs+1 < µ1, ys+1 ≥ µ2, ys+1 > (1/(µ1−A))xs, ys ≤ −Axs+1+

(1/(µ1−A))x2s+1,
(xii) xs ≥ µ1, ys < µ2, xs+1 < µ1, ys+1 ≥ µ2, xs+1 ≤ (1/(µ2−A))ys, xs > −Ays+1+

(1/(µ2−A))y2s+1,
(xiii) xs < µ1, ys ≥ µ2, xs+1 ≥ µ1, ys+1 < µ2, xs+1 > (1/(µ2−A))ys, xs ≤ −Ays+1+

(1/(µ2−A))y2s+1,
(xiv) xs < µ1, ys ≥ µ2, xs+1 ≥ µ1, ys+1 < µ2, ys+1 ≤ (1/(µ1−A))xs, ys > −Axs+1+

(1/(µ1−A))x2s+1.

Proof. (i) Using (1.3) and (1.4) we can easily prove that

xs+2k ≥ µ1, ys+2k ≥ µ2, xs+2k+1 < µ1, ys+2k+1 < µ2, k= 0,1, . . . (2.1)

from which the solution (xn,yn) oscillates about (µ1,µ2).
(ii) The proof is similar to the proof of (i).
(iii) It holds, ys > −Axs+1+ (1/(µ1−A))x2s+1 ≥ (µ2−A)xs+1. Then, from (1.3) and

(1.4), xs+2 > µ1, ys+2 > µ2. Moreover, since ys >−Axs+1+(1/(µ1−A))x2s+1, from (1.3)
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and (1.4) we have, xs+3 < µ1, ys+3 < µ2. Therefore, from (i) the solution (xn,yn)
oscillates about (µ1,µ2).
(iv) From (1.3) and (1.4) and since ys+1 > (1/(µ1−A))xs we have xs+2 < µ1, ys+2 <

µ2. Then, from (i) the solution (xn,yn) oscillates about (µ1,µ2).
The proofs of (v), (vii), (viii) are similar to (iii), the proofs of (vi), (ix), (x) are similar

to (iv).
(xi) From (1.3) and (1.4) and sinceys+1 > (1/(µ1−A))xs, ys ≤−Axs+1+(1/(µ1−A))

x2s+1 < (µ2−A)xs+1, we can prove that xs+2 < µ1, ys+2 < µ2. Then from (x) the solution
(xn,yn) oscillates about (µ1,µ2).
The proofs of (xii), (xiii), and (xiv) are similar to (xi).

In the following proposition we study the existence of period 2 solutions of (1.3).

Proposition 2.2. (i) Suppose that system (1.3) has a nontrivial solution (xn,yn) of
period 2. Then A= 1.
(ii) Let A= 1. Then the solution (xn,yn) of system (1.3) is periodic of period 2 if and

only if

x−1 �= 1, y−1 �= 1, x0 = y−1
y−1−1 , y0 = x−1

x−1−1 . (2.2)

Proof. (i) Let (xn,yn) be a nontrivial solution of system (1.3) such that xn+2 = xn

and yn+2 =yn, n∈ {0,1, . . .}. Then, from (1.3), we have for n∈ {0,1, . . .}

xn−1(yn−1)=Ayn, so xn−1
(
A+ yn

xn−1
−1
)
=Ayn,

yn−1(xn−1)=Axn, so yn−1
(
A+ xn

yn−1
−1
)
=Axn

(2.3)

from which it follows that

(A−1)(xn−1−yn
)= 0, (A−1)(yn−1−xn

)= 0, n= 0,1, . . . . (2.4)

Since (xn,yn) is a nontrivial solution of (1.3) there exists an n ∈ {0,1, . . .} such that
xn−1 �=yn or yn−1 �= xn. Then, from (2.4), A= 1 and the proof of (i) is completed.
(ii) If xn,yn, n=−1,0, . . . are periodic functions of period 2, then x−1 = x1, y−1 =

y1. Hence, from (1.3) for A= 1, it is obvious that (2.2) are satisfied. Conversely, if (2.2)
holds, we can easily prove by induction that xn+2 = xn, yn+2 =yn, n=−1,0, . . . . This
completes the proof of the proposition.

In the following proposition we find positive solutions of system (1.3) which tend
to (µ1,µ2) as n→∞.

Proposition 2.3. Let (xn,yn) be a positive solution of system (1.3). Then, if there
exists an s ∈ {−1,0, . . .} such that for n≥ s, xn ≥ µ1, yn ≥ µ2 (resp., xn < µ1, yn < µ2),
the solution (xn,yn) tends to the positive equilibrium (µ1,µ2) of system (1.3) as n→∞.

Proof. Let (xn,yn) be a positive solution of system (1.3) such that

xn ≥ µ1, yn ≥ µ2, n≥ s, (2.5)
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where s ∈ {−1,0, . . .}. Then from (1.3) and (2.5) we get

xn+1 =A+ xn−1
yn

≤A+ xn−1
µ2

, n > s. (2.6)

We can prove that the solution un of the difference equation

un+1 =A+ un−1
µ2

, n > s (2.7)

such that

us = xs, us+1 = xs+1 (2.8)

is the following:

un = σn+ Aµ2
µ2−1 = σn+µ1, σn = c1

(
1
µ2

)n/2
+c2

(
− 1

µ2

)n/2
, (2.9)

where c1,c2 depend on xs,xs+1. Moreover, relations (2.6) and (2.7) imply that

xn+1−un+1 ≤ xn−1−un−1
µ2

, n > s. (2.10)

Then, using (2.8) and (2.10) and working inductively, it follows that

xn ≤un, n≥ s. (2.11)

Therefore, from (2.5), (2.9), and (2.11) and since σn → 0 as n→∞, it is obvious that
lim
n→∞xn = µ1. (2.12)

Similarly we can prove that

lim
n→∞yn = µ2. (2.13)

So, from (2.12) and (2.13), the solution (xn,yn) tends to (µ1,µ2) as n→∞.
Arguing as above we can easily prove that ifxn < µ1, yn < µ2 forn≥ s, then (xn,yn)

tends to (µ1,µ2) as n→∞. This completes the proof of the proposition.
In the following proposition we study the stability of the positive equilibrium(µ1,µ2)

of system (1.3).

Proposition 2.4. Consider system (1.3). Then the following statements are true:
(i) If 0≤A< 1, the unique positive equilibrium (c,c) of (1.3) is not stable.
(ii) If A > 1, the unique positive equilibrium (c,c) of (1.3) is locally asymptotically

stable.
(iii) If A = 1, then for every µ ∈ (1,∞) there exist positive solutions (xn,yn) of (1.3)

which tend to the positive equilibrium (µ,µ/(µ−1)).
Proof. (i) The linearized system of (1.3) about (c,c) is the following

vn+1 = Bvn, B =




0 c−1 −c−1 0
1 0 0 0

−c−1 0 0 c−1

0 0 1 0


 . (2.14)
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The characteristic equation of the matrix B is

λ4−λ2
2A+3
(A+1)2 +

1
(A+1)2 = 0. (2.15)

Since 0≤A < 1, then from [2, Theorem 1.3.4, page 11] there exists a root of (2.15) of
modulus greater than 1. So (c,c) is not stable. This completes the proof of part (i).
(ii) Since A> 1, by applying again [2, Theorem 1.3.4, page 11] all the roots of (2.15)

are of modulus less than 1. Therefore (c,c) is locally asymptotically stable fromwhich
the proof of part (ii) is completed.
(iii) Consider a µ ∈ (1,∞). The linearized system of (1.3) about the positive equilib-

rium (µ,µ/(µ−1)) of (1.3) is

vn+1 = Bvn, B =




0
µ−1
µ

− (µ−1)2
µ

0

1 0 0 0

− 1
µ(µ−1) 0 0 µ−1

0 0 1 0



. (2.16)

The characteristic equation of the matrix B is

λ4−λ2
(
µ2+µ−1

µ2

)
+ µ−1

µ2
= 0. (2.17)

We can easily prove that equation (2.17) has the following roots: 1,−1, √µ−1/µ,
−(
√
µ−1/µ). Then since two roots of (2.17) are of modulus less than 1 there exist

positive solutions of (1.3) which tend to the positive equilibrium (µ,µ/(µ−1)) of (1.3).
This completes the proof of the proposition.

In what follows we study the asymptotic behavior of the positive solutions of sys-
tem (1.3) when 0≤A< 1, A= 1, A > 1.

Case 2.5 (0≤A< 1). In this case, we find positive solutions (xn,yn) of system (1.3)
which are not bounded.

Proposition 2.6. Consider system (1.3) where 0≤A< 1. Let (xn,yn) be a positive
solution of system (1.3) such that

y0 < 1, x0 < 1, x−1 >
1

1−A
, y−1 >

1
1−A

. (2.18)

Then,

lim
n→∞x2n+1 =∞, lim

n→∞x2n =A, lim
n→∞y2n+1 =∞, lim

n→∞y2n =A. (2.19)

Proof. We prove by induction that

x2n+1 >A+x2n−1, x2n < 1, y2n+1 >A+y2n−1, y2n < 1, n= 0,1, . . . . (2.20)
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From (1.3) and (2.18) it is obvious that (2.20) are satisfied forn= 0. Suppose that (2.20)
hold for n∈ {0,1, . . . ,s}. Then, from (1.3) and (2.18), we have

x2s+2 =A+ x2s
y2s+1

<A+ 1
y−1

< 1, y2s+2 < 1. (2.21)

Therefore, relations (1.3) and (2.21) imply that

x2s+3 =A+ x2s+1
y2s+2

>A+x2s+1, y2s+3 >A+y2s+1. (2.22)

Hence (2.20) are satisfied.
If A �= 0, then, from (2.20), it is obvious that

lim
n→∞x2n+1 =∞, lim

n→∞y2n+1 =∞. (2.23)

From (1.3) we have

x2n =A+ x2n−2
y2n−1

, y2n =A+ y2n−2
x2n−1

. (2.24)

Relations (2.20), (2.23), and (2.24) imply that

lim
n→∞x2n =A, lim

n→∞y2n =A. (2.25)

Using (2.23) and (2.25) the proof is completed if A �= 0.
Now let A= 0. Using (1.3), it holds

x2n+1 = x2n−1
y2n

, x2n+2 = x2n
y2n+1

, y2n+1 = y2n−1
x2n

, y2n+2 = y2n
x2n+1

. (2.26)

From (2.18) and (2.20) there exist

lim
n→∞x2n+1 = L1, lim

n→∞y2n+1 = L2, L1,L2 ∈ (1,∞]. (2.27)

If L1 <∞ (resp., L2 <∞), then from (2.26) we have,

lim
n→∞y2n = 1, L1 = 1, (resp., lim

n→∞x2n = 1, L2 = 1) (2.28)

which contradicts to the fact that L1 > 1 (resp., L2 > 1). Hence

L1 =∞, L2 =∞. (2.29)

Then, from (2.20), (2.26), and (2.29), it follows that

lim
n→∞x2n = limn→∞y2n = 0. (2.30)

Therefore from (2.27), (2.29), and (2.30) the proof of the proposition is completed.

Case 2.7 (A= 1). In this case, we prove that every positive solution of (1.3) tends
to a period 2 solution.

We need the following lemma.
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Lemma 2.8. Let A = 1 and (xn,yn) be a positive solution of system (1.3). Then, the
following statements are true:
(i) If x−1y0 ≤y0+x−1 (resp., x−1y0 ≥y0+x−1), then the sequences x2n+1, y2n are

nondecreasing (resp., nonincreasing).
(ii) If y−1x0 ≤ x0+y−1 (resp., y−1x0 ≥ x0+y−1), then the sequences x2n, y2n+1 are

nondecreasing (resp., nonincreasing).
(iii) There exist

lim
n→∞x2n+1 = L, lim

n→∞y2n = L
L−1 ,

lim
n→∞x2n =M, lim

n→∞y2n+1 = M
M−1 , L,M ∈ (1,∞).

(2.31)

Proof. (i) If x−1y0 ≤y0+x−1, then from (1.3) we have

x−1 ≤ x1. (2.32)

Now, suppose that for a k∈ {0,1, . . .}

x2k−1 ≤ x2k+1. (2.33)

Using (1.3), it follows that

x2k+3−x2k+1 = y2k+2+x2k+1
(
1−y2k+2

)
y2k+2

= y2k+2−y2k
y2k+2

. (2.34)

Similarly, we take

y2k+2−y2k = x2k+1−x2k−1
x2k+1

. (2.35)

Therefore relations (2.33), (2.34), and (2.35) imply that

x2k+1 ≤ x2k+3. (2.36)

Since (2.32), (2.33), and (2.36) hold, then by induction we take that x2n+1 is a nonde-
creasing function. Then from (2.35) y2n is also a nondecreasing function. Similarly, if
x−1y0 ≥y0+x−1, we can prove that x2n+1,y2n are nonincreasing functions.
(ii) The proof is similar to the proof of (i).
(iii) From (i) and (ii) we have that x2n+1,y2n (resp., x2n,y2n+1) are both nondecreas-

ing or both nonincreasing functions.
Suppose first that x2n+1,y2n are nondecreasing functions. Then there exist

lim
n→∞x2n+1 = L, lim

n→∞y2n =N, L,N ∈ (1,∞]. (2.37)

Furthermore, from (1.3) we get

x2n+1 = 1+ x2n−1
y2n

, y2n+2 = 1+ y2n
x2n+1

. (2.38)

From (2.37) and (2.38) we have

L �= ∞ and N �= ∞ or L=∞ and N =∞. (2.39)
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Suppose that L=∞ and N =∞. Then relations (2.38) imply that

lim
n→∞

x2n−1
y2n

= lim
n→∞

y2n
x2n+1

=∞ (2.40)

from which it is obvious that

lim
n→∞

x2n−1
x2n+1

= lim
n→∞

y2n
y2n+2

=∞, (2.41)

which contradicts to the fact that x2n+1, y2n are nondecreasing functions. Therefore
from (2.38) and (2.39) we have

L �= ∞, N �= ∞, N = L
L−1 . (2.42)

Similarly, if x2n,y2n+1 are nondecreasing functions, we can prove that there exist

lim
n→∞x2n =M, lim

n→∞y2n+1 = M
M−1 , M ∈ (1,∞). (2.43)

Now, suppose that x2n+1,y2n are nonincreasing functions. Then there exist

lim
n→∞x2n+1 = L, lim

n→∞y2n =N, L, N ∈ [1,∞). (2.44)

Then, from (2.38), it is obvious that

L �= 1, N = L
L−1 . (2.45)

Similarly, if x2n,y2n+1 are nonincreasing functions, we have that (2.43) are satisfied.
Therefore, from (2.37), (2.42), (2.43), (2.44), and (2.45), the proof of (iii) is completed.
This completes the proof of the lemma.

Using Proposition 2.3 and Lemma 2.8 the following proposition follows immedi-
ately.

Proposition 2.9. Consider system (1.3) whereA= 1. Then the following statements
are true:
(i) Every positive solution of system (1.3) tends to a period 2 solution as n→∞.
(ii) Moreover, if for a positive solution (xn,yn) of system (1.3) there exist an s ∈

{−1,0, . . .} and a µ ∈ (1,∞) such that for n ≥ s xn ≥ µ, yn ≥ µ/(µ−1) (resp., xn <
µ, yn < µ/(µ−1)) then xn (resp., yn) tends to µ (resp., µ/(µ−1)) as n→∞.

Case 2.10 (A> 1). In the following proposition we prove that the positive equilib-
rium (c,c) of system (1.3) is globally asymptotically stable.

Proposition 2.11. Consider system (1.3) where A > 1. Then the positive equilib-
rium (c,c) of system (1.3) is globally asymptotically stable.

Proof. We prove that every positive solution (xn,yn) of system (1.3) tends to the
positive equilibrium (c,c) of (1.3) as n→∞. First we prove that for n= 1,2, . . . ,

A<xn ≤ c1
(
1√
A

)n
+c2

(
− 1√

A

)n
+ A2

A−1 ,

A < yn ≤ c3
(
1√
A

)n
+c4

(
− 1√

A

)n
+ A2

A−1 ,
(2.46)
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where

c1 = 12
(
x0+

√
Ax1− A2

A−1
(
1+

√
A
))

,

c2 = 12
(
x0−

√
Ax1− A2

A−1
(
1−

√
A
))

,

c3 = 12
(
y0+

√
Ay1− A2

A−1
(
1+

√
A
))

,

c4 = 12
(
y0−

√
Ay1− A2

A−1
(
1−

√
A
))

.

(2.47)

From (1.3) it is obvious that

A≤ xn,yn, n≥ 1. (2.48)

Then, using (1.3) and (2.48), we get

xn+1 ≤A+ xn−1
A

, n≥ 1. (2.49)

We can easily find that the solution un of the difference equation

un+1 =A+ un−1
A

, n≥ 1, (2.50)

such that u0 = x0, u1 = x1, is the following

un = c1
(
1√
A

)n
+c2

(
− 1√

A

)n
+ A2

A−1 , n≥ 0. (2.51)

Then, from (2.48), (2.49), (2.50), and (2.51) and arguing as in Proposition 2.3, we can
prove that the first inequalities of (2.46) are satisfied. Similarly we can prove the sec-
ond inequalities of (2.46) are satisfied.
From (2.46), we can set

limsup
n �→∞

xn = L1, liminf
n �→∞ xn =m1, limsup

n �→∞
yn = L2, liminf

n �→∞ yn =m2. (2.52)

Relations (1.3) and (2.52) imply that

L1 ≤A+ L1
m2

, m1 ≥A+m1

L2
, L2 ≤A+ L2

m1
, m2 ≥A+m2

L1
. (2.53)

Relations (2.53) imply that

(A−1)(L1−m2
)≤ 0, (A−1)(L2−m1

)≤ 0. (2.54)

Since A> 1 we have

L1 ≤m2 ≤ L2, L2 ≤m1 ≤ L1, (2.55)

from which

L1 = L2 =m1 =m2. (2.56)

Therefore every positive solution (xn,yn) of system (1.3) tends to (c,c) as n → ∞.
Then, since, from (ii) of Proposition 2.4 the positive equilibrium (c,c) is locally asymp-
totically stable, the proof of the proposition is completed.
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