FINITE-RANK INTERMEDIATE HANKEL OPERATORS ON THE BERGMAN SPACE

TAKAHIKO NAKAZI and TOMOKO OSAWA

(Received 11 January 1998)

ABSTRACT. Let $L^2 = L^2(D, r \, dr \, d\theta/\pi)$ be the Lebesgue space on the open unit disc and let $L^2_a = L^2 \cap \mathscr{H}ol(D)$ be the Bergman space. Let *P* be the orthogonal projection of L^2 onto L^2_a and let *Q* be the orthogonal projection onto $\tilde{L}^2_{a,0} = \{g \in L^2; \ \tilde{g} \in L^2_a, \ g(0) = 0\}$. Then $I - P \ge Q$. The big Hankel operator and the small Hankel operator on L^2_a are defined as: for ϕ in L^∞ , $H^{\text{big}}_{\phi}(f) = (I - P)(\phi f)$ and $H^{\text{small}}_{\phi}(f) = Q(\phi f)(f \in L^2_a)$. In this paper, the finite-rank intermediate Hankel operators between H^{big}_{ϕ} and H^{small}_{ϕ} are studied. We are working on the more general space, that is, the weighted Bergman space.

2000 Mathematics Subject Classification. Primary 47B35.

1. Introduction. Let *D* be the open unit disc in \mathbb{C} and let $d\mu$ be the finite positive Borel measure on *D*. Let $L^2 = L^2(\mu) = L^2(D, d\mu)$ and $\mathcal{H}ol(D)$ be the set of all holomorphic functions on *D*. The weighted Bergman space $L_a^2 = L_a^2(\mu)$ is the intersection of L^2 and $\mathcal{H}ol(D)$. In general, L_a^2 is not closed. In [6, Theorem 8], when $(\operatorname{supp}\mu) \cap D$ is a uniqueness set for $\mathcal{H}ol(D)$, the first author and M. Yamada gave a necessary and sufficient condition for that L_a^2 is closed. Throughout this paper, we assume that L_a^2 is closed. When $d\mu = r dr d\theta/\pi$, L_a^2 is the usual Bergman space.

For μ such that $L_a^2(\mu)$ is closed, when \mathcal{M} is the closed subspace of $L^2(\mu)$ and $z\mathcal{M} \subseteq \mathcal{M}$, \mathcal{M} is called an invariant subspace. Suppose that $\mathcal{M} \supseteq zL_a^2$. $P^{\mathcal{M}}$ denotes the orthogonal projection from L^2 onto \mathcal{M} . For ϕ in $L^{\infty} = L^{\infty}(\mu) = L^{\infty}(D, d\mu)$, the intermediate Hankel operator $H_{\phi}^{\mathcal{M}}$ is defined by

$$H^{\mathcal{M}}_{\phi}f = (I - P^{\mathcal{M}})(\phi f) \quad (f \in L^2_a).$$

$$\tag{1.1}$$

When $\mathcal{M} = L_a^2$, $H_{\phi}^{\mathcal{M}}$ is called a big Hankel operator H_{ϕ}^{big} and when $\mathcal{M} = (\bar{z}\bar{L}_a^2)^{\perp}$, $H_{\phi}^{\mathcal{M}}$ is called a small Hankel operator H_{ϕ}^{small} . Note that $H_{\phi}^{\mathcal{M}}$ is called a little Hankel operator when $\mathcal{M} = (\bar{L}_a^2)^{\perp}$.

For arbitrary symbol ϕ in L^{∞} , in the case of $d\mu = r dr d\theta/\pi$, both H_{ϕ}^{big} and H_{ϕ}^{small} were studied when they are compact operators or Schatten class operators (see [12]). However it seems to have not been studied when they are finite-rank operators. When $\bar{\phi}$ is in L_a^2 , it is known (see [12, page 155]) that if H_{ϕ}^{big} is a finite-rank operator, then $H_{\phi}^{\text{big}} = 0$ and if $\bar{\phi}$ is a polynomial, then H_{ϕ}^{small} is a finite-rank operator. In this paper, for arbitrary symbol ϕ in L^{∞} we show that if H_{ϕ}^{big} is a finite-rank operator, then $H_{\phi}^{\text{big}} = 0$, and we study when H_{ϕ}^{small} is a finite-rank operator. In fact, we study such problems for the intermediate Hankel operators H_{ϕ}^{μ} on the weighted Bergman space $L_a^2(\mu)$. In [2, 7, 9, 10], intermediate Hankel operators were studied in special weights, $d\mu = (\alpha+1)(1-r^2)^{\alpha}r dr d\theta/\pi$ for $-1 < \alpha < \infty$. In particular, Strouse [9] studied finite-rank intermediate Hankel operators.

Let $d\mu = d\sigma(r) d\theta$ be a Borel measure on *D*, where $d\sigma(r)$ is a positive measure on [0,1) with $d\sigma([0,1)) = 1/2\pi$ and $d\theta$ is the Lebesgue measure on ∂D . $L^2_a(\mu)$ is closed if $d\sigma([t,1)) > 0$ for any t > 0 (see [6]). For this type measures, it is possible to study more precisely the intermediate Hankel operators. In fact, L^2 has the following orthogonal decomposition:

$$L^{2} = \sum_{j=-\infty}^{\infty} \oplus \mathcal{L}^{2} e^{ij\theta}, \qquad (1.2)$$

where $\mathcal{L}^2 = L^2(d\sigma) = L^2([0,1), d\sigma)$. Set

$$\mathbf{H}^2 = \sum_{j=0}^{\infty} \oplus \mathcal{L}^2 e^{ij\theta},\tag{1.3}$$

then $L_a^2 \subset \mathbf{H}^2 \subset (\bar{z}\bar{L}_a^2)^{\perp}$ and $L^2 = \mathbf{H}^2 \oplus e^{-i\theta}\bar{\mathbf{H}}^2$. If $\mathcal{M} = \mathbf{H}^2$, it is easy comparatively to determine finite-rank Hankel operators $H_{\phi}^{\mathcal{M}}$ and we can do it completely in Section 5. We can expect that $H_{\phi}^{\mathcal{M}}$ is close to H_{ϕ}^{big} in case $\mathcal{M} \subseteq \mathbf{H}^2$ (see Section 5) and $H_{\phi}^{\mathcal{M}}$ is close to H_{ϕ}^{small} in case $\mathcal{M} \supseteq \mathbf{H}^2$ (see Section 6).

In Section 2, we describe an invariant subspace in L_a^2 whose codimension is of finite. Moreover we show that there does not exist an invariant subspace which contains L_a^2 properly and in which L_a^2 is of finite codimension. We also give a lot of examples of invariant subspaces which contain L_a^2 and in which Hankel operators are studied in this paper. In Section 3, we describe finite-rank intermediate Hankel operators for arbitrary measure μ such that $L^2_a(\mu)$ is closed. Moreover, we show that there does not exist any nonzero finite-rank Hankel operators $H^{
m big}_{\phi}$ and there exists a nonzero finite-rank Hankel operator H_{ϕ}^{small} . In fact, we give two necessary and sufficient conditions for that if $H_{\phi}^{\mathcal{M}}$ is of finite rank $\leq \ell$, then $H_{\phi}^{\mathcal{M}} = 0$. In Sections 3, 4, and 5, we use the Fourier coefficients $\{\mathcal{M}_j\}_{j=-\infty}^{\infty}$ of \mathcal{M} and so we assume $d\mu = d\sigma(r) d\theta$. Using the Fourier coefficients of ϕ and \mathcal{M} , we give a necessary and sufficient condition for that $H^{\mathbb{M}}_{\phi}$ is of finite rank $\leq \ell$. Assuming that ϕ is a harmonic function, we can get a better necessary and sufficient condition. When $\mathcal{M} \subseteq \mathbf{H}^2$, using the Fourier coefficients $\{\mathcal{M}_j\}_{j=-\infty}^{\infty}$, we give a necessary condition and a sufficient condition for that if $H_{\phi}^{\mathbb{M}}$ is of finite rank $\leq \ell$, then $H_{\phi}^{\mathcal{M}} = 0$. Two conditions are very similar but are a little different. Applications are given to examples in Section 2.

2. Invariant subspaces. In this section, we assume that $d\mu = d\sigma(r) d\theta$ and $d\sigma([t,1)) > 0$ for any t > 0, except Propositions 2.1 and 2.2. For our purpose, the invariant subspace \mathcal{M} must contain zL_a^2 but ker $H_{\phi}^{\mathcal{M}}$ is an invariant subspace in L_a^2 . If $H_{\phi}^{\mathcal{M}}$ is of finite rank, then the codimension of ker $H_{\phi}^{\mathcal{M}}$ in L_a^2 is finite. In order to study finite-rank intermediate Hankel operators, we need the generalization of a result of Axler and Bourdon [1] which determines finite codimensional invariant subspaces in L_a^2 when $d\mu = r dr d\theta/\pi$. In Propositions 2.1 and 2.2, the measure μ is an arbitrary finite positive Borel measure such that L_a^2 is closed and $(\operatorname{supp} \mu) \cap D$ is a uniqueness set for $\mathcal{H}o(D)$. Since $\mathbf{H}^2 \cap L^{\infty}$ is an extended weak-* Dirichlet algebra in L^{∞} ,

Proposition 2.3 is a corollary of [4, Theorem 1]. We will give several examples of invariant subspaces which contain zL_a^2 .

PROPOSITION 2.1. Suppose \mathcal{M} is an invariant subspace in L_a^2 and ℓ is a positive integer. The codimension of \mathcal{M} in L_a^2 is ℓ , if and only if $\mathcal{M} = qL_a^2$, where $q = \prod_{j=1}^{\ell} (z-a_j)$ and $a_j \in D$ $(1 \le j \le \ell)$.

PROOF. The proof is almost parallel to that in [1, Theorem 1]. We will give a sketch of it. Suppose $\mathcal{M}^{\perp} = L^2_a \ominus \mathcal{M}$ and dim $\mathcal{M}^{\perp} = \ell$. Put

$$S_z f = P(zf) \quad (f \in \mathcal{M}^\perp), \tag{2.1}$$

where *P* is an orthogonal projection. Since $\ell < \infty$, there exists an analytic polynomial *b* such that $b(S_z) = S_{b(z)} = 0$ and the degree of *b* is less than or equal to ℓ . Hence $b\mathcal{M}^{\perp} \subseteq \mathcal{M}$ and so $bL_a^2 \subseteq \mathcal{M}$. We show that the zeros of *b* are only in *D* and the degree of $b = \ell$. Then $\mathcal{M} = bL_a^2$. It is clear that the degree of $b = \ell$. In this direction, we did not need the condition such that $(\operatorname{supp} \mu) \cap D$ is a uniqueness set.

If $a \notin D$, $(z-a)L_a^2$ is dense in L_a^2 . Assuming $a \ge 1$ and so a = 1 without a loss of generality, if $\varepsilon > 0$, then $(z-1)L_a^2 = (z-1)\{z-(1+\varepsilon)\}^{-1}L_a^2$. For any $f \in L_a^2$, it is easy to see that

$$\int_{D} \left| \frac{z-1}{z-(1+\varepsilon)} f - f \right|^{2} d\mu \longrightarrow 0 \quad (\varepsilon \longrightarrow 0).$$
(2.2)

This implies that $(z-1)L_a^2$ is dense in L_a^2 . Thus all zeros of *b* must be in *D*. The "if" part is clear because any point $a \in D$ gives a bounded evaluation functional. Here we used the condition such that $(\text{supp } \mu) \cap D$ is a uniqueness set (see [6, (1) of Theorem 8]).

PROPOSITION 2.2. Suppose that $(z-a)^{-1}$ does not belong to L^2 for each $a \in D$. If \mathcal{M} is an invariant subspace which contains L_a^2 properly, then the codimension of L_a^2 in \mathcal{M} is infinite.

PROOF. If dim $\mathcal{M} \ominus L_a^2 = \ell < \infty$, by the proof of Proposition 2.1, there exists a polynomial $b = \prod_{j=1}^{\ell} (z - a_j)$ such that $b\mathcal{M} \subseteq L_a^2$ and $a_j \in D$ $(1 \le j \le \ell)$. Hence there exists a function ϕ in \mathcal{M} such that $\phi \notin L_a^2$ and $g = b\phi \in L_a^2$. If $g(a_k) \ne 0$ for some k, then $g/(z - a_k) = \phi \prod_{j \ne k} (z - a_j)$ cannot belong to L^2 because $(z - a_k)^{-1} \notin L^2$. Hence $g(a_j) = 0$ for any j. By [6, the proof in (1) of Theorem 8], $g \in bL_a^2$ and so $\phi = g/b$ belongs to L_a^2 . This contradiction implies that dim $\mathcal{M} \ominus L_a^2 = \infty$.

For an invariant subspace \mathcal{M} , set

$$\mathcal{M}_{j} = \left\{ f_{j} \in \mathcal{L}^{2}; \ f \in \mathcal{M}, \ f(z) = \sum_{j=-\infty}^{\infty} f_{j}(r) e^{ij\theta} \right\}.$$
(2.3)

Then \mathcal{M}_j is a subspace in \mathscr{L}^2 , $\mathcal{rM}_j \subseteq \mathcal{M}_{j+1}$ and hence $\dim \mathcal{M}_{j+1} \ge \dim \mathcal{M}_j$. We call $\{\mathcal{M}_j\}_{j=-\infty}^{\infty}$ the Fourier coefficients of \mathcal{M} . $\mathcal{M}_j e^{ij\theta}$ may not belong to \mathcal{M} . If $\mathcal{M}_j e^{ij\theta}$ belongs to \mathcal{M} for any j, then \mathcal{M} has the following decomposition:

$$\mathcal{M} = \sum_{j=-\infty}^{\infty} \oplus \mathcal{M}_j e^{ij\theta}.$$
 (2.4)

This decomposition is called the Fourier decomposition of \mathcal{M} . In general, \mathcal{M} does not have the Fourier decomposition but we can get an extension $\tilde{\mathcal{M}}$ of \mathcal{M} which has the following Fourier decomposition:

$$\tilde{\mathcal{M}} = \sum_{j=-\infty}^{\infty} \oplus (\text{closure of } \mathcal{M}_j) e^{ij\theta}.$$
(2.5)

PROPOSITION 2.3. If \mathcal{M} is an invariant subspace which contains L^2_a and $e^{i\theta}\mathcal{M} \subseteq \mathcal{M}$, then $\mathcal{M} = \chi_E \bar{q} \mathbf{H}^2 \oplus \chi_{E^c} L^2$, where χ_E is a characteristic function in \mathcal{L}^2 and q is a unimodular function in \mathbf{H}^2 . Hence $\mathcal{M} \supseteq \mathbf{H}^2$. If $\bigcap_{j=0}^{\infty} e^{ij\theta}\mathcal{M} = \{0\}$, then $\mathcal{M} = \bar{q}\mathbf{H}^2$.

PROOF. Suppose $S_0 = \mathcal{M} \ominus e^{i\theta}\mathcal{M}$, then $\mathcal{M} = (\sum_{j=0}^{\infty} \oplus S_0 e^{ij\theta}) \oplus \mathcal{M}_{-\infty}$, where $\mathcal{M}_{-\infty} = \bigcap_{j=0}^{\infty} e^{ij\theta}\mathcal{M}$, and $rS_0 \subset S_0$ because $r\mathcal{M}_j \subseteq \mathcal{M}_{j+1}$. It is well known that $\mathcal{M}_{-\infty} = \chi_G L^2$ for a characteristic function χ_F of some measurable subset in *D*. Put $E = G^c$ then there exists a function *f* in S_0 such that

$$|f| > 0 \quad \text{on } E \qquad \text{and} \qquad f = 0 \quad \text{on } F. \tag{2.6}$$

Since *f* is orthogonal to $fe^{ij\theta}$ for all $j \ge 0$. $|f|^2$ belongs to $\mathcal{L}^1 = L^1(d\sigma) = L^1([0,1), d\sigma)$ and so |f| belongs to \mathcal{L}^2 . Hence χ_E belongs to \mathcal{L}^2 . Set

$$F(re^{i\theta}) = \begin{cases} \frac{f(re^{i\theta})}{|f(re^{i\theta})|} & \text{if } f \neq 0, \\ 1 & \text{if } f = 0, \end{cases}$$
(2.7)

then *F* is a unimodular function in L^2 . Since $rS_0 \subseteq S_0$, we can show that $\chi_E F$ belongs to S_0 and so $S_0 = \chi_E F \mathscr{L}^2$. Hence $\mathscr{M} \ominus \mathscr{M}_{\infty} = \chi_E F \mathbf{H}^2$. Since $1 \in \mathscr{M}, \chi_E \bar{F} \in \mathbf{H}^2$ and $q = \bar{F} \in \mathbf{H}^2$,

EXAMPLE 2.4. (i) For $0 < \beta < 1$, put

$$T_{\beta} = \overline{\operatorname{span}} \{ z^n \bar{z}^m; \ \beta n \ge m \ge 0 \}.$$
(2.8)

Then T_{β} is an invariant subspace and $T_{\beta} \supseteq L_a^2$. Put $T_{\beta} = L_a^2$ for $\beta = 0$ and $T_{\beta} = \mathbf{H}^2$ for $\beta = 1$. In general, $L_a^2 \subseteq T_{\beta} \subseteq \mathbf{H}^2$ and T_{β} ($0 \le \beta < 1$) has the following Fourier decomposition:

$$T_{\beta} = \sum_{j=0}^{\infty} \oplus (T_{\beta})_j e^{ij\theta}, \qquad (2.9)$$

where $(T_{\beta})_j = \overline{\text{span}}\{r^j p_j(r^2); p_j \text{ is a polynomial of degree at most } \beta j/(1 - \beta)\}$. Janson and Rochberg [2] studied $H_{\phi}^{\mathcal{M}}$ when $\mathcal{M} = (\bar{T}_{\beta})^{\perp}$. Then $(\bar{T}_{\beta})^{\perp} = e^{i\theta}\mathbf{H}^2 \oplus \sum_{j=0}^{\infty} \oplus \{\mathscr{L}^2 \ominus (\bar{T}_{\beta})_j\}e^{-ij\theta}$.

(ii) For $k \ge 0$, put $E^k = \overline{\text{span}}\{z^m \bar{z}^n; m = 0, 1, \dots, k; n = m, m+1, \dots\}$. \bar{E}^k is an invariant subspace and $L^2_a \subseteq \bar{E}^k \subseteq \mathbf{H}^2$. \bar{E}^k has the following Fourier decomposition:

$$\bar{E}^k = \sum_{j=0}^{\infty} \oplus (\bar{E}^k)_j e^{ij\theta}, \qquad (2.10)$$

where $(\bar{E}^k)_j = \operatorname{span}\{r^j, \dots, r^{j+2k}\}$. Strouse [9] studied $H_{\phi}^{\mathcal{M}}$ when $\mathcal{M} = (E^k)^{\perp}$. Then $(E^k)^{\perp} = e^{i\theta}\mathbf{H}^2 \oplus \sum_{j=0}^{\infty} \oplus \{\mathcal{L}^2 \oplus (E^k)_j\}e^{-ij\theta}$.

(iii) Fix a polynomial *p* of degree *k*, that is, $p = \sum_{j=0}^{k} a_j z^j$. Put

$$Y(p) = \overline{\operatorname{span}}\{z^n, z^m \bar{p}; n \ge 0, m \ge 0\},$$

$$Y^k = \overline{\operatorname{span}}\{z^\ell \bar{z}^j; \ell \ge 0, 0 \le j \le k\}.$$
(2.11)

Both Y(p) and Y^k are invariant subspaces and $L^2_a \subseteq Y(p) \subseteq Y^k$, and Y^k has the following Fourier decomposition:

$$Y^{k} = \sum_{j=-k}^{\infty} \oplus (Y^{k})_{j} e^{ij\theta}, \qquad (2.12)$$

where $Y_0^k = \text{span}\{1, r^2, ..., r^{2k}\}$ and $(Y^k)_j = r^j(Y_0^k)$ for $j \ge 0$, and $(Y^k)_{-j} = \text{span}\{r^{2\ell-j}; j \le \ell \le k\}$ for $1 \le j \le k$. $(Y(p))_j \subseteq (Y^k)_j$ for any j but Y(p) does not have a Fourier decomposition. If $a_j \ne 0$ for $1 \le j \le k$, $(Y(p))_j = (Y^k)_j$ for any j and so $\tilde{Y}(p) = Y^k$. Peng, Rochberg, and Wu [7] and Wang and Wu [10] studied $H_{\phi}^{\mathcal{M}}$ when $\mathcal{M} = (\bar{Y}^k)^{\perp}$. In general, we can define Y(g) for any function g in L^2 . Usually, Y(g) does not have the Fourier decomposition.

(iv) For a unimodular function q in \mathbf{H}^2 , put $\mathcal{M} = \bar{q}\mathbf{H}^2$. Then \mathcal{M} is an invariant subspace which contains \mathbf{H}^2 . In general, $\bar{q}\mathbf{H}^2$ may not have the Fourier decomposition but for $q = e^{i\ell\theta}$, for some $\ell \ge 0$,

$$\mathcal{M} = \sum_{j=-\ell}^{\infty} \oplus \mathcal{L}^2 e^{ij\theta}.$$
 (2.13)

There are a lot of invariant subspaces between \mathbf{H}^2 and $e^{-i\ell\theta}\mathbf{H}^2$ even if $\ell = 1$.

(v) For arbitrary closed subspaces S in \mathcal{L}^2 , put $\mathcal{M} = \mathbf{H}^2 \oplus Se^{-i\theta}$. Then \mathcal{M} is an invariant subspace between \mathbf{H}^2 and $e^{-i\theta}\mathbf{H}^2$.

3. Kronecker's theorem. In this section, the measure μ is an arbitrary finite positive Borel measure such that L_a^2 is closed. We will write

$$\mathcal{M}^{\infty} = \mathcal{M} \cap L^{\infty} \tag{3.1}$$

and, for each positive integer ℓ ,

$$\mathcal{M}^{\infty,\ell} = \left\{ \phi \in L^{\infty}; \ \phi(z) = g(z) \prod_{j=1}^{\ell} (z - a_j)^{-1} \text{ a.e. } \mu \text{ on } D, g \in \mathcal{M}^{\infty} \text{ and } a_1, \dots, a_{\ell} \in D \right\}.$$
(3.2)

Then $\mathcal{M}^{\infty} \subseteq \mathcal{M}^{\infty,1} \subseteq \mathcal{M}^{\infty,2} \subseteq \cdots$.

Kronecker (cf. [11, page 210]) described finite-rank Hankel operators on the Hardy space. Theorem 3.1 describes finite-rank intermediate Hankel operators on the (weighted) Bergman space. However the situation is very different from that of Kronecker because $M^{\infty} = M^{\infty, \ell}$ may happen for some $\ell > 0$. See Corollaries 3.3 and 3.4.

THEOREM 3.1. Suppose \mathcal{M} is an invariant subspace which contains zL_a^2 , and ϕ is a function in L^{∞} . $H_{\phi}^{\mathcal{M}}$ is of finite rank $\leq \ell$ if and only if ϕ belongs to $\mathcal{M}^{\infty,\ell}$.

PROOF. Note that $\ker H^{\mathcal{M}}_{\phi} = \{f \in L^2_a; \phi f \in \mathcal{M}\}$. Since \mathcal{M} is an invariant subspace, $\ker H^{\mathcal{M}}_{\phi}$ is also an invariant subspace. Proposition 2.1 implies the theorem.

THEOREM 3.2. Suppose \mathcal{M} is an invariant subspace which contains L_a^2 , and ϕ is a function in L^{∞} . Then the following are equivalent:

(1) If $H^{\mathcal{M}}_{\phi}$ is of finite rank, then $H^{\mathcal{M}}_{\phi} = 0$.

(2) $\mathcal{M}^{\infty} = \mathcal{M}^{\infty,\ell}$ for any $\ell > 0$.

(3) If $g \in \mathcal{M}^{\infty}$, $a \in D$ and $(g(z) - g(a))/(z - a) \in L^{\infty}$, then (g(z) - g(a))/(z - a) belongs to \mathcal{M}^{∞} .

(4) If \mathcal{M}' is an invariant subspace and $(\mathcal{M}')^{\infty} \supseteq \mathcal{M}^{\infty}$, then there does not exist a nonzero polynomial *b* such that $b(\mathcal{M}')^{\infty} \subseteq \mathcal{M}^{\infty}$.

PROOF. By Theorem 3.1, $(1) \Leftrightarrow (2)$ is clear.

(1) \Rightarrow (3). If there exists $g \in \mathcal{M}^{\infty}$ such that $(g - g(a))/(z - a) \in L^{\infty}$ does not belong to \mathcal{M}^{∞} , put $\phi = (g - g(a))/(z - a)$, then $H^{\mathcal{M}}_{\phi}$ is of rank 1 and $H^{\mathcal{M}}_{\phi} \neq 0$.

 $(3)\Rightarrow(4)$. If (4) is not true, there exists ψ such that $\psi \notin \mathcal{M}^{\infty}$, $\psi \in (\mathcal{M}')^{\infty}$ and $b\psi \in \mathcal{M}^{\infty}$ for some polynomial: $b = \prod_{j=1}^{\ell} (z - a_j)$ and $a_j \in D(1 \le j \le \ell < \infty)$. We may assume that $\phi = \psi \prod_{j=1}^{\ell-1} (z - a_j) \notin \mathcal{M}^{\infty}$ and $g = (z - a_\ell)\phi \in \mathcal{M}^{\infty}$. Then

$$\frac{g - g(a_{\ell})}{z - a_{\ell}} = \phi \in L^{\infty}, \quad \phi \notin \mathcal{M}^{\infty}.$$
(3.3)

 $(4)\Rightarrow(1)$. By Theorem 3.1, if $H^{\mathcal{M}}_{\phi}$ is of finite rank $\leq \ell$, then $\phi \in \mathcal{M}^{\infty,\ell}$. If $\phi \notin \mathcal{M}^{\infty}$, suppose \mathcal{M}' is an invariant subspace generated by ϕ and \mathcal{M} , then $(\mathcal{M}')^{\infty} \supseteq \mathcal{M}^{\infty}$ but there does not exist a nonzero polynomial b such that $b(\mathcal{M}')^{\infty} \subseteq \mathcal{M}^{\infty}$. Since $\phi \in \mathcal{M}'$, this contradicts that $\phi \in \mathcal{M}^{\infty,\ell}$.

COROLLARY 3.3. Suppose $(\text{supp }\mu) \cap D$ is a uniqueness set for $\mathcal{H}ol(D)$. If H_{ϕ}^{big} is of finite rank, then $H_{\phi}^{\text{big}} = 0$.

PROOF. Theorem 3.2(3) implies the corollary. In fact, if $g \in L_a^2 \cap L^{\infty}$, then $g(z) - g(a) \in (z-a)L_a^2$ by [6, the proof in (1) of Theorem 5.4]. Thus (g(z) - g(a))/(z-a) belongs to $L_a^2 \cap L^{\infty}$.

COROLLARY 3.4. Suppose $d\mu = r \, dr \, d\theta / \pi$. Let D_0 be an open subset of D and $\mathcal{M} = \{f \in L^2; f \text{ is analytic on } D_0\}$. Then \mathcal{M} is an invariant subspace and if $H_{\phi}^{\mathcal{M}}$ is of finite rank then $H_{\phi}^{\mathcal{M}} = 0$.

PROOF. It is easy to see that \mathcal{M}^{∞} satisfies Theorem 3.2(3).

COROLLARY 3.5. Suppose that if $H_{\phi}^{\mathbb{M}}$ is of finite rank then $H_{\phi}^{\mathbb{M}} = 0$. If \mathcal{M}' is an invariant subspace which contains \mathcal{M} properly, then the codimension of \mathcal{M} in \mathcal{M}' is infinite or $(\mathcal{M}')^{\infty} = \mathcal{M}^{\infty}$.

PROOF. If dim $\mathcal{M}'/\mathcal{M} < \infty$, as in the proof of Proposition 2.2, then there exists a nonzero polynomial *b* such that $b\mathcal{M}' \subseteq \mathcal{M}$. Hence $b(\mathcal{M}')^{\infty} \subseteq \mathcal{M}^{\infty}$. If $(\mathcal{M}') \neq \mathcal{M}^{\infty}$, by Theorem 3.2, this contradicts that if $H_{\phi}^{\mathcal{M}}$ is of finite rank, then $H_{\phi}^{\mathcal{M}} = 0$.

4. General case. In this section, we assume that $d\mu = d\sigma(r) d\theta$ and $d\sigma([t,1)) > 0$ for any t > 0. Hence we can define the Fourier coefficients $\{\mathcal{M}_j\}_{j=-\infty}^{\infty}$ of \mathcal{M} . We assume $\mathcal{M} = \tilde{\mathcal{M}}$, that is, \mathcal{M} has the Fourier decomposition.

THEOREM 4.1. Suppose \mathcal{M} is an invariant subspace which contains zL_a^2 and $\phi = \sum_{j=-\infty}^{\infty} \phi_j(r)e^{ij\theta}$ is a function in L^{∞} . Then $H_{\phi}^{\mathcal{M}}$ is of finite rank $\leq \ell$ if and only if there exist complex numbers b_0, \ldots, b_ℓ such that $b_\ell = 1$ and, for any integer n,

$$\sum_{j=0}^{\ell} b_j r^j \phi_{n-j}(r) \in \mathcal{M}_n.$$
(4.1)

If ℓ is the minimum number of complex numbers b_1, \dots, b_ℓ such that $\sum_{j=0}^{\ell} b_j r^j \phi_{n-j}(r) \in \mathcal{M}_n$ for all n, then $H_{\phi}^{\mathcal{M}}$ is of rank ℓ .

PROOF. If $H_{\phi}^{\mathcal{M}}$ is of rank $\leq \ell$, by Theorem 3.1 there exists a polynomial $b = \sum_{j=0}^{\ell} b_j z^j$ such that $b\phi \in \mathcal{M}$. Then

$$\left(\sum_{j=-\infty}^{\infty}\phi_{j}(r)e^{ij\theta}\right)\left(\sum_{j=0}^{\ell}b_{j}r^{j}e^{ij\theta}\right) = \sum_{n=-\infty}^{\infty}\left(\sum_{j=0}^{\ell}\phi_{n-j}(r)b_{j}r^{j}\right)e^{in\theta}$$
(4.2)

and so $\sum_{j=0}^{\ell} b_j r^j \phi_{n-j}(r) \in \mathcal{M}_n$ for any *n*. The converse and the second statement are clear by Theorem 3.2.

COROLLARY 4.2. Let $\phi = \phi_t(r)e^{it\theta}$ for some integer t in Theorem 4.1. Then $H_{\phi}^{\mathbb{M}}$ is of finite rank $\leq \ell$ if and only if there exist complex numbers b_0, \ldots, b_ℓ such that $b_\ell = 1$ and for $t \leq n \leq \ell + t$, $b_{n-t}r^{n-t}\phi_t(r) \in \mathcal{M}_n$.

PROOF. Since $\phi_j(r) = 0$ for $j \neq t$, if n < t or $n > \ell + t$, then $\sum_{j=0}^{\ell} b_j r^j \phi_{n-j}(r) = 0$. For $t \le n \le \ell + t$, $\sum_{j=0}^{\ell} b_j r^j \phi_{n-j}(r) = b_{n-t} r^{n-t} \phi_t(r)$, thus the corollary follows. \Box

COROLLARY 4.3. Let $\phi = \sum_{j=1}^{\infty} a_j z^j + \sum_{j=0}^{\infty} a_{-j} \bar{z}^j$ in Theorem 4.1. Then $H_{\phi}^{\mathbb{M}}$ is of rank $\leq \ell$ if and only if there exist complex numbers b_0, \ldots, b_ℓ such that $b_\ell = 1$ and for any nonpositive integer $n \sum_{j=0}^{\ell} b_j a_{n-j} r^{2j-n} \in \mathcal{M}_n$ and, for $0 < n < \ell$, $\sum_{j=n}^{\ell} b_j a_{n-j} r^{2j-n} \in \mathcal{M}_n$.

PROOF. If $n \ge \ell$ and $n \ne 0$, then

$$\sum_{j=0}^{\ell} b_j r^j \phi_{n-j}(r) = \sum_{j=0}^{\ell} b_j a_{n-j} r^{j+n-j} = \left(\sum_{j=0}^{\ell} b_j a_{n-j}\right) r^n$$
(4.3)

and hence $\sum_{j=0}^{\ell} b_j r^j \phi_{n-j}(r) \in \mathcal{M}_n$ because $zL_a^2 \subseteq \mathcal{M}$. Now Theorem 4.1 implies the corollary.

Theorem 4.1 does not give an exact relation between the rank of $H_{\phi}^{\mathcal{M}}$ and the number ℓ of complex numbers b_0, \ldots, b_{ℓ} such that $b_{\ell} = 1$. However, we can show the following: if $H_{\phi}^{\mathcal{M}}$ is of rank ℓ , then there exist complex numbers b_0, \ldots, b_{ℓ} such that $b_{\ell} = 1$, $\sum_{j=0}^{\ell} b_j r^j \phi_{n-j}(r) \in \mathcal{M}_n$ for any n and $b = \sum_{j=0}^{\ell} b_j z^j$ has just ℓ zeros in D. That is, if $\ell = 1$, then $|b_0| < 1$.

By Theorem 4.1, $H_{\phi}^{\mathbb{M}} = 0$ if and only if $\phi_n \in \mathcal{M}_n$ for any n (i.e., $\phi \in \mathcal{M}$). Moreover, $H_{\phi}^{\mathbb{M}}$ is of rank ≤ 1 if and only if there exist complex numbers $(b_0, b_1) \neq (0, 0)$ such that $b_1 = 1$ and $b_0\phi_n + b_1r\phi_{n-1} \in \mathcal{M}_n$ for any n.

5. Big Hankel operator and $\mathcal{M} \subseteq H^2$. In this section, we assume that $d\mu = d\sigma(r) d\theta$ and $d\sigma([t,1)) > 0$ for any t > 0. Hence we can define the Fourier coefficients $\{\mathcal{M}_j\}_{j=-k}^{\infty}$ of \mathcal{M} and we assume $\mathcal{M} = \tilde{\mathcal{M}}$. In this case, $H_{\phi}^{\mathcal{M}}$ is close to H_{ϕ}^{big} . Recall examples in Section 2, that is, $T_{\mathcal{B}}$, \tilde{E}^k , Y(p), and Y^k .

COROLLARY 5.1. Suppose \mathcal{M} is an invariant subspace between zL_a^2 and \mathbf{H}^2 , and $\phi = \sum_{j=1}^{\infty} a_j z^j + \sum_{j=0}^{\infty} a_{-j} \bar{z}^j$. Then $H_{\phi}^{\mathcal{M}}$ is of finite rank $\leq \ell$ if and only if $a_{-n} = 0$ for $n > \ell$ and there exists complex numbers b_0, \ldots, b_ℓ such that $b_\ell = 1$ and $\sum_{j=n}^{\ell} b_j a_{n-j} r^{2j-n} \in \mathcal{M}_n$ for $0 \leq n \leq \ell$ and $\sum_{j=0}^{\ell} b_j a_{n-j} r^{2j-n} = 0$ for $-\ell < n < 0$.

PROOF. Since $\mathcal{M} \subseteq \mathbf{H}^2$, by Corollary 4.3 $H_{\phi}^{\mathcal{M}}$ is of finite rank $\leq \ell$ if and only if there exist complex numbers b_0, \ldots, b_ℓ such that $b_\ell = 1$ and $\sum_{j=0}^{\ell} b_j a_{n-j} r^{2j-n} = 0$ for n < 0 and $\sum_{j=n}^{\ell} b_j a_{n-j} r^{2j-n} \in \mathcal{M}_n$ for $0 \leq n \leq \ell$. If $\sum_{j=0}^{\ell} b_j a_{n-j} r^{2j-n} = 0$ for n < 0, then $b_j a_{n-j} = 0$ for $0 \leq j \leq \ell$ and n < 0. Hence for each j $(0 \leq j \leq \ell)$, $b_j a_{-t} = 0$ if t > j.

PROPOSITION 5.2. Suppose \mathcal{M} is an invariant subspace between zL_a^2 and $e^{-ik\theta}\mathbf{H}^2$ where $k \ge 0$, and $\phi = \sum_{j=0}^{\infty} \phi_{-j}(r)e^{-ij\theta}$ is a function in L^{∞} . Then $H_{\phi}^{\mathcal{M}}$ is of finite rank $\le \ell$ if and only if

$$\phi(z) = \frac{\sum_{j=-k}^{\ell} \psi_j(r) e^{ij\theta}}{\sum_{j=0}^{\ell} b_j r^j e^{ij\theta}},$$
(5.1)

where $\psi_n = \sum_{j=0}^{\ell} b_j r^j \phi_{n-j} \in \mathcal{M}_n$, for $-k \le n \le \ell$, and $(b_0, \dots, b_{\ell}) \in \mathbb{C}^{\ell}$.

PROOF. Note that $\mathcal{M} \subseteq e^{-ik\theta}\mathbf{H}^2$ and $\phi_j(r) = 0$ for j > 0. If $H_{\phi}^{\mathcal{M}}$ is of finite rank $\leq \ell$, then, by Theorem 4.1,

$$\left(\sum_{j=0}^{\ell} b_j r^j e^{ij\theta}\right) \left(\sum_{j=0}^{\infty} \phi_{-j}(r) e^{-ij\theta}\right) = \sum_{n=-k}^{\ell} \psi_n(r) e^{in\theta}$$
(5.2)

and $\psi_n = \sum_{j=0}^{\ell} b_j r^j \phi_{n-j} \in \mathcal{M}_n$ for $-k \leq n \leq \ell$. The converse is also a result of Theorem 3.1.

COROLLARY 5.3. Suppose \mathcal{M} is an invariant subspace in Proposition 5.2. If $\phi = \phi_+ + \phi_- = \sum_{j=1}^{\infty} a_j z^j + \sum_{j=0}^{\infty} a_{-j} \bar{z}^j$ and $\phi_- \in L^{\infty}$, then $H^{\mathcal{M}}_{\phi}$ is of finite rank $\leq \ell$ if and only if

$$\phi(z) = \phi_+ + \frac{\sum_{j=-k}^{\ell} \psi_j(r) e^{ij\theta}}{\sum_{j=0}^{\ell} b_j r^j e^{ij\theta}},$$
(5.3)

where $\psi_n = \sum_{j=0}^{\ell} b_j a_{n-j} r^{j+|n-j|} \in \mathcal{M}_n$, for $-k \leq n \leq \ell$, and $(b_0, ..., b_{\ell}) \in \mathbb{C}^{\ell}$. If $(b_0, ..., b_{\ell}) = (0, ..., 0)$, then $\psi_n = 0$ and so $\phi = \phi_+$.

THEOREM 5.4. Suppose \mathcal{M} is an invariant subspace between zL_a^2 and $e^{-ik\theta}\mathbf{H}^2$ where $k \ge 0$, and $\phi = \sum_{j=1}^{\infty} \phi_{-j}(r)e^{ij\theta}$ is a function in L^{∞} .

(1) If $\mathcal{M}_j \cap r^{j+1}\mathcal{L}^2 = \{0\}$ for any $j \ge 0$, then there does not exist any finite rank $H_{\phi}^{\mathcal{M}}$ except $H_{\phi}^{\mathcal{M}} = 0$.

(2) If there does not exist any finite rank $H_{\phi}^{\mathbb{M}}$ except $H_{\phi}^{\mathbb{M}} = 0$, then $\mathcal{M}_{-(k-j)} \cap r^{j+1} \mathcal{L}^{\infty} = \{0\}$ for any $j \ge 0$.

PROOF. (1) If $H_{\phi}^{\mathcal{M}}$ is of finite rank ℓ , by Proposition 5.2,

$$\psi_n = \sum_{j=n}^{\ell} b_j r^j \phi_{n-j} \in \mathcal{M}_n, \tag{5.4}$$

for $0 \le n \le \ell$ because $\phi_{n-j}(r) = 0$ for $0 \le j \le n-1$. We may assume $b_{\ell} = 1$. As $n = \ell - 1$, $r^{\ell} \phi_{-1}(r) \in \mathcal{M}_{\ell-1}$. Since $\mathcal{M}_{\ell-1} \cap r^{\ell} \mathcal{L}^2 = \{0\}$, $\phi_{-1}(r) = 0$. As $n = \ell - 2$,

$$b_{\ell-1}r^{\ell-1}\phi_{-1}(r) + r^{\ell}\phi_{-2}(r) \in \mathcal{M}_{\ell-2}.$$
(5.5)

Since $\mathcal{M}_{\ell-2} \cap r^{\ell-1} \mathcal{L}^2 = \{0\}$ and $\phi_{-1}(r) = 0$, $\phi_{-2}(r) = 0$. we can get $\phi_{-j}(r) = 0$ for $j \leq \ell$. In Proposition 5.2, $\psi_n = 0$ for $0 \leq n \leq \ell$ and so $\phi \equiv 0$.

(2) If $r^{j+1}g \in \mathcal{M}_{-(k-j)} \cap r^{j+1}\mathcal{L}^{\infty}$, then put $\phi = ge^{-i(k+1)\theta}$. If $g \neq 0$ then $\phi \notin \mathcal{M}$ and

$$z^{j+1}\phi = r^{j+1}g e^{-i(k-j)\theta} \in \mathcal{M}_{-(k-j)}e^{-i(k-j)\theta}.$$
(5.6)

Since \mathcal{M} has the Fourier decomposition, $\mathcal{M}_j e^{ij\theta} \subseteq \mathcal{M}$ and so $z^{j+1}\phi \in \mathcal{M}$. Theorem 3.1 gives a contradiction.

We will apply results in this section to Example 2.4 in Section 2.

EXAMPLE 5.5. (i) Suppose $\mathcal{M} = T_{\beta}$ ($0 \le \beta < 1$).

(1) When $\phi = \sum_{j=1}^{\infty} \phi_{-j}(r) e^{-ij\theta}$ is a function in L^{∞} , there does not exist any finite rank $H_{\phi}^{\mathcal{M}}$ except $H_{\phi}^{\mathcal{M}} = 0$ if and only if $\beta = 0$.

(2) When $\phi = \sum_{j=0}^{\infty} a_j z^j + \sum_{j=1}^{\infty} a_{-j} \tilde{z}^j$ is a function in L^{∞} , there does not exist any finite rank $H_{\phi}^{\mathcal{M}}$ except $H_{\phi}^{\mathcal{M}} = 0$ if and only if $\beta = 0$.

PROOF. Recall that $T_{\beta} = \sum_{j=0}^{\infty} \oplus (T_{\beta})_j e^{ij\theta}$ and $(T_{\beta})_j = \operatorname{span}\{r^j p_j(r^2); p_j \text{ is a polynomial of degree at most } \beta j/1 - \beta \}$.

(1) If $\beta = 0$, then $(T_{\beta})_j \cap r^{j+1}\mathcal{L}^2 = \{0\}$ for any $j \ge 0$ and if $\beta \ne 0$, then $(T_{\beta})_j \cap r^{j+1}\mathcal{L}^{\infty} \ne \{0\}$ for enough large *j*. Theorem 5.4 implies (1).

(2) If $\beta \neq 0$, then there exists n such that $1 - \beta \leq \beta(n-1)$. Hence $(T_{\beta})_{n-1} \ni r^{n+1}$. Suppose $\phi = \bar{z}$, then $z^n \phi = r^{n+1} e^{i(n-1)\theta}$ and so $z^n \phi \in (T_{\beta})_{n-1} e^{i(n-1)\theta} \subset T_{\beta}$. By Theorem 3.1, $H_{\phi}^{\mathcal{M}}$ is of rank $\leq n$ and $H_{\phi}^{\mathcal{M}} \neq 0$.

(ii) Suppose $\mathcal{M} = \overline{E}^m \ (0 \le m < \infty)$.

(1) When $\phi = \sum_{j=1}^{\infty} \phi_{-j}(r) e^{-ij\theta}$, there does not exist any finite rank $H_{\phi}^{\mathbb{M}}$ except $H_{\phi}^{\mathbb{M}} = 0$ if and only if m = 0.

(2) When $\phi = \sum_{j=0}^{\infty} a_j z^j + \sum_{j=1}^{\infty} a_{-j} \bar{z}^j$ is a function in L^{∞} , there does not exist any finite rank $H_{\phi}^{\mathcal{M}}$ except $H_{\phi}^{\mathcal{M}} = 0$ if and only if m = 0 or 1.

PROOF. We recall that $(\bar{E})^m = \sum_{j=0}^{\infty} \oplus (\bar{E}^m)_j e^{ij\theta}$ and $(\bar{E}^m)_j = \operatorname{span}\{r^j, \dots, r^{j+2m}\}$. (1) If m = 0, then $(\bar{E}^m)_j \cap r^{j+1} \mathcal{L}^2 = \{0\}$ for any $j \ge 0$ and if $m \ne 0$, then $(\bar{E}^m)_j \cap r^{j+1} \mathcal{L}^\infty \ne \{0\}$ for any $j \ge 0$. Theorem 5.4 implies (1).

(2) If m = 0, by (1) there does not exist any finite rank $H_{\phi}^{\mathbb{M}}$ except $H_{\phi}^{\mathbb{M}} = 0$. If m = 1, then $(E^m)_n = \operatorname{span}\{r^n, r^{n+2}\}$ for $n \ge 0$. When $H_{\phi}^{\mathbb{M}}$ is of finite rank ℓ , by Corollary 5.1, $a_{-n} = 0$ for $n > \ell$ and if $0 \le n \le \ell$,

$$\sum_{j=n}^{\ell} b_j a_{n-j} r^{2j-n} = c r^n + d r^{n+2}$$
(5.7)

for complex constants *c*, *d*. Hence, for $0 \le n \le \ell$,

$$b_{j}a_{n-j} = 0 \quad \text{for } n+2 \le j \le \ell.$$
 (5.8)

Since $b_{\ell} = 1$, $a_{n-\ell} = 0$ for $0 \le n \le \ell$ and so $a_{-j} = 0$ for $0 \le j \le \ell$. When $m \ge 2$, if $\phi = \bar{z}$, then $z\phi = r^2 \in (\bar{E}^m)_0 = \operatorname{span}\{1, r^2, \dots, r^{2m}\}$ and $z\phi \in \bar{E}^m$ because $(\bar{E}^m)_0 \subset \bar{E}^m$. However $H_{\phi}^{\mathcal{A}} \ne 0$.

(iii) Suppose $\mathcal{M} = Y^k$.

(1) When $\phi = \sum_{j=1}^{\infty} \phi_{-j}(r) e^{-ij\theta}$, there does not exist any finite rank $H_{\phi}^{\mathbb{M}}$ except $H_{\phi}^{\mathbb{M}} = 0$ if and only if k = 0.

(2) When $\phi = \phi_+ + \phi_- = \sum_{j=0}^{\infty} a_j z^j + \sum_{j=1}^{\infty} a_{-j} \bar{z}^j$ and ϕ_+ are functions in L^{∞} , there does not exist any finite rank $H_{\phi}^{\mathcal{M}}$ except $H_{\phi}^{\mathcal{M}} = 0$ if and only if k = 0.

PROOF. Since $H_{\phi}^{\mathcal{M}} = H_{\phi_{-}}^{\mathcal{M}}$, it is sufficient to prove (1). We recall that $Y^{k} = \sum_{j=-k}^{\infty} \oplus (Y^{k})_{j} e^{ij\theta}$, where $Y_{0}^{k} = \operatorname{span}\{1, r^{2}, \dots, r^{2k}\}$ and $(Y^{k})_{j} = r^{j}(Y^{k})_{0}$ for $j \ge 0$, and $(Y^{k})_{-j} = \operatorname{span}\{r^{2\ell-j}, j \le \ell \le k\}$ for $1 \le j \le k$. If k = 0, then $Y^{k} = L_{a}^{2}$. If $k \ge 1$, $(Y^{k})_{-k} = \operatorname{span}\{r^{k}\}$. Theorem 5.4(2) implies that there exists a nonzero finite rank $H_{\phi}^{\mathcal{M}}$.

6. Small Hankel operator and $\mathcal{M} \supseteq \mathbf{H}^2$. In this section, we assume that $d\mu = d\sigma(r) d\theta$ and $d\sigma([t,1)) > 0$ for any t > 0. Hence we can define the Fourier coefficients $\{\mathcal{M}_j\}_{j=-\infty}^{\infty}$ of \mathcal{M} . In this case, $H_{\phi}^{\mathcal{M}}$ is close to H_{ϕ}^{small} and far from H_{ϕ}^{big} . Note that if \mathcal{M}' is an invariant subspace and $\mathcal{M}' \subseteq e^{i\theta}\mathbf{H}^2$, then $\mathcal{M} = (\tilde{\mathcal{M}}')^{\perp}$ is an invariant subspace and $\mathcal{M} \cong e^{i\theta}\mathbf{H}^2$.

PROPOSITION 6.1. Suppose \mathcal{M} is an invariant subspace which contains $e^{ik\theta}\mathbf{H}^2$ for some nonnegative integer k. If $\mathcal{M} \neq L^2$, there exists at least a nonzero finite rank $H_{\phi}^{\mathcal{M}}$.

PROOF. If $\bar{z}^n \in \mathcal{M}$ for all $n \ge 1$, then $z^{\ell} \bar{z}^n \in \mathcal{M}$ for all $\ell \ge 1$ because $z\mathcal{M} \subseteq \mathcal{M}$. Let \mathscr{C} be the closed linear span of $\{z^{\ell} \bar{z}^n; n \ge 1, \ell \ge 0\}$, then $\mathscr{C} \subseteq \mathcal{M}$ and $g\mathscr{C} \subseteq \mathscr{C}$ for arbitrary polynomial g of z and \bar{z} . It is well known that $\mathscr{C} = L^2$. This contradiction implies that there exists at least n such that $\bar{z}^n \notin \mathcal{M}$ and $n \ge 1$. If $\phi = \bar{z}^n$, then $z^{n+k}\phi \in \mathcal{M}$. Then $H_{\phi}^{\mathcal{M}} \neq 0$ but $H_{\phi}^{\mathcal{M}}$ is of finite rank $\le n+k$, by Theorem 3.1.

PROPOSITION 6.2. Suppose \mathcal{M} is an invariant subspace which contains $e^{ik\theta}\mathbf{H}^2$ for some nonnegative integer k. The following statements are valid.

(1) If $\phi = \sum_{j=-\infty}^{\infty} \phi_j(r) e^{ij\theta}$ is a function in L^{∞} , then there exists a function ϕ' in L^2 such that $\phi' = \sum_{j=0}^{k-1} \phi_j(r) e^{ij\theta} + \sum_{j=1}^{\infty} \phi_{-j}(r) e^{-ij\theta}$ and $H_{\phi'}^{\mathcal{M}} = H_{\phi}^{\mathcal{M}}$.

(2) If $\phi = \sum_{j=k}^{\infty} \phi_j(r) e^{ij\theta}$ is a function in L^{∞} , then $H_{\phi}^{\mathfrak{U}} = 0$.

(3) If $\phi = \sum_{j=-\ell}^{\infty} \phi_j(r) e^{ij\theta}$ is a function in L^{∞} , then $H_{\phi}^{\mathbb{M}}$ is of rank $\leq \ell + k < \infty$. Conversely, if one of (1) or (2) is valid, then \mathbb{M} contains $e^{ik\theta}\mathbf{H}^2$.

PROOF. Both (1) and (2) are clear because $\mathcal{M} \supseteq e^{ik\theta} \mathbf{H}^2$. (3) is a result of Theorem 3.1. The converse is also clear.

We will consider Example 2.4 in Section 2.

EXAMPLE 6.3. (ii) Suppose $\mathcal{M} = (E^k)^{\perp} (0 \le k < \infty)$ and $\phi = \sum_{j=-\infty}^{\infty} \phi_j(r) e^{ij\theta}$ is a function in L^{∞} .

(1) $H_{\phi}^{\mathcal{M}} = 0$ if and only if

$$\int_{0}^{1} \phi_{-j}(r) r^{j+2t} d\sigma = 0 \quad (j \ge 0, \ 0 \le t \le k).$$
(6.1)

(2) $H_{\phi}^{\mathcal{M}}$ is of rank ≤ 1 if and only if there exist complex numbers $(b_0, b_1) \neq (0, 0)$ such that

$$b_0 \int_0^1 \phi_{-j}(r) r^{j+2t} d\sigma = -b_1 \int_0^1 \phi_{-j-1}(r) r^{j+2t+1} d\sigma$$
(6.2)

for $j \ge 0$, $0 \le t \le k$.

(3) Suppose $d\sigma = r dr/2\pi$. When $\phi = \sum_{j=0}^{\infty} a_j z^j + \sum_{j=1}^{\infty} a_{-j} \bar{z}^j$, if $H_{\phi}^{\mathcal{M}}$ is of rank ≤ 1 , then $H_{\phi}^{\mathcal{M}} = 0$.

PROOF. From the remark in the last part of Section 4, (1) and (2) follows. (3) By (2), $H_{\phi}^{\mathbb{M}}$ is of rank ≤ 1 if and only if there exist complex numbers $(b_0, b_1) \neq (0, 0)$ such that

$$b_0 a_{-j} \frac{1}{2j+2t+1} = -b_1 a_{-j-1} \frac{1}{2j+2t+3}$$
(6.3)

for $j \ge 0$, $0 \le t \le k$. When $k \ne 0$, for each j, as t = 0,

$$b_{0}a_{-j} \frac{1}{2j+1} = -b_{1}a_{-j-1} \frac{1}{2j+3},$$

$$b_{0}a_{-j} \frac{1}{2j+3} = -b_{1}a_{-j-1} \frac{1}{2j+5}.$$
(6.4)

This implies that $a_{-j} = a_{-j-1} = 0$, for $j \ge 0$, and so $\phi = \sum_{j=1}^{\infty} a_j z^j$. When k = 0, Corollary 3.3 implies (3)

(iv) Suppose $\mathcal{M} = \bar{q}\mathbf{H}^2$ for some unimodular function q in \mathbf{H}^2 and ϕ is a function in L^{∞} . $H^{\mathcal{M}}_{\phi}$ is of finite rank ℓ if and only if

$$\phi = \bar{q} \sum_{j=-\ell}^{\infty} \psi_j(r) e^{ij\theta}, \qquad (6.5)$$

where $\psi_{-\ell}(r) \neq 0$.

PROOF. If $\phi = \tilde{q} \sum_{j=-\ell}^{\infty} \psi_j(r) e^{ij\theta}$, then $z^{\ell} \phi \in \mathcal{M}$ and so, by Theorem 3.1, $H_{\phi}^{\mathcal{M}}$ is of finite rank $\leq \ell$. Since $\psi_{-\ell}(r) \neq 0$, $b\phi \notin \mathcal{M}$ for any polynomial *b* of degree $\leq \ell - 1$ and so $H_{\phi}^{\mathcal{M}}$ is of finite rank ℓ . The converse is clear.

(v) Suppose $\mathcal{M} = \mathbf{H}^2 \oplus Se^{-i\theta}$ and *S* is a closed subspace in \mathcal{L}^2 . Let $\phi = \sum_{j=-\infty}^{\infty} \phi_j(r)e^{ij\theta}$ be a function in L^{∞} . By Theorems 3.1 and 4.1, $H_{\phi}^{\mathcal{M}}$ is of finite rank $\leq \ell$ if and only if $\phi_j(r) = 0$ for $j \leq -(\ell+2)$ and there exist complex numbers b_0, \ldots, b_ℓ such that $b_\ell = 1$,

$$\sum_{j=0}^{\ell} b_j r^j \phi_{n-j}(r) = 0 \quad \text{for } -(\ell+1) \le n < -1,$$

$$\sum_{j=0}^{\ell} b_j r^j \phi_{-1-j}(r) \in S.$$
(6.6)

7. Restricted shift operator and $\mathcal{M} \subseteq L_a^2$. In this section, we assume $\mu = r \, dr \, d\theta / \pi$ for simplicity. Let \mathcal{M} be an invariant subspace in L_a^2 and $\mathcal{H} = L_a^2 \ominus \mathcal{M}$. For ϕ in $L_a^{\infty} = L_a^2 \cap L^{\infty}$,

$$S^{\mathcal{X}}_{\phi}f = (I - P^{\mathcal{K}})(\phi f) \quad (f \in \mathcal{K}), \tag{7.1}$$

where $P^{\mathcal{H}}$ is the orthogonal projection from L_a^2 to \mathcal{H} . $S_z^{\mathcal{H}}$ is called a restricted shift operator. For any ϕ in L_a^{∞} , $S_{\phi}^{\mathcal{H}}$ commutes with $S_z^{\mathcal{H}}$. We do not know whether if the bounded linear operator T on \mathcal{H} commutes with $S_z^{\mathcal{H}}$, then $T = S_{\phi}^{\mathcal{H}}$ for some ϕ in L_a^{∞} . If $TS_z^{\mathcal{H}} = S_z^{\mathcal{H}}T$ and $\phi = TP^{\mathcal{H}}1$ is bounded, then it is easy to see that $T = S_{\phi}^{\mathcal{H}}$ (cf. [5, page 784]). In the Hardy space instead of the Bergman space, Sarason [8] showed that this is true without any condition and $||T|| = ||\phi||_{\infty}$.

We can define the Hankel operator $H_{\phi}^{\mathcal{M}}$ as in the introduction. However $H_{\phi}^{\mathcal{M}}$ is not an intermediate Hankel operator. It is not so difficult to see the following: when $\mathcal{K} = L_a^2 \ominus \mathcal{M}$ and ϕ in L_a^{∞} ,

$$\|H^{\mathcal{M}}_{\phi}\| = \|S^{\mathcal{H}}_{\phi}\|. \tag{7.2}$$

This is known for the Hardy space. In fact, for f in L_a^2 ,

$$H^{\mathcal{M}}_{\phi}f = (I - P^{\mathcal{M}})\phi f = P^{\mathcal{H}}\phi P^{\mathcal{H}}f$$
(7.3)

and so $H_{\phi}^{\mathfrak{M}} f = S_{\phi}^{\mathfrak{X}} P^{\mathfrak{X}} f$ for f in L_{a}^{2} . Hence $H_{\phi}^{\mathfrak{M}}$ is of finite rank n if and only if $S_{\phi}^{\mathfrak{X}}$ is of finite rank n. It is easy to see that $S_{\phi}^{\mathfrak{X}}$ is of finite rank $\ell \leq n$ if and only if there exists an analytic polynomial p of degree $\ell \leq n$ such that $p(\phi) \in \mathcal{M}^{\infty}$. When ϕ is in L^{∞} , Theorems 3.1 and 4.1 are true for $H_{\phi}^{\mathfrak{M}}$.

Suppose ϕ is a function in L_a^{∞} .

(1) $L^2_a \supseteq \ker H^{\mathcal{M}}_{\phi} \supseteq \mathcal{M}.$

(2) When the common zero set $Z(\mathcal{M})$ of \mathcal{M} in D is empty, if $H_{\phi}^{\mathcal{M}}$ is of finite rank then $H_{\phi}^{\mathcal{M}} = 0$. This is a result of (1) and Proposition 2.1.

(3) If $Z(\mathcal{M})$ is not empty, there exists a nonzero finite rank $H_{\phi}^{\mathcal{M}}$.

ACKNOWLEDGEMENT. This research was partially supported by Grant-in-Aid for scientific research, Ministry of Education.

REFERENCES

- S. Axler and P. Bourdon, *Finite-codimensional invariant subspaces of Bergman spaces*, Trans. Amer. Math. Soc. **306** (1988), no. 2, 805–817. MR 89f:46051. Zbl 658.47011.
- [2] S. Janson and R. Rochberg, Intermediate Hankel operators on the Bergman space, J. Operator Theory 29 (1993), no. 1, 137–155. MR 95b:47026. Zbl 898.47015.
- [3] T. Nakazi, Invariant subspaces of weak-* Dirichlet algebras, Pacific J. Math. 69 (1977), no. 1, 151-167. MR 58#12384. Zbl 342.46044.
- [4] _____, Extended weak-* Dirichlet algebras, Pacific J. Math. 81 (1979), no. 2, 493-513. MR 82a:46055. Zbl 407.46047.
- [5] _____, Commuting dilations and uniform algebras, Canad. J. Math. 42 (1990), no. 5, 776– 789. MR 92b:46080. Zbl 762.46056.
- [6] T. Nakazi and M. Yamada, *Riesz's functions in weighted Hardy and Bergman spaces*, Canad. J. Math. 48 (1996), no. 5, 930–945. MR 98c:46049. Zbl 862.46013.
- [7] L. Z. Peng, R. Rochberg, and Z. Wu, Orthogonal polynomials and middle Hankel operators on Bergman spaces, Studia Math. 102 (1992), no. 1, 57-75. MR 93b:47054. Zbl 809.30008.

- [8] D. Sarason, *Generalized interpolation in H[∞]*, Trans. Amer. Math. Soc. **127** (1967), 179–203. MR 34#8193. Zbl 145.39303.
- [9] E. Strouse, *Finite rank intermediate Hankel operators*, Arch. Math. (Basel) 67 (1996), no. 2, 142-149. MR 97i:47047. Zbl 905.47014.
- [10] J. L. M. Wang and Z. Wu, *Minimum solution of* $\overline{\partial}^{k+1}$ *and middle Hankel operators*, J. Funct. Anal. **118** (1993), no. 1, 167–187. MR 94j:47042. Zbl 801.47017.
- [11] N. Young, An Introduction to Hilbert Space, Cambridge Mathematical Textbooks. Cambridge University Press, Cambridge, New York, 1988. MR 90e:46001. Zbl 645.46024.
- [12] K. Zhu, Operator Theory in Function Spaces, Monographs and Textbooks in Pure and Applied Mathematics, vol. 139, Marcel Dekker, Inc., New York, 1990. MR 92c:47031. Zbl 706.47019.

Takahiko Nakazi: Department of Mathematics, Hokkaido University, Sapporo 060, Japan

Tomoko Osawa: Mathematical and Scientific Subjects, Asahikawa National College of Technology, Asahikawa 071, Japan