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Abstract. Let B be a ring with 1, G a finite automorphism group of B of order n for some
integer n, BG the set of elements in B fixed under each element in G, and ∆= VB(BG) the
commutator subring of BG in B. Then the type of central commutator Galois extensions is
studied. This type includes the types of Azumaya Galois extensions and GaloisH-separable
extensions. Several characterizations of a central commutator Galois extension are given.
Moreover, it is shown that when G is inner, B is a central commutator Galois extension
of BG if and only if B is an H-separable projective group ring BGGf . This generalizes
the structure theorem for central Galois algebras with an inner Galois group proved by
DeMeyer.
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1. Introduction. Galois theory for commutative rings were studied in the sixties
and seventies (see [4, Chapter 3]), and several Galois extensions of noncommutative
rings were also investigated (see [2, 5, 6, 8]). Recently, central Galois extensions and
the DeMeyer-Kanzaki Galois extensions were generalized to the Azumaya Galois ex-
tensions and center Galois extensions, respectively (see [1, 9, 10, 11]). B is called an
Azumaya Galois extension of BG with Galois group G if B is a Galois extension of BG

which is an Azumaya algebra over CG where C is the center of B, and B is called a
center Galois extension of BG if C is a Galois algebra with Galois group G|C �G. The
purpose of the present paper is to study a type of Galois extensions which is strictly
between the types of Azumaya Galois extensions and Galois H-separable extensions.
Let ∆ = VB(BG), the commutator subring of BG in B. We call B a commutator Galois
extension of BG if ∆ is a Galois extension with Galois group G|∆ �G, and B is a central
commutator Galois extension of BG if ∆ is a central Galois algebra with Galois group
G|∆ � G. We shall characterize a central commutator Galois extension in terms of a
GaloisH-separable extension B of BG as studied by Sugano (see [8]) and the C-modules
{Jg | g ∈G} where Jg = {b ∈ B | ba= g(a)b for all a∈ B}. Moreover, it will be shown
that B is a central commutator Galois extension of BG with an inner Galois group G if
and only if B is an H-separable projective group ring BGGf where BGGf =

∑
g∈G BGUg

such that {Ug | g ∈ G} are free over BG, bUg = Ugb for all b ∈ BG and g ∈ G, and
UgUh = Ughf(g,h) where f :G×G→ units of CG is a factor set. This generalizes the
structure theorem for a central Galois algebra with an inner Galois group proved by
DeMeyer (see [3]).

http://ijmms.hindawi.com
http://www.hindawi.com


290 G. SZETO AND L. XUE

2. Basic definitions and notation. Throughout this paper, B will represent a ring
with 1, C the center of B, G a finite automorphism group of B of order n for some
integer n, BG the set of elements in B fixed under each element in G, and ∆= VB(BG),
the commutator subring of BG in B.
LetA be a subring of a ring B with the same identity 1. We call B a separable extension

of A if there exist {ai,bi in B, i= 1,2, . . . ,m for some integerm} such that∑aibi = 1,
and

∑
bai⊗bi =

∑
ai⊗bib for all b in B where ⊗ is over A, and a ring B is called an

H-separable extension of A if B⊗A B is isomorphic to a direct summand of a finite
direct sum of B as a B-bimodule. An Azumaya algebra is a separable extension of
its center. B is called a Galois extension of BG with Galois group G if there exist
elements {ci,di in B, i= 1,2, . . . ,m} for some integerm such that

∑m
i=1 cig(di)= δ1,g

for g ∈ G. The set {ci,di} is called a G-Galois system for B. B is called a DeMeyer-
Kanzaki Galois extension of BG if B is an Azumaya C-algebra and C is a Galois algebra
with Galois group G|C �G. If C is a Galois algebra with Galois group G|C �G, we call B
a center Galois extension of BG. B is called an Azumaya Galois extension if it is a Galois
extension of BG that is an Azumaya CG-algebra, and B is called a Galois H-separable
extension if it is a Galois and an H-separable extension of BG (see [8]). We call B a
commutator Galois extension of BG if ∆ is a Galois extension with Galois group G|∆ �
G, and B is a central commutator Galois extension of BG if ∆ is a central Galois algebra
with Galois group G|∆ �G. For each g ∈G, let Jg = {b ∈ B | bx = g(x)b for all x ∈ B}
and JA

g = {a∈A | ax = g(x)a for all x ∈A} for a subring A of B.

3. Central commutator Galois extensions. In this section, we shall give several
characterizations of a central commutator Galois extension in terms of Galois H-
separable extensions and Azumaya Galois extensions, respectively, and prove the
converse of a theorem for a Galois H-separable extension as given in [8]. We begin
with some properties of a commutator Galois extension.

Lemma 3.1. If B is a commutator Galois extension of BG, then ∆ is a Galois algebra
over CG.

Proof. Since ∆ is a Galois extension of ∆G with Galois group G|∆ �G, B and BG∆
are also Galois extensions of BG with Galois group G and G|BG∆. But BG∆ ⊂ B and
G �G|BG∆, so B = BG∆. Thus, the center of ∆ is C ; and so ∆G = BG∩∆= CG.

Lemma 3.2. If B is a commutator Galois extension of BG, then Jg = J∆g for each g ∈G.

Proof. Since Jg={b ∈ B | ba = g(a)b for all a ∈ B} ⊂ {b ∈ B | ba = g(a)b for all
a∈ BG} =∆, Jg ⊂ J∆g .
Conversely, for any x ∈ J∆g , xd= g(d)x for all d∈∆. Since ∆ is a Galois extension

of ∆G with Galois group G|∆ � G, B = BG∆ by the proof of Lemma 3.1. So for any
b ∈ B, b =∑m

i=1bidi for some bi ∈ BG, di ∈∆ and some integerm, we have that xb =
x
∑m

i=1bidi =
∑m

i=1bixdi =
∑m

i=1big(di)x = g
(∑m

i=1bidi
)
x = g(b)x. Thus, J∆g ⊂ Jg ;

and so Jg = J∆g .

Theorem 3.3. The following are equivalent:
(1) B is a central commutator Galois extension of BG.
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(2) B is a commutator Galois extension of BG and JgJg−1 = C for each g ∈G.
(3) B is a Galois H-separable extension of BG, B = BG∆, and n−1 ∈ B.

Proof. (1)⇒(2). It is clear.
(2)⇒(1). By Lemma 3.1, ∆G = CG, so ∆ is a Galois algebra with Galois group G|∆ �G.

By hypothesis, JgJg−1 = C for each g ∈ G and by Lemma 3.2, Jg = J∆g for each g ∈ G,
so ∆ is a central Galois algebra (see [5, Theorem 1]).
(1)⇒(3). Since ∆ is a central Galois CG-algebra, we have B = BG∆, Jg = J∆g for each

g ∈ G by Lemma 3.2 and J∆g J
∆
g−1 = C (see [6, Lemma 2]). Hence JgJg−1 = C for each

g ∈ G. But B is a Galois extension of BG with the same Galois system for ∆, so B is
a Galois H-separable extension of BG (see [8, Theorem 2(iii)⇒(i)]). Moreover, n−1 ∈ B
(see [6, Corollary 3]), so (3) holds.
(3)⇒(1). Since B = BG∆, the group H = {g ∈ G|g|∆ is an identity} = {1}. Thus, ∆ is

a central Galois algebra over ∆G (see [8, Theorem 6, (3)(ii)⇒(iii)]) where ∆G = CG by
Lemma 3.1.
We remark that (1)⇒(3) in Theorem 3.3 is the converse of [8, Theorem 6]; that is, if

∆ is a central Galois algebra with Galois group G|∆ �G, then
(i) n−1 ∈ B,
(ii) B = BG∆,
(iii) B is a Galois H-separable extension of BG.

In the next theorem, we give a characterization of a central commutator Galois ex-
tension in terms of Azumaya Galois extensions.

Theorem 3.4. The following are equivalent:
(1) B is a central commutator Galois extension of BG and BG is a separable CG-algebra.
(2) B is an Azumaya Galois extension with Galois group G.
(3) B is a central commutator Galois extension and a separable extension of ∆.

Proof. (1)⇒(2). Since B is a central commutator Galois extension, B is a Galois H-
separable extension of BG by Theorem 3.3(3). Thus, VB(VB(BG)) = BG (see [8, Propo-
sition 4(1)]). This implies that C ⊂ BG; and so C = CG. Moreover, by Theorem 3.3(3)
again, B = BG∆, so the center of BG is CG, the center of B. Thus, BG is an Azumaya
CG-algebra. By noting that B is a Galois extension of BG, (2) holds.
(2)⇒(1). It is a consequence of [1, Lemma 1].
(1)⇒(3). Since B is a separable extension of BG (for it is a Galois extension) and BG

is a separable CG-algebra, B is a separable CG-algebra by the transitivity property of
separable extensions. Thus, B is a separable extension of ∆ because CG ⊂∆⊂ B.
(3)⇒(1). Since ∆ is a Galois extension of ∆G with Galois group G|∆ � G, ∆ is a sep-

arable extension of ∆G. By Lemma 3.1, ∆G = CG = C (for C is the center of ∆). By
hypothesis, B is a separable extension of ∆. Hence B is a separable extension of C ,
that is, B is an Azumaya C-algebra. By Lemma 3.1 again, B = BG∆ such that BG and ∆
are C-subalgebras of the Azumaya C-algebra B. Hence, they are Azumaya C-algebras
by the commutator theorem for Azumaya algebras (see [4, Theorem 4.3, page 57]).
Since ∆ is a Galois extension of ∆G with Galois group G|∆ �G, B is a Galois extension
of BG which is an Azumaya CG-algebra. This completes the proof.
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4. H-separable projective group rings. In [3], it was shown that B is a central Galois
algebra with an inner Galois group G if and only if B is an Azumaya projective group
algebra CGGf over CG where CGGf =

∑
g∈GCGUg such that {Ug | g ∈G} are free over

CG, cUg = Ugc for all c ∈ CG and g ∈ G, and UgUh = Ughf(g,h), f : G×G→ units of
CG is a factor set (see [3]). We shall generalize this fact to a central commutator Galois
extension with an inner Galois group.

Theorem 4.1. B is a central commutator Galois extension of BG with an inner Galois
group G if and only if B = BGGf which is an H-separable extension of BG and n−1 ∈ B.

Proof. (⇒) By Theorem 3.3 (1)⇒(3), B = BG∆ which is a Galois H-separable exten-
sion of BG and n−1 ∈ B, so it suffices to show that B = BGGf , a projective group ring
with coefficient ring BG. Since ∆ is a central Galois CG-algebra, by [3, Theorem 2],
∆= CGGf , a projective group algebra over CG where f :G×G→ units of CG is a factor
set such that f(g,h)=UgUhU−1

gh for all g,h∈G. Noting that bUg =Ugb for all b ∈ BG

andg ∈G, we claim that {Ug | g ∈G} are independent over BG. Assume
∑

g∈G bgUg = 0
for some bg ∈ BG and g ∈ G. Since ∆ is a Galois extension of ∆G with Galois group
G|∆ �G, there exists a G-Galois system {ci,di, i= 1,2, . . . ,m for some integerm} for
∆ such that

∑m
i=1 cig(di)= δ1,g for g ∈G. Hence

b1 =
∑
g∈G

δ1,gbgUg =
∑
g∈G

m∑
i=1

cig(di)bgUg

=
∑
g∈G

m∑
i=1

cibgg(di)Ug =
∑
g∈G

m∑
i=1

cibgUgdi

=
m∑
i=1

ci

( ∑
g∈G

bgUg

)
di = 0.

(4.1)

So
∑

g∈G bgUg = 0 for some bg ∈ BG and g ∈ G implies that b1 = 0. Now for any
h ∈ G, since

∑
g∈G bgUg = 0, 0 =

∑
g∈G bgUgUh−1 =

∑
g∈G bgf(g,h−1)Ugh−1 . Thus,

bhf(h,h−1)= 0, and so bh = 0. This proves that {Ug | g ∈G} are independent over BG.
(⇐) Since BGGf (� BG ⊗CG CGGf ) is an H-separable extension of BG and BG is a

direct summand of BGGf as a left BG-module, VBGGf
(VBGGf

(BG)) = BG. This implies

that the center of BGGf is CG. Moreover, G is inner induced by {Ug | g ∈ G}, so
Jg = CGUg for each g ∈ G. But then CGGf = ⊕

∑
g∈GCGUg = ⊕

∑
g∈G Jg such that

JgJg−1 = (CGUg)(CGUg−1) = CG for all g ∈ G. By hypothesis, n−1 ∈ CG, so CGGf

is a separable algebra over CG. Thus, ∆(= CGGf ) is a central Galois algebra (see [5,
Theorem 1]) with an inner Galois group Ḡ induced by {Ug | g ∈G}. Thus, B is a central
commutator Galois extension of BG with an inner Galois group G.
By [7, Theorem 1.2], we derive a one-to-one correspondence between some sets of

separable subextensions in a central commutator Galois extension B of BG. Let � =
{� | � is a separable subextension of B containing BG which is a direct summand of
B as a bimodule} and �= {� |� is a separable subalgebra of ∆ over CG}.

Theorem 4.2. Let B be a central commutator Galois extension of BG. Then, there
exists a one-to-one correspondence between � and � by A→ VB(A).
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Proof. By Theorem 3.3(3), B is an H-separable extension of BG, so the correspon-
dence holds by [7, Theorem 1.2].

We conclude this paper with two examples of Galois extension B to show that
(1) B is a central commutator Galois extension but not an Azumaya Galois exten-

sion (see Theorem 3.4),
(2) B is a Galois H-separable extension but not a central commutator Galois ex-

tension (see Theorem 3.3).

Example 4.3. Let A=Q[i,j,k] be the quaternion algebra over the rational fieldQ,
B =

{(
a1 a2
0 a3

)∣∣∣a1,a2,a3 ∈ A
}
, the ring of all 2-by-2 upper triangular matrices over A

and G = {1,gi,gj,gk} where gi(a)= iai−1, gj(a)= jaj−1, gk(a)= kak−1 for all a in
A and g

(
a1 a2
0 a3

)
=
(
g(a1) g(a2)
0 g(a3)

)
for g ∈G. Then

(1) AG =Q.
(2) BG =

{(
q1 q2
0 q3

)∣∣∣q1,q2,q3 ∈ Q
}
, the ring of all 2-by-2 upper triangar matrices

over Q.
(3) ∆= VB(BG)=

{(
a 0
0 a

)∣∣∣a∈A
}
�A.

(4) ∆ is a Galois extension of ∆G with Galois group G|∆ � G and a Galois system
{1, i,j,k;1/4,−i/4,−j/4,−k/4}.
(5) ∆G =Q is the center of ∆.
(6) By (4) and (5), B is a central commutator Galois extension of BG.
(7) The center of BG is Q.
(8) BG is not a separable extension of its center Q, and so BG is not an Azumaya

algebra. In fact, suppose that BG is a separable extension of Q. Then, there exists a
separable idempotent

e=
∑

1≤i≤j≤2
1≤k≤l≤2

qijkl
(
eij⊗ekl

)
, (4.2)

where e11 =
(
1 0
0 0

)
, e12 =

(
0 1
0 0

)
, e22 =

(
0 0
0 1

)
, and qijkl ∈Q such that

∑
1≤i≤j≤2
1≤k≤l≤2

qijkleijekl = I2, (4.3)

the identity 2-by-2 matrix, and be= eb for all b ∈ BG. By e11e= ee11, we have∑
1≤j≤2
1≤k≤l≤2

q1jkl
(
e1j⊗ekl

)= ∑
1≤i≤j≤2

qij11
(
eij⊗e11

)
. (4.4)

Hence q2211 = 0 and q1jk2 = 0 for all j,k, that is, q1112 = q1122 = q1212 = q1222 = 0. By
e12e= ee12, we have ∑

1≤k≤l≤2
q22kl

(
e12⊗ekl

)= ∑
1≤i≤j≤2

qij11
(
eij⊗e12

)
. (4.5)

Hence q22kl = 0 if (k,l) �= (1,2) and qij11 = 0 if (i,j) �= (1,2), that is, q2211 = q2222 = 0
and q1111 = q2211 = 0. Therefore, e= q1211(e12⊗e11)+q2212(e22⊗e12). Thus,

I2 =
∑

1≤i≤j≤2
1≤k≤l≤2

qijkleijekl = q1211e12e11+q2212e22e12 = 0. (4.6)
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This contradiction shows that BG is not a separable extension of Q.

Example 4.4. Let B =Q[i,j,k] be the quaternion algebra over the rational field Q
and G = {1,gi} where gi(x)= ixi−1 for all x in B. Then
(1) B is a Galois extension of BG with Galois groupG and aGalois system {1, i,j,k;1/4,

−i/4,−j/4,−k/4}.
(2) Since G is inner, B is an H-separable extension of BG.
(3) By (1) and (2), B is a Galois H-separable extension of BG.
(4) ∆ = VB(BG) = Q[i] is not a Galois extension of ∆G with Galois group G|∆ � G,

and so B is not a central commutator Galois extension of BG.
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