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ABSTRACT. Let B be aring with 1, G a finite automorphism group of B of order n for some
integer n, BS the set of elements in B fixed under each element in G, and A = Vz(B%) the
commutator subring of BC in B. Then the type of central commutator Galois extensions is
studied. This type includes the types of Azumaya Galois extensions and Galois H-separable
extensions. Several characterizations of a central commutator Galois extension are given.
Moreover, it is shown that when G is inner, B is a central commutator Galois extension
of B¢ if and only if B is an H-separable projective group ring B¢G r- This generalizes
the structure theorem for central Galois algebras with an inner Galois group proved by
DeMeyer.
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1. Introduction. Galois theory for commutative rings were studied in the sixties
and seventies (see [4, Chapter 3]), and several Galois extensions of noncommutative
rings were also investigated (see [2, 5, 6, 8]). Recently, central Galois extensions and
the DeMeyer-Kanzaki Galois extensions were generalized to the Azumaya Galois ex-
tensions and center Galois extensions, respectively (see [1, 9, 10, 11]). B is called an
Azumaya Galois extension of B¢ with Galois group G if B is a Galois extension of B¢
which is an Azumaya algebra over C¢ where C is the center of B, and B is called a
center Galois extension of B if C is a Galois algebra with Galois group G|c = G. The
purpose of the present paper is to study a type of Galois extensions which is strictly
between the types of Azumaya Galois extensions and Galois H-separable extensions.
Let A = V3(B%), the commutator subring of B¢ in B. We call B a commutator Galois
extension of B if A is a Galois extension with Galois group G|, = G, and B is a central
commutator Galois extension of B¢ if A is a central Galois algebra with Galois group
G|a = G. We shall characterize a central commutator Galois extension in terms of a
Galois H-separable extension B of B¢ as studied by Sugano (see [8]) and the C-modules
{Jg 1 g € G} where J; = {b € B|ba=g(a)b for all a € B}. Moreover, it will be shown
that B is a central commutator Galois extension of B¢ with an inner Galois group G if
and only if B is an H-separable projective group ring BG; where B°Gy = > ;. B¢ U,
such that {Uy | g € G} are free over B¢, bU, = Uyb for all b € B¢ and g € G, and
UyUp = Ugnf(g,h) where f: GxG — units of CG is a factor set. This generalizes the
structure theorem for a central Galois algebra with an inner Galois group proved by
DeMeyer (see [3]).
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2. Basic definitions and notation. Throughout this paper, B will represent a ring
with 1, C the center of B, G a finite automorphism group of B of order n for some
integer n, B¢ the set of elements in B fixed under each element in G, and A = V3(B%),
the commutator subring of B¢ in B.

Let A be a subring of aring B with the same identity 1. We call B a separable extension
of A if there exist {a;,b; in B, i = 1,2,...,m for some integer m} such that > a;b; =1,
and > ba;®b; = > a;®b;b for all b in B where ® is over A, and a ring B is called an
H-separable extension of A if B®4 B is isomorphic to a direct summand of a finite
direct sum of B as a B-bimodule. An Azumaya algebra is a separable extension of
its center. B is called a Galois extension of B¢ with Galois group G if there exist
elements {c;,d; in B, i = 1,2,...,m} for some integer m such that >, c;g(d;) = 51,4
for g € G. The set {c;,d;} is called a G-Galois system for B. B is called a DeMeyer-
Kanzaki Galois extension of B® if B is an Azumaya C-algebra and C is a Galois algebra
with Galois group G|¢ = G. If C is a Galois algebra with Galois group G|¢c = G, we call B
a center Galois extension of BS. B is called an Azumaya Galois extension if it is a Galois
extension of B¢ that is an Azumaya CC-algebra, and B is called a Galois H-separable
extension if it is a Galois and an H-separable extension of B¢ (see [8]). We call B a
commutator Galois extension of B if A is a Galois extension with Galois group G| =
G, and B is a central commutator Galois extension of B if A is a central Galois algebra
with Galois group G| = G. For each g € G,let J;, = {b € B| bx = g(x)b for all x € B}
and Jj = {a€ A|ax = g(x)a for all x € A} for a subring A of B.

3. Central commutator Galois extensions. In this section, we shall give several
characterizations of a central commutator Galois extension in terms of Galois H-
separable extensions and Azumaya Galois extensions, respectively, and prove the
converse of a theorem for a Galois H-separable extension as given in [8]. We begin
with some properties of a commutator Galois extension.

LEMMA 3.1. If B is a commutator Galois extension of B®, then A is a Galois algebra
over CC.

PROOF. Since A is a Galois extension of A¢ with Galois group G|a = G, B and B€A
are also Galois extensions of B¢ with Galois group G and G|gc,. But B°A C B and
G = Glgey, 80 B = BCA. Thus, the center of A is C; and so A = B¢ nA = CC. O

LEMMA 3.2. IfB is a commutator Galois extension of B¢, then J; = Jﬁ foreachg € G.

PROOF. Since J;={beB|ba=g(a)bforallaecB} c{beB|ba=g(a)b forall
aeBC}=A, JgCJj.

Conversely, for any x € Jﬁ, xd =g(d)x for all d € A. Since A is a Galois extension
of A® with Galois group G|x = G, B = B¢A by the proof of Lemma 3.1. So for any
beB, b=3",b;d; for some b; € B®, d; € A and some integer m, we have that xb =
XY bidi = Yt bixd; = Y%, big(di)x = g(X% bidi)x = g(b)x. Thus, J§ C Jg;
and so J, = J5. O

THEOREM 3.3. The following are equivalent:
(1) B is a central commutator Galois extension of B®.
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(2) B is a commutator Galois extension of B¢ and JgJg-1=C foreach g € G.
(3) B is a Galois H-separable extension of B¢, B=BC¢A, and n~! € B.

PROOF. (1)=(2).Itis clear.

(2)=(1). By Lemma 3.1, A® = C, so A is a Galois algebra with Galois group G| = G.
By hypothesis, J;J,-1 = C for each g € G and by Lemma 3.2, J, = Jﬁ for each g € G,
so A is a central Galois algebra (see [5, Theorem 1]).

(1)=(3). Since A is a central Galois C“-algebra, we have B = B¢A, J, = J2 for each
g € G by Lemma 3.2 and Jﬁ]ﬁ,l = C (see [6, Lemma 2]). Hence J4J,-1 = C for each
g € G. But B is a Galois extension of B¢ with the same Galois system for A, so B is
a Galois H-separable extension of B¢ (see [8, Theorem 2(iii)=(i)]). Moreover, n! € B
(see [6, Corollary 3]), so (3) holds.

(3)=(1). Since B = B¢A, the group H = {g € G|g|a is an identity} = {1}. Thus, A is
a central Galois algebra over AC (see [8, Theorem 6, (3)(ii)=(iii)]) where A¢ = C% by
Lemma 3.1.

We remark that (1)=(3) in Theorem 3.3 is the converse of [8, Theorem 6]; that is, if
A is a central Galois algebra with Galois group G|a = G, then

(i) n! eB,
(ii) B = BCA,
(iii) B is a Galois H-separable extension of BC. 0O

In the next theorem, we give a characterization of a central commutator Galois ex-
tension in terms of Azumaya Galois extensions.

THEOREM 3.4. The following are equivalent:

(1) B is a central commutator Galois extension of B¢ and BC is a separable C¢ -algebra.
(2) B is an Azumaya Galois extension with Galois group G.

(3) B is a central commutator Galois extension and a separable extension of A.

PROOF. (1)=(2). Since B is a central commutator Galois extension, B is a Galois H-
separable extension of B¢ by Theorem 3.3(3). Thus, Vz(Vz(B®)) = B¢ (see [8, Propo-
sition 4(1)]). This implies that C ¢ B¢; and so C = C¢. Moreover, by Theorem 3.3(3)
again, B = B°A, so the center of B¢ is C¢, the center of B. Thus, B¢ is an Azumaya
CC-algebra. By noting that B is a Galois extension of B¢, (2) holds.

(2)=(1). It is a consequence of [1, Lemma 1].

(1)=(3). Since B is a separable extension of B¢ (for it is a Galois extension) and B¢
is a separable C¢-algebra, B is a separable C¢-algebra by the transitivity property of
separable extensions. Thus, B is a separable extension of A because C¢ C A C B.

(3)=(1). Since A is a Galois extension of A® with Galois group G|a = G, A is a sep-
arable extension of A®. By Lemma 3.1, A¢ = C¢ = C (for C is the center of A). By
hypothesis, B is a separable extension of A. Hence B is a separable extension of C,
that is, B is an Azumaya C-algebra. By Lemma 3.1 again, B = B¢A such that B¢ and A
are C-subalgebras of the Azumaya C-algebra B. Hence, they are Azumaya C-algebras
by the commutator theorem for Azumaya algebras (see [4, Theorem 4.3, page 57]).
Since A is a Galois extension of A¢ with Galois group G|s = G, B is a Galois extension
of B¢ which is an Azumaya C¢-algebra. This completes the proof. O



292 G. SZETO AND L. XUE

4. H-separable projective group rings. In[3], it was shown that B is a central Galois
algebra with an inner Galois group G if and only if B is an Azumaya projective group
algebra CC¢Gy over C¢ where C¢Gy = > ;. C°Uy such that {Uy, | g € G} are free over
CC, cUy=Uyc forall c € C¢ and g € G, and UyUy, = Ugn f(g,h), f: GXG — units of
C¢ is a factor set (see [3]). We shall generalize this fact to a central commutator Galois
extension with an inner Galois group.

THEOREM 4.1. B is a central commutator Galois extension of B¢ with an inner Galois
group G if and only if B = B® Gy which is an H-separable extension of B and n=! € B.

PROOF. (=) By Theorem 3.3 (1)=(3), B = B¢A which is a Galois H-separable exten-
sion of B¢ and n~! € B, so it suffices to show that B = B®Gy, a projective group ring
with coefficient ring BC. Since A is a central Galois C%-algebra, by [3, Theorem 2],
A = C%Gy, a projective group algebra over C¢ where f : G x G — units of CC is a factor
set such that f(g,h) = Uy UhUg}{ for all g,h € G. Noting that bU, = Uyb for all b € B¢
and g € G, we claim that {U, | g € G} are independent over B¢. Assume > ;e bgUy = 0
for some b, € B¢ and g € G. Since A is a Galois extension of A® with Galois group
G|a = G, there exists a G-Galois system {c;,d;, i = 1,2,...,m for some integer m} for
A such that 3.1 ¢;g(d;) = 61,4 for g € G. Hence

m
bi= > S149bUs= > > cig(di)byUg

geG geiGi=1
m m
= > > cibgg(di)Ug= > > cibgUyd; 4.1)
geiGi=1 geiGi=1
m
= ZCi< Z bgUg)di =0
i=1 geG

So ¥ ,ecbyUy = 0 for some b, € B¢ and g € G implies that b; = 0. Now for any
h € G, since Y ccbyUy = 0, 0 = X ecbgUgUp-1 = 3 yecbgf(g,h 1) Uyp-1. Thus,
bpf(h,h~!) =0, and so by, = 0. This proves that {Uy | g € G} are independent over B®.

(«) Since B¢G(= BC ®-c C¢Gy) is an H-separable extension of B¢ and B¢ is a
direct summand of B®Gy as a left B®-module, VBGGf(VBch(BG)) = BC. This implies
that the center of B®Gy is C¢. Moreover, G is inner induced by {U, | g € G}, so
Jg = C6U, for each g € G. But then C6Gy = @3 ;5 CCUy; = &Y 4c6Jg such that
JgJg-1 = (CCU,)(CCU,-1) = CC for all g € G. By hypothesis, n™! € C%, so C¢Gy
is a separable algebra over C¢. Thus, A(= C®Gy) is a central Galois algebra (see [5,
Theorem 1]) with an inner Galois group G induced by {Uy | g € G}. Thus, B is a central
commutator Galois extension of B¢ with an inner Galois group G.

By [7, Theorem 1.2], we derive a one-to-one correspondence between some sets of
separable subextensions in a central commutator Galois extension B of B®. Let & =
{d | 4 is a separable subextension of B containing B¢ which is a direct summand of
B as a bimodule} and J = {9 | 9 is a separable subalgebra of A over C%}. O

THEOREM 4.2. Let B be a central commutator Galois extension of BS. Then, there
exists a one-to-one correspondence between ¥ and J by A — Vg(A).
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PROOF. By Theorem 3.3(3), B is an H-separable extension of B¢, so the correspon-
dence holds by [7, Theorem 1.2]. O

We conclude this paper with two examples of Galois extension B to show that
(1) Bis a central commutator Galois extension but not an Azumaya Galois exten-
sion (see Theorem 3.4),
(2) B is a Galois H-separable extension but not a central commutator Galois ex-
tension (see Theorem 3.3).

EXAMPLE 4.3. Let A = Q[i,j, k] be the quaternion algebra over the rational field Q,
B = {(“01 Zi) a,a,as € A}, the ring of all 2-by-2 upper triangular matrices over A
and G = {1,9:,9;,9x} where g;(a) = iai"!, gj(a) = jaj~!, gk(a) = kak™! for all a in
A andg(ao1 Z;) = (g(gl) ggi;) for g € G. Then

(1) A¢ = Q.

(2) B¢ = {(qol Z;) ‘ql,qz,q3 € Q}, the ring of all 2-by-2 upper triangar matrices
over Q.

(3)A=Vs(B%) ={(49) |acAa}=a.

(4) A is a Galois extension of A¢ with Galois group G|, = G and a Galois system
(1,i,7,k;1/4,—i/4,—j/4,—k/4}.

(5) AS = Q is the center of A.

(6) By (4) and (5), B is a central commutator Galois extension of B¢.

(7) The center of B¢ is Q.

(8) B¢ is not a separable extension of its center Q, and so B¢ is not an Azumaya
algebra. In fact, suppose that B¢ is a separable extension of Q. Then, there exists a
separable idempotent

e= z aijki(eij ®exr), 4.2)
l<i<j<2
1<k<l<?

where e¢;; = (58) e = <° (1)), e = (8(1)), and q;jx € Q such that
Z dijkieijexs = Iz, (4.3)
l<i<j<2
1<k<l<?

the identity 2-by-2 matrix, and be = eb for all b € B¢. By e; e = ee 1, we have

> aulej®en)= > aijnle;j®en). (4.4)
1<j<2 l<i<j<2
1<k<l<?

Hence 2211 = 0 and q1jx2 = O for all j,k, that is, 1112 = q1122 = q1212 = q1222 = 0. By
eppe = eejn, we have
Z azii(ern®en) = Z aijn (eij®ern). (4.5)
1<k<l<2 l<i<j<2
Hence gzox; = 0 if (k, 1) # (1,2) and g;j11 = 0 if (i,7) # (1,2), that is, g2211 = 2202 = 0
and qi1111 = q2211 = 0. Therefore, e = gi211(e12 ®e11) +g2212 (€22 ® e12). Thus,
L= > Qijueijex = dizi1€12e11 +qz212€22€12 = 0. (4.6)

l<i<j<2
1<k<l<2
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This contradiction shows that B¢ is not a separable extension of Q.

EXAMPLE 4.4. Let B = Q[i, j,k] be the quaternion algebra over the rational field Q
and G = {1,g;} where g;(x) = ixi~! for all x in B. Then

(1) Bis a Galois extension of B¢ with Galois group G and a Galois system {1,1, j, k;1/4,
—i/4,-j/4,—k/4}.

(2) Since G is inner, B is an H-separable extension of BC.

(3) By (1) and (2), B is a Galois H-separable extension of BC.

(4) A = Vg(B%) = Q[i] is not a Galois extension of A¢ with Galois group Gl = G,
and so B is not a central commutator Galois extension of BC.
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