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ON A CLASS OF UNIVALENT FUNCTIONS
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ABSTRACT. We consider the class of univalent functions f(z) = z+asz3 +a4z*+--- ana-
lytic in the unit disc and satisfying | (z2f’(z)/f2(z)) — 1| < 1, and show that such functions
are starlike if they satisfy [(z2f'(2)/f2(z)) 1] < (1//2).
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Let A denote the class of functions which are analytic in the unitdiscU = {z : |z| < 1}
and have Taylor series expansion

f(2)=z+az®+azz’+---, 1)
and let T be the univalent [3] subclass of A which satisfy

Z2f'(z)

f2(2) !

<1, zeU. (2)

By T> we denote the subclass of T for which f~ (0) = 0. In this paper, we prove the
following theorem.

THEOREM 1. If f € Ts, then

(i) Re(f(2)/z)>1/2,z€U,

(ii) f is starlike in |z| <1/ 3/2 = 0.840896...,
(iii) Re f'(z) >0 for |z| < 1/+/2.

Items (i) and (iii) are improvements of results in [2], and (ii) is the same as in [2] but
has a different proof. Furthermore, (i) and (iii) are sharp as shown by the function

z
1-2z2’

f(z)= (3)

but the sharpness of (ii) is difficult to establish by a direct example. We also prove the
following theorem which partially answers a question raised in [1].

THEOREM 2. If T» , is the subclass of T> which satisfies

zf’(z)

“ g !

<u<l, 4)

then T, is a subclass of starlike functions if 0 < p < 1/+/2.
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We define by B the class of functions w analytic in U and satisfying
lw(z)| <1, zeU, w(0) =w'(0) =
From Schwarz’s lemma it then follows that
lw(2)] < |zI°.

PROOF OF THEOREM 1. If f € T, and satisfies (2), then

22;2((?) -l=w(z), zeU, weB,B,
and by direct integration
1
ﬁ: - wEEZ)dt, zeU, weEB.
0
From (8), we obtain
’ﬁ-l’ =< |Z|2 <1,
and this gives
’1 f@] _ ‘f(Z)
<= |

which is equivalent to (Re f(z)/z) > 1/2, This proves (i).
Furthermore, from (9), we obtain

f(z

’arg— <sin!'|z|2.
From (7), we obtain
f(z) f(z)
Zf(z) = (1+w(2)
and, therefore,
‘arg fo(,(;) = ‘a f(z 2) +arg(1+w(z))‘ <2sin7!|z|%.

This gives (ii).
In order to prove (iii), we notice that (7) yields

£(2) = (f(Z)) (1+w(2))

and, therefore,

|arg f'(2)| = ‘Zargf
But this is equivalent to (iii).
PROOF OF THEOREM 2. If f € T, ,, we obtain from (4)

f (2)
fz(z)

-1=pw(z), weB, zelU and i=1—

f(2) H 0

2) +arg (1+w(z)) ‘ <3sin!|z]%

Lw(tz)

t2

(5)

(7)

(10)

11)

12)

13)

(14)

(15)

(16)
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Hence
f(2) _ 1+uw(z) (17)
f@)  1-pfj(w(tz)/t2)dt
Now Re z (f'(z)/f(z)) > 0 is equivalent to the condition
f@) _ vpw@ i reRe. (18)

‘ flz) 1—ufy (w(tz)/t2)dt

Relation (18) is equivalent to

u Lw(tz) 1—-iT Lw(tz)
5 [(w(z)+ s dt) + 5T (w(z)— s dtﬂ + —1. (19)
Let
B Ywi(tz) 1-iT w(tz)
MizeU,uS)lel}E),TeRe |:((U(Z)+ s dt>+ 1T (w(z)— e dtﬂ ‘ (20)

then, in view of the rotation invariance of B, it follows that

f'(2) . 2
F2) >0, 1fusM. (21)

However, from (20), we notice that

M < sup Uw(z) +J01 w(i;z) dt‘ + ‘w(z) —Jol w(tz) dt”

Rez

zeU,weB t tz

- (22)
2 1
<2 sup [\/’w(z)’ + H w(gz) dt‘ } < 24/2.
zeU;,weB 0 t
Inequality (22) follows from the parallelogram law and the last step from (6). And (21)
shows that p < 1/+/2. O
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