ON THE PROJECTIONS OF LAPLACIANS UNDER RIEMANNIAN SUBMERSIONS

HUILING LE

(Received 31 December 1998)

Abstract

We give a condition on Riemannian submersions from a Riemannian manifold M to a Riemannian manifold N which will ensure that it induces a differential operator on N from the Laplace-Beltrami operator on M. Equivalently, this condition ensures that a Riemannian submersion maps Brownian motion to a diffusion.

2000 Mathematics Subject Classification. Primary 58J65, 53C21.

1. Introduction. Suppose that M, N are, respectively, m - and n-dimensional Riemannian manifolds and that $m>n$. Both M and N will then carry Laplace-Beltrami operators \triangle_{M} and \triangle_{N}, respectively, determined by the Riemannian metrics.

Let the mapping $\pi: M \rightarrow N$ such that $\pi\left(\sigma_{m}\right)=\sigma_{n}$ be a Riemannian submersion. Normally, the Laplace-Beltrami operator \triangle_{M} will not induce a differential operator on N under the submersion π because \triangle_{M} may depend not only on $\pi\left(\sigma_{m}\right)$ but also on σ_{m}. Equivalently, a Brownian motion on M will not normally be mapped by π to a diffusion on N because it may happen that our prediction of $\sigma_{n}(t+u)(u>0)$ will be improved if we know where $\sigma_{m}(t)$ lies in $\pi^{-1}\left(\sigma_{n}(t)\right)$, and we can expect to get information about $\sigma_{n}(t)$ from the past history $\left\{\sigma_{n}(t-v): 0 \leq v<t\right\}$ of the submersed process. However, once we know that there is a differential operator \mathscr{L} on N that satisfies the relation

$$
\begin{equation*}
(\mathscr{L} \phi) \circ \pi=\triangle_{M}(\phi \circ \pi), \tag{1.1}
\end{equation*}
$$

we can find several equivalent expressions for \mathscr{L} in terms of the volume, the second fundamental form, and the mean curvature of the fibres, respectively, which will be listed here.
(a) If the fibres are compact, let $v\left(\sigma_{n}\right)$ be the ($m-n$)-dimensional volume of the fibre $\pi^{-1}\left(\sigma_{n}\right)$ and V the vector field $\operatorname{grad}(\log v)$. Carne's formula (cf. [3]) then tells us that

$$
\begin{equation*}
\mathscr{L} \phi=\triangle_{N} \phi+V \phi=\triangle_{N} \phi+\langle V, \operatorname{grad} \phi\rangle . \tag{1.2}
\end{equation*}
$$

(b) Recall that \triangle_{M} can be written in terms of any given orthonormal vector fields X_{1}, \ldots, X_{m} on M as

$$
\begin{equation*}
\triangle_{M}=\sum_{i=1}^{m}\left\{X_{i} X_{i}-\nabla_{X_{i}} X_{i}\right\}, \tag{1.3}
\end{equation*}
$$

the operator ∇ here being the Levi-Civita connection. Therefore, we choose Y_{1}, \ldots, Y_{n} to be orthonormal vector fields in a neighborhood of $\sigma_{n} \in N, X_{1}, \ldots, X_{n}$ the unique
horizontal lifts of Y_{1}, \ldots, Y_{n} to a neighborhood of $\sigma_{m} \in \pi^{-1}\left(\sigma_{n}\right)$ (so that X_{1}, \ldots, X_{n} are orthonormal vector fields on the π-related horizontal subspace of $\mathscr{T}(M))$ and then supplement the latter by $m-n$ orthonormal vertical vector fields X_{n+1}, \ldots, X_{m} in the same neighborhood. \triangle_{M} at σ_{m} can thus be written as

$$
\begin{equation*}
\triangle_{M}=\sum_{i=1}^{n}\left\{X_{i} X_{i}-\nabla_{X_{i}} X_{i}\right\}+\sum_{i=n+1}^{m}\left\{X_{i} X_{i}-\nabla_{X_{i}} X_{i}\right\} . \tag{1.4}
\end{equation*}
$$

However, for any smooth function $\phi: N \rightarrow \mathbb{R}$, the composed function $\phi \circ \pi: M \rightarrow \mathbb{R}$ will be constant along each fibre $\pi^{-1}\left(\sigma_{n}\right)$, and hence

$$
X_{i}(\phi \circ \pi)= \begin{cases}\left(Y_{i} \phi\right) \circ \pi, & 1 \leq i \leq n, \tag{1.5}\\ 0, & n+1 \leq i \leq m .\end{cases}
$$

And, on the other hand, $\nabla_{X_{i}} X_{i}$ is equal to the sum of the horizontal lift of $\nabla_{Y_{i}} Y_{i}$ and $V_{i}, 1 \leq i \leq n$, where each V_{i} is the vertical component of $\nabla_{X_{i}} X_{i}$. Thus

$$
\begin{align*}
\triangle_{M}(\phi \circ \pi)= & \left(\triangle_{N} \phi\right) \circ \pi \\
& -\sum_{i=n+1}^{m}\left\{\text { the } \pi \text {-related horizontal component of } \nabla_{X_{i}} X_{i}\right\}(\phi \circ \pi) . \tag{1.6}
\end{align*}
$$

The Hessian of a function ϕ is the symmetric $(0,2)$ tensor field defined by

$$
\begin{equation*}
\operatorname{Hess}(\phi)(X, Y)=X Y \phi-\left(\nabla_{X} Y\right) \phi, \tag{1.7}
\end{equation*}
$$

and the so-called shape tensor (or "second fundamental form" tensor) of each fibre $\pi^{-1}\left(\sigma_{n}\right)$ is the bilinear symmetric mapping Π from $\mathscr{X}\left(\pi^{-1}\left(\sigma_{n}\right)\right) \times \mathscr{X}\left(\pi^{-1}\left(\sigma_{n}\right)\right)$ to $\mathscr{X}\left(\pi^{-1}\left(\sigma_{n}\right)\right)^{\perp}$, where $\mathscr{X}\left(\pi^{-1}\left(\sigma_{n}\right)\right)$ denotes the set of all smooth vertical vector fields of M defined on $\pi^{-1}\left(\sigma_{n}\right)$, such that $\Pi\left(X_{1}, X_{2}\right)$ is the component of $\nabla_{X_{1}} X_{2}$ in $\mathscr{T}(M)$ normal to the fibre $\pi^{-1}\left(\sigma_{n}\right)$. It turns out that

$$
\begin{align*}
\operatorname{Hess}(\phi \circ \pi)\left(X_{i}, X_{i}\right) & =-\nabla_{X_{i}} X_{i}(\phi \circ \pi) \\
& =-\left\langle\Pi\left(X_{i}, X_{i}\right), \operatorname{grad}(\phi \circ \pi)\right\rangle, \quad n+1 \leq i \leq m, \tag{1.8}
\end{align*}
$$

and so an equivalent expression for \mathscr{L} is

$$
\begin{align*}
(\mathscr{L} \phi) \circ \pi & =\left(\triangle_{N} \phi\right) \circ \pi+\sum_{i=n+1}^{m} \operatorname{Hess}(\phi \circ \pi)\left(X_{i}, X_{i}\right) \\
& =\left(\triangle_{N} \phi\right) \circ \pi-\left\langle\sum_{i=n+1}^{m} \Pi\left(X_{i}, X_{i}\right), \operatorname{grad}(\phi \circ \pi)\right\rangle . \tag{1.9}
\end{align*}
$$

(c) Moreover, for any ($m-n$)-dimensional submanifold M_{0} of M, the mean curvature vector field $H_{M_{0}}$ of M_{0} at $p \in M_{0}$ is given by

$$
\begin{equation*}
H_{M_{0}}(p)=\frac{1}{m-n} \sum_{i=n+1}^{m} \Pi\left(E_{i}, E_{i}\right), \tag{1.10}
\end{equation*}
$$

where E_{n+1}, \ldots, E_{m} is any orthonormal basis for the tangent space $\mathscr{T}_{p}\left(M_{0}\right)$. It is easy to check that if x_{n+1}, \ldots, x_{m} is an adapted coordinate system for M_{0}, then

$$
\begin{equation*}
H_{M_{0}}=\frac{1}{m-n} \sum_{i, j=n+1}^{m} g_{M}^{i j} \Pi\left(\frac{\partial}{\partial x_{i}}, \frac{\partial}{\partial x_{j}}\right), \tag{1.11}
\end{equation*}
$$

and that if $\partial / \partial x_{1}, \ldots, \partial / \partial x_{n}$ are normal to M_{0}, then

$$
\begin{equation*}
\Pi\left(\frac{\partial}{\partial x_{i}}, \frac{\partial}{\partial x_{j}}\right)=\sum_{r=1}^{n}\left(\Gamma_{M}\right)_{i j}^{r} \frac{\partial}{\partial x_{r}}, \quad n+1 \leq i, j \leq m . \tag{1.12}
\end{equation*}
$$

It follows from (1.9) that

$$
\begin{equation*}
(\mathscr{L} \phi) \circ \pi=\left(\triangle_{N} \phi\right) \circ \pi-(m-n)\left\langle H_{\pi^{-1}}, \operatorname{grad}(\phi \circ \pi)\right\rangle, \tag{1.13}
\end{equation*}
$$

which gives another expression for \mathscr{L} when it exists.
So a problem rises here: what is the condition for such a differential operator \mathscr{L} to exist, that is, when does the submersion π map a Brownian motion on M to a diffusion on N ?

The above discussion shows that $\triangle_{M}(\phi \circ \pi)=(\mathscr{L} \phi) \circ \pi$ for some operator \mathscr{L} on N if and only if the traces of the second fundamental form for each fibre $\pi^{-1}\left(\sigma_{n}\right)$ are π-related on that fibre; or equivalently, if and only if the mean curvature vector fields $H_{\pi^{-1}}$ of each fibre $\pi^{-1}\left(\sigma_{n}\right)$ are π-related on that fibre, for evidently either of these is the necessary and sufficient condition that \triangle_{M} depends only on $\pi\left(\sigma_{m}\right)$, and not on σ_{m} itself.

We now discuss another condition in terms of the volume element of M for the existence of \mathscr{L}.

2. Some lemmas

Lemma 2.1. Let G_{M} and G_{N} be the matrices of the local components of the metric tensor fields on M and N with respect to local coordinates $x: \sigma_{m} \rightarrow\left(x_{1}, \ldots, x_{m}\right)$ on M and $y: \sigma_{n} \rightarrow\left(y_{1}, \ldots, y_{n}\right)$ on N, respectively, then

$$
\begin{equation*}
G_{N}^{-1} \circ \pi=J G_{M}^{-1} J^{t}, \tag{2.1}
\end{equation*}
$$

where J is the Jacobian matrix of the coordinate representation $y \circ \pi \circ x^{-1}$ of π with the (i, j) th entry

$$
\begin{equation*}
\frac{\partial\left(y_{i} \circ \pi\right)}{\partial x_{j}}=\frac{\partial\left(y_{i} \circ \pi \circ x^{-1}\right)}{\partial x_{j}} \circ x \tag{2.2}
\end{equation*}
$$

and J^{t} is its transpose.
For any given local coordinate y on N at σ_{n}, there exists a local coordinate x on M at $\sigma_{m} \in \pi^{-1}\left(\sigma_{n}\right)$ such that

$$
\begin{equation*}
y \circ \pi \circ x^{-1}:\left(x_{1}, \ldots, x_{m}\right)=\left(y_{1}, \ldots, y_{n}, z_{1}, \ldots, z_{m-n}\right) \rightarrow\left(y_{1}, \ldots, y_{n}\right) . \tag{2.3}
\end{equation*}
$$

This implies that π is locally a fibration, that is, there exist a neighborhood U_{n} of $\sigma_{n} \in N$, a neighborhood U_{m} of $\sigma_{m} \in \pi^{-1}\left(\sigma_{n}\right)$, and a manifold F such that $\pi^{-1}\left(U_{n}\right) \cap U_{m}$
is diffeomorphic to $U_{n} \times F$ and the diffeomorphism maps $\pi^{-1}\left(\sigma_{n}\right) \cap U_{m}$ to F, and that the π-related vertical subspace of $\mathscr{T}_{\sigma_{m}}(M)$ for $\sigma_{m} \in \pi^{-1}\left(\sigma_{n}\right)$ is spanned by $\partial / \partial x_{n+1}, \ldots, \partial / \partial x_{m}$. In general, however, $\partial / \partial x_{1}, \ldots, \partial / \partial x_{n}$ will not be horizontal to the π-related vertical subspace of $\mathscr{T}_{\sigma_{m}}(M)$.
π is called integrable if the horizontal distribution, which is the orthogonal complement of $\operatorname{Ker}(d \pi)$ in $\mathscr{T}(M)$, is integrable.

Lemma 2.2. π is integrable, if and only if there exist local coordinates x and y satisfying the condition (2.3) for M and N such that the π-related horizontal subspace of $\mathscr{T}_{\sigma_{m}}(M)$ is spanned by $\partial / \partial x_{1}, \ldots, \partial / \partial x_{n}$.

Proof. If π-related horizontal subspace of $\mathscr{T}_{\sigma_{m}}(M)$ is spanned by $\partial / \partial x_{1}, \ldots, \partial / \partial x_{n}$, then the horizontal distribution, by definition, is integrable.

If π is integrable, let X_{1}, \ldots, X_{n} be the horizontal lifts of $\partial / \partial y_{1}, \ldots, \partial / \partial y_{n}$. Then the system of n differential equations in m variables

$$
\begin{equation*}
X_{i} f=0, \quad 1 \leq i \leq n \tag{2.4}
\end{equation*}
$$

is complete. It follows that there are $m-n$ independent solutions x_{n+1}, \ldots, x_{m} of (2.4), such that general solution of (2.4) is an arbitrary function of x_{n+1}, \ldots, x_{m} (cf. [4]). Define $x_{i}=y_{i} \circ \pi$, for $1 \leq i \leq n$. Thus $x=\left(x_{1}, \ldots, x_{m}\right)$ is the coordinate we are looking for. In fact, for any given coordinate y in N we can always find a coordinate \tilde{x} in M such that (2.3) holds. Each X_{i} can then be formulated as

$$
\begin{equation*}
X_{i}=\frac{\partial}{\partial \tilde{x}_{i}}+\sum_{j=1}^{m-n} \alpha_{i j} \frac{\partial}{\partial \tilde{x}_{j+n}}, \tag{2.5}
\end{equation*}
$$

where

$$
\begin{equation*}
\left(\alpha_{i j}\right)=E^{-1} F, \tag{2.6}
\end{equation*}
$$

if the metric form of M with respect to \tilde{x} is

$$
\tilde{G}_{M}=\left(\begin{array}{cc}
E_{n \times n} & F \tag{2.7}\\
F^{t} & G
\end{array}\right)^{-1}
$$

Thus, the metric form of M with respect to x, by the fact that $X_{i} x_{j}=0$, for $1 \leq i \leq$ $n<j \leq m$, will be

$$
G_{M}=\left(\begin{array}{cc}
E & 0 \tag{2.8}\\
0 & H
\end{array}\right)^{-1}
$$

for some positive definite symmetric matrix H.

3. Main result

Proposition 3.1. If π is integrable, then there is an operator \mathscr{L} on N with

$$
\begin{equation*}
(\mathscr{L} \phi) \circ \pi=\triangle_{M}(\phi \circ \pi), \tag{3.1}
\end{equation*}
$$

if and only if the volume element $d \mu_{M}$ of M can be expressed as a product of two independent forms: one is a composed n-form on N with the submersion π defined by

$$
\begin{equation*}
\left\{e^{(1 / 2) \Phi} d \mu_{N}\right\} \circ \pi \tag{3.2}
\end{equation*}
$$

and the other is an $(m-n)$-form on the fibres $\pi^{-1}\left(\sigma_{n}\right)$, the local expression of which is denoted by

$$
\begin{equation*}
\Psi^{*} d x_{n+1} \cdots d x_{m}, \tag{3.3}
\end{equation*}
$$

with the property that the latter will be independent of σ_{n} in a neighborhood of σ_{n}. And when this condition is satisfied,

$$
\begin{equation*}
\mathscr{L}=\triangle_{N}+\frac{1}{2} \operatorname{grad} \Phi . \tag{3.4}
\end{equation*}
$$

Proof. The local form of the Laplace-Beltrami operator, in terms of any given coordinate x on M, is

$$
\begin{equation*}
\triangle_{M}=\left(\operatorname{det} G_{M}\right)^{-1 / 2} \sum_{i, j=1}^{m} \frac{\partial}{\partial x_{i}}\left(g_{M}^{i j}\left(\operatorname{det} G_{M}\right)^{1 / 2} \frac{\partial}{\partial x_{j}}\right) \tag{3.5}
\end{equation*}
$$

Thus for the coordinates x and y as Lemma 2.2, we are able to obtain that, for any smooth function $\phi: N \rightarrow \mathbb{R}$,

$$
\begin{align*}
\triangle_{M}(\phi \circ \pi)= & \sum_{i, j=1}^{m}\left\{g_{M}^{i j} \frac{\partial^{2}}{\partial x_{i} \partial x_{j}}+\frac{\partial g_{M}^{i j}}{\partial x_{j}} \frac{\partial}{\partial x_{i}}+\frac{1}{2} g_{M}^{i j} \frac{\partial}{\partial x_{j}}\left(\log \left(\operatorname{det} G_{M}\right)\right) \frac{\partial}{\partial x_{i}}\right\}(\phi \circ \pi) \\
= & \sum_{i, j=1}^{m}\left\{g_{M}^{i j} \sum_{k, l=1}^{n} \frac{\partial\left(y_{k} \circ \pi\right)}{\partial x_{i}} \frac{\partial\left(y_{l} \circ \pi\right)}{\partial x_{j}}\left(\frac{\partial^{2} \phi}{\partial y_{k} \partial y_{l}} \circ \pi\right)\right. \\
& +g_{M}^{i j} \sum_{k=1}^{n} \frac{\partial^{2}\left(y_{k} \circ \pi\right)}{\partial x_{i} \partial x_{j}}\left(\frac{\partial \phi}{\partial y_{k}} \circ \pi\right)+\frac{\partial g_{M}^{i j}}{\partial x_{j}} \sum_{k=1}^{n} \frac{\partial\left(y_{k} \circ \pi\right)}{\partial x_{i}}\left(\frac{\partial \phi}{\partial y_{k}} \circ \pi\right) \\
& \left.+\frac{1}{2} g_{M}^{i j} \frac{\partial}{\partial x_{j}}\left(\log \left(\operatorname{det} G_{M}\right)\right) \sum_{k=1}^{n} \frac{\partial\left(y_{k} \circ \pi\right)}{\partial x_{i}}\left(\frac{\partial \phi}{\partial y_{k}} \circ \pi\right)\right\} \\
= & \sum_{k, l=1}^{n} g_{N}^{k l}\left\{\frac{\partial^{2} \phi}{\partial y_{k} \partial y_{l}}+\frac{1}{2} \frac{\partial}{\partial y_{k}}\left(\log \left(\operatorname{det} G_{N}\right)\right) \frac{\partial \phi}{\partial y_{l}}\right\} \circ \pi \\
+ & \sum_{i, j=1}^{m}\left\{\frac{1}{2} g_{M}^{i j} \frac{\partial}{\partial x_{j}}\left(\log \left(\frac{\operatorname{det} G_{M}}{\operatorname{det} G_{N} \circ \pi}\right)\right) \sum_{k=1}^{n} \frac{\partial\left(y_{k} \circ \pi\right)}{\partial x_{i}}\left(\frac{\partial \phi}{\partial y_{k}} \circ \pi\right)\right. \\
& \left.+\sum_{k=1}^{n} \frac{\partial}{\partial x_{j}}\left(g_{M}^{i j} \frac{\partial\left(y_{k} \circ \pi\right)}{\partial x_{i}}\right)\left(\frac{\partial \phi}{\partial y_{k}} \circ \pi\right)\right\} \\
= & \left(\triangle_{N} \phi\right) \circ \pi-\left\{\sum_{k, l=1}^{n} \frac{\partial g_{N}^{k l}}{\partial y_{l}} \frac{\partial \phi}{\partial y_{k}}\right\} \circ \pi \\
& +\sum_{i, j=1}^{m}\left\{\frac{1}{2} g_{M}^{i j} \frac{\partial}{\partial x_{j}}\left(\log \left(\frac{\operatorname{det} G_{M}}{\operatorname{det} G_{N} \circ \pi}\right)\right) \sum_{k=1}^{n} \frac{\partial\left(y_{k} \circ \pi\right)}{\partial x_{i}}\left(\frac{\partial \phi}{\partial y_{k}} \circ \pi\right)\right. \\
& \left.+\sum_{k=1}^{n} \frac{\partial}{\partial x_{j}}\left(g_{M}^{i j} \frac{\partial\left(y_{k} \circ \pi\right)}{\partial x_{i}}\right)\left(\frac{\partial \phi}{\partial y_{k}} \circ \pi\right)\right\} \\
= & \left(\triangle_{N} \phi\right) \circ \pi+\frac{1}{2} \sum_{j, k=1}^{n} g_{N}^{k j} \circ \pi \frac{\partial}{\partial x_{j}}\left(\log \left(\frac{\operatorname{det} G_{M}}{\operatorname{det} G_{N} \circ \pi}\right)\right)\left(\frac{\partial \phi}{\partial y_{k}} \circ \pi\right) . \tag{3.6}
\end{align*}
$$

Note that here $\partial / \partial x_{1}, \ldots, \partial / \partial x_{n}$ are the horizontal lifts of $\partial / \partial y_{1}, \ldots, \partial / \partial y_{n}$. We know from the assumption that

$$
\begin{equation*}
\sigma_{m} \rightarrow \pi \text {-related horizontal subspace of } \mathscr{T}_{\sigma_{m}}(M) \tag{3.7}
\end{equation*}
$$

is a distribution, and

$$
\begin{equation*}
\sum_{j=1}^{n} g_{N}^{i j} \circ \pi \frac{\partial}{\partial x_{j}}, \quad 1 \leq i \leq n, \tag{3.8}
\end{equation*}
$$

forms a basis for it. Following the same discussion as in the proof of Lemma 2.2, we know that any solution of the system of differential equations

$$
\begin{equation*}
\sum_{j=1}^{n} g_{N}^{i j} \frac{\partial f}{\partial x_{j}}=0, \quad 1 \leq i \leq n \tag{3.9}
\end{equation*}
$$

is a function of x_{n+1}, \ldots, x_{m}. On the other hand, we have by (1.2) that existence of \mathscr{L} on N if and only if there is a function Φ on N such that

$$
\begin{equation*}
\sum_{j=1}^{n} g_{N}^{i j} \circ \pi \frac{\partial}{\partial x_{j}}\left(\log \left(\frac{\operatorname{det} G_{M}}{\operatorname{det} G_{N} \circ \pi}\right)\right)=\left\{\sum_{j=1}^{n} g_{N}^{i j} \frac{\partial \Phi}{\partial y_{j}}\right\} \circ \pi, \quad 1 \leq i \leq n . \tag{3.10}
\end{equation*}
$$

Therefore, the existence of \mathscr{L} is equivalent to that there is a function Ψ of x_{n+1}, \ldots, x_{m} such that

$$
\begin{equation*}
\operatorname{det} G_{M}=e^{\Phi \circ \pi+\Psi\left(x_{n+1}, \ldots, x_{m}\right)} \operatorname{det} G_{N} \circ \pi . \tag{3.11}
\end{equation*}
$$

$e^{\Phi} \operatorname{det} G_{N}$ is clearly a function on N. If we define a function Ψ^{*} on a neighborhood of $\sigma_{m} \in \pi^{-1}\left(\sigma_{n}\right)$, as the restriction of the function $e^{(1 / 2) \Psi}$ on $\pi^{-1}\left(\sigma_{n}\right)$, then Ψ^{*} is independent on fibres in a neighborhood of $\sigma_{m} \in \pi^{-1}\left(\sigma_{n}\right)$, and $\operatorname{det} G_{M}$ is a product of a composed function on N with π and a function on the fibres of π.

The above discussion shows that the volume element $d \mu_{M}$ on M is here expressed as

$$
\begin{align*}
d \mu_{M}\left(\sigma_{m}\right)= & \sqrt{\operatorname{det} G_{M}}\left(\sigma_{m}\right) d x_{1} \cdots d x_{m}\left(\sigma_{m}\right) \\
= & \left(e^{(1 / 2) \Phi} \sqrt{\operatorname{det} G_{N}}\right) \circ \pi\left(\sigma_{m}\right) d y_{1} \cdots d y_{n}\left(\pi\left(\sigma_{m}\right)\right) \\
& \times \Psi^{*}\left(\sigma_{m}\right) d x_{n+1} \cdots d x_{m}\left(\sigma_{m}\right) \tag{3.12}\\
= & \left(e^{(1 / 2) \Phi} \sqrt{\operatorname{det} G_{N}}\right)\left(\sigma_{n}\right) d y_{1} \cdots d y_{n}\left(\sigma_{n}\right) \\
& \times \Psi^{*}\left(\sigma_{m}\right) d x_{n+1} \cdots d x_{m}\left(\sigma_{m}\right) .
\end{align*}
$$

Because π is a submersion, M is locally diffeomorphic to $N \times F$ for a ($m-n$)dimensional manifold F, and so the above condition is equivalent to that the volume element $d \mu_{M}$ can locally be expressed as a product of a composed n-form on N with the submersion π and an $(m-n)$-form on F.
4. Remarks. (a) We know from the proof of Proposition 3.1 that, for any general coordinates such that (2.3) holds,

$$
\begin{align*}
& \triangle_{M}(\phi \circ \pi) \\
& \qquad=\left(\triangle_{N} \phi\right) \circ \pi+\sum_{k=1}^{n}\left\{\frac{1}{2} \sum_{j=1}^{m} g_{M}^{k j} \frac{\partial}{\partial x_{j}}\left(\log \left(\frac{\operatorname{det} G_{M}}{\operatorname{det} G_{N} \circ \pi}\right)\right)+\sum_{j=n+1}^{m} \frac{\partial g_{M}^{k j}}{\partial x_{j}}\right\}\left(\frac{\partial \phi}{\partial y_{k}} \circ \pi\right) .
\end{align*}
$$

Compared with (1.6), we know that the k th $(1 \leq k \leq n)$ component of the vector

$$
\begin{equation*}
\sum_{i=n+1}^{m}\left\{\text { the } \pi \text {-related horizontal component of } \nabla_{X_{i}} X_{i}\right\} \tag{4.2}
\end{equation*}
$$

is

$$
\begin{equation*}
-\frac{1}{2} \sum_{j=1}^{m} g_{M}^{k j} \frac{\partial}{\partial x_{j}}\left(\log \left(\frac{\operatorname{det} G_{M}}{\operatorname{det} G_{N} \circ \pi}\right)\right)-\sum_{j=n+1}^{m} \frac{\partial g_{M}^{k j}}{\partial x_{j}} . \tag{4.3}
\end{equation*}
$$

And compared with (1.2), we find that there is a differential operator \mathscr{L} on N with $(\mathscr{L} \phi) \circ \pi=\triangle_{M}(\phi \circ \pi)$ if and only if, for any $1 \leq k \leq n$, (4.3) is a function of $\pi\left(\sigma_{m}\right)$, and

$$
\begin{equation*}
\frac{1}{2} \sum_{j=1}^{m} g_{M}^{k j} \frac{\partial}{\partial x_{j}}\left(\log \left(\frac{\operatorname{det} G_{M}}{\operatorname{det} G_{N} \circ \pi}\right)\right)+\sum_{j=n+1}^{m} \frac{\partial g_{M}^{k j}}{\partial x_{j}}=\left\{\sum_{j=1}^{n} g_{N}^{k j} \frac{\partial \log v}{\partial y_{j}}\right\} \circ \pi . \tag{4.4}
\end{equation*}
$$

Therefore, for $1 \leq k \leq n$,

$$
\begin{equation*}
\left\{\operatorname{grad}_{N}(\log v)\right\}_{k} \circ \pi=\frac{1}{2}\left\{\operatorname{grad}_{M} \log \frac{\operatorname{det} G_{M}}{\operatorname{det} G_{N}}\right\}_{k}+W_{k}, \tag{4.5}
\end{equation*}
$$

where

$$
\begin{equation*}
W_{k}=\sum_{j=n+1}^{m} \frac{\partial g_{m}^{k j}}{\partial x_{j}}, \tag{4.6}
\end{equation*}
$$

that is, the first n components of $\operatorname{grad}_{M}\{(1 / 2) \log$ (volume element of the fibre $\left.\left.\pi^{-1}\left(\sigma_{n}\right)\right)\right\}$ do not form a proper gradient of a function on N, which usually depend not only on $\pi\left(\sigma_{m}\right)$ but also on σ_{m}.

When

$$
\begin{equation*}
W_{k} \equiv 0, \quad 1 \leq k \leq n . \tag{4.7}
\end{equation*}
$$

Equation (4.4) can be rewritten as

$$
\begin{equation*}
\sum_{j=1}^{m} g_{M}^{k j} \frac{\partial}{\partial x_{j}}\left\{\log \left(\frac{\operatorname{det} G_{M}}{\left(v^{2} \operatorname{det} G_{N}\right) \circ \pi}\right)\right\}=0, \quad 1 \leq k \leq n, \tag{4.8}
\end{equation*}
$$

that is equivalent to

$$
\begin{equation*}
\left\langle d x_{k}, \sum_{j=1}^{m} \frac{\partial}{\partial x_{j}}\left\{\log \left(\frac{\operatorname{det} G_{M}}{\left(v^{2} \operatorname{det} G_{N}\right) \circ \pi}\right)\right\} d x_{j}\right\rangle=0, \quad 1 \leq k \leq n, \tag{4.9}
\end{equation*}
$$

that is,

$$
\begin{equation*}
\left\langle d x_{k}, d\left\{\log \left(\frac{\operatorname{det} G_{M}}{\left(v^{2} \operatorname{det} G_{N}\right) \circ \pi}\right)\right\}\right\rangle=0, \quad 1 \leq k \leq n, \tag{4.10}
\end{equation*}
$$

so that

$$
\begin{equation*}
d\left\{\log \left(\frac{\operatorname{det} G_{M}}{\left(v^{2} \operatorname{det} G_{N}\right) \circ \pi}\right)\right\} \tag{4.11}
\end{equation*}
$$

is orthogonal with all $d x_{k}$ for $1 \leq k \leq n$ in $\mathscr{T}^{*}(M)$.
(b) When the condition in Proposition 3.1 holds, the volume element of the fibre $\pi^{-1}\left(\sigma_{n}\right)$ is clearly

$$
\begin{equation*}
e^{(1 / 2) \Phi\left(\sigma_{n}\right)} \Psi^{*}\left(x_{n+1}, \ldots, x_{m}\right) d x_{n+1} \cdots d x_{m} \tag{4.12}
\end{equation*}
$$

and so if π is also a fibration with compact fibre F, the ($m-n$)-dimensional volume $v\left(\sigma_{n}\right)$ of the fibre $\pi^{-1}\left(\sigma_{n}\right)$ will then be equal to

$$
\begin{equation*}
v\left(\sigma_{n}\right)=e^{(1 / 2) \Phi\left(\sigma_{n}\right)} \int_{F} \Psi^{*}\left(x_{n+1}, \ldots, x_{m}\right) d x_{n+1} \cdots d x_{m}=\kappa e^{(1 / 2) \Phi\left(\sigma_{n}\right)} \tag{4.13}
\end{equation*}
$$

for some constant κ, which coincides with (1.2).
(c) The condition of integrability of π in Proposition 3.1 should be able to be weakened. We study the following two cases.
(i) For the submersion π with minimal fibres, in particular with totally geodesic fibres, it is known that $\mathscr{L}=\Delta_{N}$, which follows immediately from the fact that the term

$$
\begin{equation*}
\sum_{i=n+1}^{m}\left\{\text { the } \pi \text {-related horizontal component of } \nabla_{X_{i}} X_{i}\right\} \tag{4.14}
\end{equation*}
$$

in (1.6) vanishes by the definition of minimal submanifold.
On the other hand, when M is complete and π with totally geodesic fibres, we can also obtain from the fact that (M, N, π) is a fibre bundle with the Lie group of isometries of the fibre as structure group (cf. [5] and below) that

$$
\begin{equation*}
d \mu_{M}=d \mu_{N} \circ \pi \times \Psi^{*} d x_{n+1} \cdots d x_{m} \tag{4.15}
\end{equation*}
$$

for a suitable coordinate (x_{n+1}, \ldots, x_{m}) on fibres.
In the case that π is with minimal fibres, it follows from the fact that the structure group of the bundle (which is a priori the group of diffeomorphisms of the fibre F) reduces to the group of volume preserving diffeomorphisms of F (cf. [1]) that the volume element of M is of the expression (4.15).
(ii) The case that the submersion π is a quotient mapping with respect to a Lie group G of isometries acting properly and freely on M.

The fibre $\pi^{-1}\left(\sigma_{n}\right)$ here inherits a Riemannian structure from that of M, and the corresponding volume element $d \mu_{\pi^{-1}\left(\sigma_{n}\right)}$ of the fibre $\pi^{-1}\left(\sigma_{n}\right)$ is invariant under G by the transitive action of G of isometries on the fibres. Under the identification $\pi^{-1}\left(\sigma_{n}\right)=G$, the volume elements $d \mu_{\pi^{-1}\left(\sigma_{n}\right)}$ and $d g$, the unique left-invariant volume element up to constants of G, must, by the uniqueness, be proportional (cf. [2]). Hence there exists a function $e^{(1 / 2) \Phi}$ on N such that

$$
\begin{equation*}
d \mu_{\pi^{-1}\left(\sigma_{n}\right)}=e^{(1 / 2) \Phi\left(\sigma_{n}\right)} d g \tag{4.16}
\end{equation*}
$$

and so

$$
\begin{equation*}
d \mu_{M}=d g\left\{e^{(1 / 2) \Phi} d \mu_{N}\right\} \circ \pi \tag{4.17}
\end{equation*}
$$

which gives a form for the volume element on M coincident with our claim if we notice that here M is locally diffeomorphic to $N \times G$.

References

[1] L. Bérard-Bergery and J.-P. Bourguignon, Laplacians and Riemannian submersions with totally geodesic fibres, Illinois J. Math. 26 (1982), no. 2, 181-200. MR 84m:58153. Zbl 483.58021.
[2] W. M. Boothby, An Introduction to Differentiable Manifolds and Riemannian Geometry, 2nd ed., Pure and Applied Mathematics, vol. 120, Academic Press, Inc., Orlando, Fla., 1986. MR 87k:58001. Zbl 596.53001.
[3] T. K. Carne, The geometry of shape spaces, Proc. London Math. Soc. (3) 61 (1990), no. 2, 407-432. MR 92h:60016. Zbl 723.60014.
[4] G. F. D. Duff, Partial Differential Equations, Mathematical expositions, no. 9, University of Toronto Press, Toronto, 1956. MR 17,1210i. Zbl 071.30903.
[5] R. Hermann, A sufficient condition that a mapping of Riemannian manifolds be a fibre bundle, Proc. Amer. Math. Soc. 11 (1960), 236-242. MR 22\#3006. Zbl 112.13701.

Huiling Le: School of Mathematical Sciences, University of Nottingham, University
PARK, NotTINGHAM, NG7 2RD, UK
E-mail address: huiling.1e@nottingham.ac.uk

