A CHARACTERIZATION OF MÖBIUS TRANSFORMATIONS

PIYAPONG NIAMSUP

(Received 9 March 2000 and in revised form 5 June 2000)

ABSTRACT. We give a new invariant characteristic property of Möbius transformations.

Keywords and phrases. Möbius transformations, Schwarzian derivative, Newton derivative.

2000 Mathematics Subject Classification. Primary 30C35.

1. Introduction. Throughout this paper, we let w = f(z) be a nonconstant meromorphic function in \mathbb{C} unless otherwise stated.

We consider the following properties.

PROPERTY 1.1. w = f(z) transforms circles in the *z*-plane onto circles in the *w*-plane, including straight lines among circles.

PROPERTY 1.2. Suppose that w = f(z) is analytic and univalent in a nonempty simply connected domain \mathbb{R} on the *z*-plane. Let *ABCD* be an arbitrary quadrilateral (not self-intersecting) contained in \mathbb{R} . If we set A' = f(A), B' = f(B), C' = f(C), D' = f(D) and if A'B'C'D' is a quadrilateral on the *w*-plane which is not self-intersecting, then the following hold

$$\angle A + \angle C = \angle A' + \angle C', \qquad \angle B + \angle D = \angle B' + \angle D'. \tag{1.1}$$

The following is a well-known principle of circle transformation of Möbius transformations.

THEOREM 1.3. w = f(z) satisfies Property 1.1 if and only if w = f(z) is a Möbius transformations.

In [1], it is shown that Property 1.1 implies Property 1.2 and a new invariant characteristic property of Möbius transformations is given as follows.

THEOREM 1.4. Let α be an arbitrary fixed real number such that $0 < \alpha < 2\pi$. Suppose that w = f(z) is analytic and univalent in a nonempty simply connected domain \mathbb{R} on the *z*-plane. Let ABCD be an arbitrary quadrilateral (not self-intersecting) contained in \mathbb{R} satisfying

$$\angle A + \angle C = \alpha. \tag{1.2}$$

If A' = f(A), B' = f(B), C' = f(C), D' = f(D) is a quadrilateral on the *w*-plane which is not self-intersecting, then the only function which satisfies

$$\angle A' + \angle C' = \alpha \tag{1.3}$$

is a Möbius transformation.

Theorem 1.4 gives an alternative proof of "the only if part" of Theorem 1.3. Motivated by the above results, we consider the following property.

PROPERTY 1.5. Let *k* be an arbitrary positive real number. For three arbitrary distinct points *a*, *b*, and *c* in \mathbb{R} satisfying

$$\left|\frac{a-b}{c-b}\right| = k,\tag{1.4}$$

we have

$$\left|\frac{f(a)-f(b)}{f(c)-f(b)}\cdot\frac{f(c)}{f(a)}\right| = k.$$
(1.5)

In Section 3, we prove the following result concerning the mapping property of an analytic and univalent function on a connected domain.

THEOREM 1.6. Let k be an arbitrary positive real number. Let w = f(z) be analytic and univalent in a nonempty connected domain \mathbb{R} on the z-plane such that $f(z) \neq 0$ for all $z \in \mathbb{R}$. Then f satisfies Property 1.5 if and only if f is a Möbius transformation of the form u/(z + v), $u \neq 0$.

2. Lemmas

DEFINITION 2.1. Let f be a complex-valued function. The Schwarzian derivative of f is defined as follows:

$$S_f(z) = \frac{f'''(z)}{f'(z)} - \frac{3}{2} \left(\frac{f''(z)}{f'(z)}\right)^2.$$
(2.1)

Similar to Schwarzian derivative, we have the following.

DEFINITION 2.2. Let f be a complex-valued function. We define the *Newton derivative* of f as follows:

$$N_f(z) = \left(z - \frac{f(z)}{f'(z)}\right)' = \frac{f(z)f''(z)}{\left(f'(z)\right)^2}.$$
(2.2)

REMARK 2.3. Note that $N_f(z)$ is the first derivative of Newton's method of f.

REMARK 2.4. Let *f* be a complex-valued function. It is well known that $S_f(z) = 0$ if and only if *f* is a Möbius transformation.

From Remark 2.4, we have observed that a similar result holds true when we replace Schwarzian derivative by the Newton derivative.

LEMMA 2.5. Let f be a complex-valued function. Then $N_f(z) = 2$ if and only if f is a Möbius transformation of the form u/(z+v), $u \neq 0$.

PROOF. Let *f* be a Möbius transformation of the form u/(z + v), $u \neq 0$, then it is easily checked that $N_f(z) = 2$. Let *f* be a complex-valued function such that $N_f(z) = 2$. It follows that

$$\left(z - \frac{f(z)}{f'(z)}\right)' = 2 \tag{2.3}$$

664

which implies that

$$z - \frac{f(z)}{f'(z)} = 2z - c_1, \tag{2.4}$$

where c_1 is a complex constant, thus

$$\frac{f(z)}{f'(z)} = -z + c_1 \tag{2.5}$$

or

$$\frac{1}{f(z)}\frac{df(z)}{dz} = \frac{1}{-z+c_1}.$$
(2.6)

From which it follows by a simple calculation that f is a Möbius transformation of the form u/(z + v), $u \neq 0$.

3. Main result. In this section, we assume that w = f(z) is analytic and univalent on a nonempty connected domain \mathbb{R} on the *z*-plane such that $f(z) \neq 0$ for all $z \in \mathbb{R}$.

PROOF OF THEOREM 1.6. Let f(z) be a Möbius transformation of the form u/(z+v), $u \neq 0$. Let *a*, *b*, and *c* be arbitrary three distinct points in \mathbb{R} such that

$$\left|\frac{a-b}{c-b}\right| = k. \tag{3.1}$$

We observe that

$$\frac{a-b}{c-b} \tag{3.2}$$

is the cross-ratio of a, b, c, and d, where d is the point at infinity. Since f(z) = u/(z+v), $u \neq 0$, we have f(d) = 0. Since Möbius transformations preserve the cross-ratio, we obtain

$$\frac{f(a) - f(b)}{f(c) - f(b)} \cdot \frac{f(c)}{f(a)} = \frac{a - b}{c - b}$$
(3.3)

which implies that

$$\left|\frac{f(a)-f(b)}{f(c)-f(b)}\cdot\frac{f(c)}{f(a)}\right| = \left|\frac{a-b}{c-b}\right| = k.$$
(3.4)

Therefore, any Möbius transformation of the form u/(z + v), $u \neq 0$ satisfies Property 1.5.

Conversely, let *x* be an arbitrary fixed point in \mathbb{R} . Then there exists a positive real number *r* such that the *r* circular neighborhood $N_r(x)$ of *x* is contained in \mathbb{R} .

Throughout the proof let A = x + ky, B = x, C = x - y. Since \mathbb{R} is a nonempty connected domain on the *z*-plane, there exists a positive real number *s* such that if

$$0 < |\mathcal{Y}| < s, \tag{3.5}$$

then *A*, *B*, and *C* are contained in $N_r(x)$.

665

PIYAPONG NIAMSUP

Since w = f(z) is univalent in \mathbb{R} , f(A) = f(x + ky), f(B) = f(x), and f(C) = f(x - y) are distinct points. By assumption, we have

$$\left|\frac{f(x+ky)-f(x)}{f(x-y)-f(x)} \cdot \frac{f(x-y)}{f(x+ky)}\right| = k$$
(3.6)

for all y such that 0 < |y| < s.

Let

$$h(y) = \frac{f(x+ky) - f(x)}{f(x-y) - f(x)} \cdot \frac{f(x-y)}{f(x+ky)}.$$
(3.7)

Then

$$|h(y)| = k \tag{3.8}$$

for all y such that 0 < |y| < s. The function h(y) extends analytically at zero by h(0) = -k. Hence, by the maximum modulus principle, we have h(y) = -k for all y with |y| < s. In other words, we have

$$\frac{f(x+ky) - f(x)}{f(x-y) - f(x)} \cdot \frac{f(x-y)}{f(x+ky)} = -k$$
(3.9)

in |y| < s. This equality implies that

$$(f(x+ky) - f(x))f(x-y) = -k(f(x-y) - f(x))f(x+ky).$$
(3.10)

Differentiate this equality twice with respect to y and then set y = 0, we obtain

$$-k(k+1)(2(f'(x))^{2} - f(x)f''(x)) = 0$$
(3.11)

which implies that

$$2(f'(x))^{2} - f(x)f''(x) = 0$$
(3.12)

or

$$\frac{f(x)f''(x)}{\left(f'(x)\right)^2} = 2. \tag{3.13}$$

By the identity theorem and Lemma 2.5, we conclude that f is a Möbius transformation of the form u/(z+v), $u \neq 0$.

ACKNOWLEDGEMENT. I would like to thank the referees for valuable comments and suggestions. This work is supported by the Thailand Research Fund.

REFERENCES

 H. Haruki and T. M. Rassias, A new invariant characteristic property of Möbius transformations from the standpoint of conformal mapping, J. Math. Anal. Appl. 181 (1994), no. 2, 320–327. MR 94m:30018. Zbl 796.39008.

PIYAPONG NIAMSUP: DEPARTMENT OF MATHEMATICS, CHIANGMAI UNIVERSITY, CHIANGMAI, 50200, THAILAND

E-mail address: scipnmsp@chiangmai.ac.th

666