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ON THE PROJECTIONS OF LAPLACIANS
UNDER RIEMANNIAN SUBMERSIONS

HUILING LE
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Abstract. We give a condition on Riemannian submersions from a Riemannian manifold
M to a Riemannian manifold N which will ensure that it induces a differential operator
on N from the Laplace-Beltrami operator on M . Equivalently, this condition ensures that a
Riemannian submersion maps Brownian motion to a diffusion.
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1. Introduction. Suppose that M , N are, respectively, m- and n-dimensional Rie-
mannian manifolds and that m > n. Both M and N will then carry Laplace-Beltrami
operators �M and �N , respectively, determined by the Riemannian metrics.
Let the mapping π : M → N such that π(σm) = σn be a Riemannian submersion.

Normally, the Laplace-Beltrami operator �M will not induce a differential operator
on N under the submersion π because �M may depend not only on π(σm) but also
on σm. Equivalently, a Brownian motion on M will not normally be mapped by π
to a diffusion on N because it may happen that our prediction of σn(t+u) (u > 0)
will be improved if we know where σm(t) lies in π−1(σn(t)), and we can expect to
get information about σn(t) from the past history {σn(t − v) : 0 ≤ v < t} of the
submersed process. However, once we know that there is a differential operator � on
N that satisfies the relation

(�φ)◦π =�M(φ◦π), (1.1)

we can find several equivalent expressions for � in terms of the volume, the second
fundamental form, and the mean curvature of the fibres, respectively, which will be
listed here.
(a) If the fibres are compact, let v(σn) be the (m−n)-dimensional volume of the

fibre π−1(σn) and V the vector field grad(logv). Carne’s formula (cf. [3]) then tells
us that

�φ=�Nφ+Vφ=�Nφ+〈V, gradφ〉. (1.2)

(b) Recall that �M can be written in terms of any given orthonormal vector fields
X1, . . . ,Xm on M as

�M =
m∑
i=1

{
XiXi−∇XiXi

}
, (1.3)

the operator ∇ here being the Levi-Civita connection. Therefore, we choose Y1, . . . ,Yn

to be orthonormal vector fields in a neighborhood of σn ∈ N , X1, . . . ,Xn the unique
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horizontal lifts of Y1, . . . ,Yn to a neighborhood of σm ∈ π−1(σn) (so that X1, . . . ,Xn

are orthonormal vector fields on the π -related horizontal subspace of �(M)) and
then supplement the latter by m−n orthonormal vertical vector fields Xn+1, . . . ,Xm

in the same neighborhood. �M at σm can thus be written as

�M =
n∑
i=1

{
XiXi−∇XiXi

}+ m∑
i=n+1

{
XiXi−∇XiXi

}
. (1.4)

However, for any smooth function φ : N → R, the composed function φ◦π : M → R
will be constant along each fibre π−1(σn), and hence

Xi(φ◦π)=


(
Yiφ

)◦π, 1≤ i≤n,

0, n+1≤ i≤m.
(1.5)

And, on the other hand, ∇XiXi is equal to the sum of the horizontal lift of ∇YiYi and
Vi, 1≤ i≤n, where each Vi is the vertical component of ∇XiXi. Thus

�M(φ◦π)= (�Nφ
)◦π

−
m∑

i=n+1

{
the π -related horizontal component of ∇XiXi

}
(φ◦π).

(1.6)

The Hessian of a function φ is the symmetric (0,2) tensor field defined by

Hess(φ)(X,Y)=XYφ−(∇XY
)
φ, (1.7)

and the so-called shape tensor (or “second fundamental form” tensor) of each fi-
bre π−1(σn) is the bilinear symmetric mapping Π from �(π−1(σn))×�(π−1(σn)) to
�(π−1(σn))⊥, where �(π−1(σn)) denotes the set of all smooth vertical vector fields
of M defined on π−1(σn), such that Π(X1,X2) is the component of ∇X1X2 in �(M)
normal to the fibre π−1(σn). It turns out that

Hess(φ◦π)
(
Xi,Xi

)=−∇XiXi(φ◦π)

=−〈Π(Xi,Xi
)
, grad(φ◦π)

〉
, n+1≤ i≤m,

(1.8)

and so an equivalent expression for � is

(�φ)◦π = (�Nφ
)◦π+ m∑

i=n+1
Hess(φ◦π)

(
Xi,Xi

)

= (�Nφ
)◦π−

〈 m∑
i=n+1

Π
(
Xi,Xi

)
, grad(φ◦π)

〉
.

(1.9)

(c) Moreover, for any (m−n)-dimensional submanifoldM0 ofM , themean curvature
vector field HM0 of M0 at p ∈M0 is given by

HM0(p)=
1

m−n

m∑
i=n+1

Π
(
Ei,Ei

)
, (1.10)
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where En+1, . . . ,Em is any orthonormal basis for the tangent space �p(M0). It is easy
to check that if xn+1, . . . ,xm is an adapted coordinate system for M0, then

HM0 =
1

m−n

m∑
i,j=n+1

gij
MΠ

(
∂
∂xi

,
∂

∂xj

)
, (1.11)

and that if ∂/∂x1, . . . ,∂/∂xn are normal to M0, then

Π
(

∂
∂xi

,
∂

∂xj

)
=

n∑
r=1

(
ΓM
)r
ij

∂
∂xr

, n+1≤ i, j ≤m. (1.12)

It follows from (1.9) that

(�φ)◦π = (�Nφ
)◦π−(m−n)

〈
Hπ−1 , grad(φ◦π)

〉
, (1.13)

which gives another expression for � when it exists.
So a problem rises here: what is the condition for such a differential operator � to

exist, that is, when does the submersionπ map a Brownian motion onM to a diffusion
on N?
The above discussion shows that �M(φ◦π)= (�φ)◦π for some operator � on N

if and only if the traces of the second fundamental form for each fibre π−1(σn) are
π -related on that fibre; or equivalently, if and only if the mean curvature vector fields
Hπ−1 of each fibre π−1(σn) are π -related on that fibre, for evidently either of these is
the necessary and sufficient condition that �M depends only on π(σm), and not on
σm itself.
We now discuss another condition in terms of the volume element of M for the

existence of �.

2. Some lemmas

Lemma 2.1. Let GM and GN be the matrices of the local components of the metric
tensor fields on M and N with respect to local coordinates x : σm → (x1, . . . ,xm) on M
and y : σn→ (y1, . . . ,yn) on N , respectively, then

G−1N ◦π = JG−1M Jt, (2.1)

where J is the Jacobian matrix of the coordinate representation y ◦π ◦x−1 of π with
the (i,j)th entry

∂
(
yi ◦π

)
∂xj

= ∂
(
yi ◦π ◦x−1

)
∂xj

◦x, (2.2)

and Jt is its transpose.

For any given local coordinate y on N at σn, there exists a local coordinate x on M
at σm ∈π−1(σn) such that

y ◦π ◦x−1 : (x1, . . . ,xm
)= (y1, . . . ,yn,z1, . . . ,zm−n

)
�→ (

y1, . . . ,yn
)
. (2.3)

This implies that π is locally a fibration, that is, there exist a neighborhood Un of
σn∈N , a neighborhoodUm ofσm∈π−1(σn), and amanifold F such thatπ−1(Un)

⋂
Um
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is diffeomorphic to Un × F and the diffeomorphism maps π−1(σn)
⋂
Um to F , and

that the π -related vertical subspace of �σm(M) for σm ∈ π−1(σn) is spanned by
∂/∂xn+1, . . . ,∂/∂xm. In general, however, ∂/∂x1, . . . ,∂/∂xn will not be horizontal to
the π -related vertical subspace of �σm(M).

π is called integrable if the horizontal distribution, which is the orthogonal com-
plement of Ker(dπ) in �(M), is integrable.

Lemma 2.2. π is integrable, if and only if there exist local coordinates x and y
satisfying the condition (2.3) for M and N such that the π -related horizontal subspace
of �σm(M) is spanned by ∂/∂x1, . . . ,∂/∂xn.

Proof. Ifπ -related horizontal subspace of �σm(M) is spanned by ∂/∂x1, . . . ,∂/∂xn,
then the horizontal distribution, by definition, is integrable.
If π is integrable, let X1, . . . ,Xn be the horizontal lifts of ∂/∂y1, . . . ,∂/∂yn. Then the

system of n differential equations in m variables

Xif = 0, 1≤ i≤n, (2.4)

is complete. It follows that there are m−n independent solutions xn+1, . . . ,xm of
(2.4), such that general solution of (2.4) is an arbitrary function of xn+1, . . . ,xm (cf. [4]).
Define xi =yi◦π , for 1≤ i≤n. Thus x = (x1, . . . ,xm) is the coordinate we are looking
for. In fact, for any given coordinate y in N we can always find a coordinate x̃ in M
such that (2.3) holds. Each Xi can then be formulated as

Xi = ∂
∂x̃i

+
m−n∑
j=1

αij
∂

∂x̃j+n
, (2.5)

where (
αij

)= E−1F, (2.6)

if the metric form of M with respect to x̃ is

G̃M =
(
En×n F
Ft G

)−1
. (2.7)

Thus, the metric form of M with respect to x, by the fact that Xixj = 0, for 1 ≤ i ≤
n< j ≤m, will be

GM =
(
E 0
0 H

)−1
, (2.8)

for some positive definite symmetric matrix H.

3. Main result

Proposition 3.1. If π is integrable, then there is an operator � on N with

(�φ)◦π =�M(φ◦π), (3.1)

if and only if the volume element dµM of M can be expressed as a product of two
independent forms: one is a composed n-form on N with the submersion π defined by

{
e(1/2)ΦdµN

}◦π, (3.2)
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and the other is an (m−n)-form on the fibres π−1(σn), the local expression of which
is denoted by

Ψ∗dxn+1 ···dxm, (3.3)

with the property that the latter will be independent of σn in a neighborhood of σn.
And when this condition is satisfied,

�=�N+ 1
2
gradΦ. (3.4)

Proof. The local form of the Laplace-Beltrami operator, in terms of any given
coordinate x on M , is

�M =
(
detGM

)−1/2 m∑
i,j=1

∂
∂xi

(
gij
M
(
detGM

)1/2 ∂
∂xj

)
. (3.5)

Thus for the coordinates x and y as Lemma 2.2, we are able to obtain that, for any
smooth function φ :N →R,

�M(φ◦π)=
m∑

i,j=1

{
gij
M

∂2

∂xi∂xj
+ ∂gij

M
∂xj

∂
∂xi

+ 1
2
gij
M

∂
∂xj

(
log

(
detGM

)) ∂
∂xi

}
(φ◦π)

=
m∑

i,j=1


gij

M

n∑
k,l=1

∂
(
yk ◦π

)
∂xi

∂
(
yl ◦π

)
∂xj

(
∂2φ

∂yk∂yl
◦π

)

+gij
M

n∑
k=1

∂2
(
yk ◦π

)
∂xi∂xj

(
∂φ
∂yk

◦π
)
+ ∂gij

M
∂xj

n∑
k=1

∂
(
yk ◦π

)
∂xi

(
∂φ
∂yk

◦π
)

+ 1
2
gij
M

∂
∂xj

(
log

(
detGM

)) n∑
k=1

∂
(
yk ◦π

)
∂xi

(
∂φ
∂yk

◦π
)


=
n∑

k,l=1
gkl
N

{
∂2φ

∂yk∂yl
+ 1
2

∂
∂yk

(
log

(
detGN

)) ∂φ
∂yl

}
◦π

+
m∑

i,j=1

{
1
2
gij
M

∂
∂xj

(
log

(
detGM

detGN ◦π
)) n∑

k=1

∂
(
yk ◦π

)
∂xi

(
∂φ
∂yk

◦π
)

+
n∑

k=1

∂
∂xj

(
gij
M
∂
(
yk ◦π

)
∂xi

)(
∂φ
∂yk

◦π
)}

= (�Nφ
)◦π−




n∑
k,l=1

∂gkl
N

∂yl

∂φ
∂yk


◦π

+
m∑

i,j=1


12gij

M
∂

∂xj

(
log

(
detGM

detGN ◦π
)) n∑

k=1

∂
(
yk ◦π

)
∂xi

(
∂φ
∂yk

◦π
)

+
n∑

k=1

∂
∂xj

(
gij
M
∂
(
yk ◦π

)
∂xi

)(
∂φ
∂yk

◦π
)


= (�Nφ
)◦π+ 1

2

n∑
j,k=1

gkj
N ◦π

∂
∂xj

(
log

(
detGM

detGN ◦π
))(

∂φ
∂yk

◦π
)
.

(3.6)
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Note that here ∂/∂x1, . . . ,∂/∂xn are the horizontal lifts of ∂/∂y1, . . . ,∂/∂yn. We know
from the assumption that

σm �→π -related horizontal subspace of �σm(M) (3.7)

is a distribution, and
n∑

j=1
gij
N ◦π

∂
∂xj

, 1≤ i≤n, (3.8)

forms a basis for it. Following the same discussion as in the proof of Lemma 2.2, we
know that any solution of the system of differential equations

n∑
j=1

gij
N

∂f
∂xj

= 0, 1≤ i≤n, (3.9)

is a function of xn+1, . . . ,xm. On the other hand, we have by (1.2) that existence of �

on N if and only if there is a function Φ on N such that

n∑
j=1

gij
N ◦π

∂
∂xj

(
log

(
detGM

detGN ◦π
))
=



n∑
j=1

gij
N

∂Φ
∂yj


◦π, 1≤ i≤n. (3.10)

Therefore, the existence of � is equivalent to that there is a function Ψ of xn+1, . . . ,xm

such that

detGM = eΦ◦π+Ψ(xn+1,...,xm)detGN ◦π. (3.11)

eΦdetGN is clearly a function on N . If we define a function Ψ∗ on a neighborhood
of σm ∈ π−1(σn), as the restriction of the function e(1/2)Ψ on π−1(σn), then Ψ∗ is
independent on fibres in a neighborhood of σm ∈ π−1(σn), and detGM is a product
of a composed function on N with π and a function on the fibres of π .
The above discussion shows that the volume element dµM onM is here expressed as

dµM
(
σm

)= √detGM
(
σm

)
dx1 ···dxm

(
σm

)
=
(
e(1/2)Φ

√
detGN

)
◦π(σm

)
dy1 ···dyn

(
π
(
σm

))
×Ψ∗(σm

)
dxn+1 ···dxm

(
σm

)
=
(
e(1/2)Φ

√
detGN

)(
σn
)
dy1 ···dyn

(
σn
)

×Ψ∗(σm
)
dxn+1 ···dxm

(
σm

)
.

(3.12)

Because π is a submersion, M is locally diffeomorphic to N × F for a (m−n)-
dimensional manifold F , and so the above condition is equivalent to that the volume
element dµM can locally be expressed as a product of a composed n-form on N with
the submersion π and an (m−n)-form on F .
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4. Remarks. (a) We know from the proof of Proposition 3.1 that, for any general
coordinates such that (2.3) holds,

�M(φ◦π)

= (�Nφ
)◦π+ n∑

k=1

{
1
2

m∑
j=1

gkj
M

∂
∂xj

(
log

(
detGM

detGN ◦π
))
+

m∑
j=n+1

∂gkj
M

∂xj

}(
∂φ
∂yk

◦π
)
.

(4.1)

Compared with (1.6), we know that the kth (1≤ k≤n) component of the vector

m∑
i=n+1

{
the π -related horizontal component of ∇XiXi

}
(4.2)

is

−1
2

m∑
j=1

gkj
M

∂
∂xj

(
log

(
detGM

detGN ◦π
))
−

m∑
j=n+1

∂gkj
M

∂xj
. (4.3)

And compared with (1.2), we find that there is a differential operator � on N with
(�φ)◦π =�M(φ◦π) if and only if, for any 1≤ k≤n, (4.3) is a function ofπ(σm), and

1
2

m∑
j=1

gkj
M

∂
∂xj

(
log

(
detGM

detGN ◦π
))
+

m∑
j=n+1

∂gkj
M

∂xj
=
{ n∑

j=1
gkj
N
∂ logv
∂yj

}
◦π. (4.4)

Therefore, for 1≤ k≤n,

{
gradN(logv)

}
k ◦π =

1
2

{
gradM log

detGM

detGN

}
k
+Wk, (4.5)

where

Wk =
m∑

j=n+1

∂gkj
m

∂xj
, (4.6)

that is, the first n components of gradM{(1/2) log(volume element of the fibre
π−1(σn))} do not form a proper gradient of a function on N , which usually depend
not only on π(σm) but also on σm.
When

Wk ≡ 0, 1≤ k≤n. (4.7)

Equation (4.4) can be rewritten as

m∑
j=1

gkj
M

∂
∂xj

{
log

(
detGM

(v2 detGN)◦π
)}
= 0, 1≤ k≤n, (4.8)

that is equivalent to

〈
dxk,

m∑
j=1

∂
∂xj

{
log

(
detGM(

v2 detGN
)◦π

)}
dxj

〉
= 0, 1≤ k≤n, (4.9)

that is, 〈
dxk,d

{
log

(
detGM(

v2 detGN
)◦π

)}〉
= 0, 1≤ k≤n, (4.10)
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so that

d
{
log

(
detGM(

v2 detGN
)◦π

)}
(4.11)

is orthogonal with all dxk for 1≤ k≤n in �∗(M).
(b) When the condition in Proposition 3.1 holds, the volume element of the fibre

π−1(σn) is clearly

e(1/2)Φ(σn)Ψ∗
(
xn+1, . . . ,xm

)
dxn+1 ···dxm; (4.12)

and so if π is also a fibration with compact fibre F , the (m−n)-dimensional volume
v(σn) of the fibre π−1(σn) will then be equal to

v
(
σn
)= e(1/2)Φ(σn)

∫
F
Ψ∗
(
xn+1, . . . ,xm

)
dxn+1 ···dxm = κe(1/2)Φ(σn), (4.13)

for some constant κ, which coincides with (1.2).
(c) The condition of integrability of π in Proposition 3.1 should be able to be weak-

ened. We study the following two cases.
(i) For the submersion π with minimal fibres, in particular with totally geo-

desic fibres, it is known that � = �N, which follows immediately from the fact that
the term

m∑
i=n+1

{
the π -related horizontal component of ∇XiXi

}
(4.14)

in (1.6) vanishes by the definition of minimal submanifold.
On the other hand, when M is complete and π with totally geodesic fibres, we

can also obtain from the fact that (M,N,π) is a fibre bundle with the Lie group of
isometries of the fibre as structure group (cf. [5] and below) that

dµM = dµN ◦π×Ψ∗dxn+1 ···dxm, (4.15)

for a suitable coordinate (xn+1, . . . ,xm) on fibres.
In the case that π is with minimal fibres, it follows from the fact that the structure

group of the bundle (which is a priori the group of diffeomorphisms of the fibre F )
reduces to the group of volume preserving diffeomorphisms of F (cf. [1]) that the
volume element of M is of the expression (4.15).

(ii) The case that the submersion π is a quotient mapping with respect to a Lie
group G of isometries acting properly and freely on M .
The fibreπ−1(σn) here inherits a Riemannian structure from that ofM , and the cor-

responding volume element dµπ−1(σn) of the fibreπ
−1(σn) is invariant underG by the

transitive action ofG of isometries on the fibres. Under the identificationπ−1(σn)=G,
the volume elements dµπ−1(σn) and dg, the unique left-invariant volume element up
to constants ofG, must, by the uniqueness, be proportional (cf. [2]). Hence there exists
a function e(1/2)Φ on N such that

dµπ−1(σn) = e(1/2)Φ(σn)dg, (4.16)

and so
dµM = dg

{
e(1/2)ΦdµN

}◦π, (4.17)

which gives a form for the volume element onM coincident with our claim if we notice
that here M is locally diffeomorphic to N×G.
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