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Abstract. The aim of the present work is centered around the tautness property for the
two K-types of Alexander-Spanier cohomology given by the authors. A version of the con-
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1. Introduction. It is well known that in the Alexander-Spanier cohomology theory
[17, 18] or in the isomorphic theory of Čech [9], if the coefficient groupG is topological
then either the theory does not take into account the topology onG [9, 18], or considers
only the case when G is compact to obtain a compact cohomology [4, 1]. Continuous
cohomology naturally arises when the coefficient group of a cohomology theory is
topological [2, 3, 11]. The partially continuous Alexander-Spanier cohomology theory
[14] can be considered as a variant of the continuous cohomology of a space with two
topologies in the sense of Bott-Haefliger [15]; also it is isomorphic to the continuous
cohomology of a simplicial space defined by Brown-Szczarba [2].

The idea of K-groups [5, 6], where K is a locally-finite simplicial complex, is used
to introduce the K-types of Alexander-Spanier cohomology with coefficients in a pair
(G,G′) of topological abelian groups [7, 8]; namely, K-Alexander-Spanier and partially
continuousK-Alexander-Spanier cohomologies H̄∗K ,H̃

∗
K . It is proved that theseK-types

satisfied the seven Eilenberg-Steenrod axioms [9]; the excision axiom for the second
K-type is verified for compact Hausdorff spaces when (G,G′) are absolutely retract.
Therefore, the uniqueness theorem of the cohomology theory on the category of com-
pact polyhedral pairs [9] asserts that our Alexander-Spanier K-types over a pair of
absolute retract coefficient abelian groups are naturally isomorphic.

In the present work, we prove that the K-Alexander-Spanier cohomology of a closed
subset in a paracompact space is isomorphic to the direct limit of the K-Alexander-
Spanier cohomology of its neighborhoods, and that the partially continuous K-
Alexander-Spanier cohomology of a neighborhood retract closed subspace of a Haus-
dorff space is isomorphic to the direct limit of the partially continuous K-Alexander-
Spanier cohomology of its neighborhoods. Also a version of the continuity property
is proved. Moreover, we study some applications of the K-type cohomologies.

2. Alexander-Spanier cohomology of K-types. Here we mention the notations
which we used throughout [7, 8].

For an object (X,A) of the category Q of the pairs of topological spaces and their
continuous maps, denote by Ω(X,A)[Ω̃(X,A)] the set of the pairs ᾱ= (α,α′), where
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α is an open covering of X and α′ is a subcollection of α covering A[α′ =α∩A]; it is
directed with respect to the refinement relation ᾱ < β̄, that is, α < β and α′ < β′ [9].
Denote by Cq(τ)(X̃) the group of functions ϕτ : X̃q(τ)+1 → G, where τ is a simplex in
K, q(τ)= q+dimτ , q ≥ 0, and X̃ denotes either a space X or α∈Ω(X). Let Cq(τ)(X̃)
be the subgroup of the direct product

∏
τ∈K Cq(τ)(X̃) consisting of such ϕ = {ϕτ}

for which the condition (k) is satisfied, which states that there is a cofinite subset
τ̆(ϕ) of K, that is, K− τ̆(ϕ) is finite such that (ϕτ)−1(G′)= X̃q(τ)+1, ∀τ ∈ τ̆(ϕ). The
coboundary δq : Cq(X̃)→ Cq+1(X̃) is given by

(
δqϕ

)τ =
q(τ)+1∑
i=1

(−1)iϕτp(q(τ)+1)
i +(−1)q(τ)+1

∑
σ∈st(τ)

[σ : τ]ϕσ , (2.1)

where st(τ) = {σ ∈ K : τ is (dimσ −1)-face of σ}, p(τ)
i : Xτ+1 → Xτ is the projection

defined by: if t̂i is the τ-tuple consisting of t = (x0, . . . ,xτ) ∈ Xτ+1 with xi omitted,
then p(τ)

1 (t)= t̂i, 0≤ i≤ τ . The cohomology groups of the cochain complex C≠(X)=
{Cq(X),δq} is, in general, uninteresting, as shown in the following theorem [8].

Theorem 2.1. If dimK = 0, thenHq(C≠(X))�G∗K (the subgroup of GK =∏τ∈K Gτ ,
Gτ =G, consisting of those elements having all but a finite number of their τ-coordinates
in G′), and Hq(C≠(X))= 0, when q ≠ 0.

To pass to more interesting cohomology groups, the topology of the space X will
be used to define that ϕ ∈ Cq(X) is said to be K-locally zero on M ⊆ X if there is
α ∈ ΩX(M) (the set of external covering of M by open subsets of X) such that ϕ
vanishes on α∩M , that is, each ϕτ vanishes on (α∩M)q(τ)+1, where ατ = ∪{uτ

α :
uα ∈ α}. The subgroups of Cq(X) consisting of those elements which are K-locally
zero on X, A, respectively, are denoted by Cq

0 (X),Cq(X,A). The K-Alexander-Spanier
cohomology of (X,A) over (G,G′), denoted by H̄∗K (X,A), is the cohomology of the
quotient cochain complex C̄≠

K (X,A) = C≠(X,A)/C≠
0 (X). If f : (X,A)→ (Y ,B) is in Q,

β̄ ∈Ω(Y ,B) and ᾱ = f−1(β̄), then f defines a cochain map f̄≠ : C̄≠
K (Y ,B)→ C̄≠

K (X,A),
where τ̆(f qϕ) = τ̆(ϕ) for each ϕ ∈ Cq(Y). In turn, f̄≠ induces the homomorphism
f̄∗ : H̄∗K (Y ,B)→ H̄∗K (X,A).

On the other hand, for ᾱ ∈ Ω(X,A), denote by Cq
ᾱ the subgroup of Cq

α = Cq(α)
consisting of thoseϕ that vanish on α′∩A. Then we obtain a direct system {C≠

ᾱ }Ω(X,A)
such that any map f ∈ Q constitutes a map F : {C≠

β̄ }Ω(Y ,B) → {C≠
ᾱ }Ω(X,A) [9]; its limit

is F∞.

Theorem 2.2. The K-Alexander-Spanier cohomology functor {H̄∗K , f̄∗} is naturally
isomorphic to the functor {lim�����������������������������������→{H∗(C

≠
ᾱ )}Ω(X,A),F∞∗} [7].

In the previous part, the topology on (G,G) plays no role; to pass to the second coho-
mology of K-type we characterize an elementϕ ∈ Cq(X) to be K-partially continuous
if it is continuous on someα∈Ω(X), that is,ϕτ |αq(τ)+1 are continuous functions. Let
Lq(X) be the group of all such elements, and M≠

K (X) = L≠(X)/C≠
0 (X). The subgroup

of Cq
α, where α ∈ Ω(X), consisting of the K-continuous elements ϕ, that is, ϕτ are

continuous, is denoted byMq
α. Let i :A↩X, defineM≠

K (X,A) to be themapping cone of
i≠ :M≠

K (X)→M≠
K (A), (see [13, 18]), assuming that Mq

K(X,A)=Mq
K(X)⊕Mq−1

K (A), and
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the coboundary is �q(ϕ,ψ)= (−δqϕ,iqϕ+δq−1ψ). The cohomology of M≠
K (X,A) is

the partially continuous K-Alexander-Spanier cohomology of (X,A) over the topolog-
ical pair (G,G′) of coefficient groups; it is denoted by H̃∗K (X,A).

On the other hand, if ᾱ ∈ Ω̃(X,A), then i defines a cochain map i≠α :M≠
α →M≠

α′ ; its
mapping cone is denoted by M≠

ᾱ .

Theorem 2.3. For a pair (X,A)∈Q withA closed,M≠
K (X,A) is naturally isomorphic

to lim�����������������������������������→{M
≠
ᾱ }Ω̃(X,A) [7].

Theorem 2.4. For a discrete space, and q ≥ 0, H̃q
K(X)� H̄q

K(X).

Proof. Since Xq(τ)+1 admits a discrete topology, it follows that each τ-coordinate
ϕτ ofϕ ∈ Cq

K(X) is continuous [16]. Thenϕ is K-partially continuous with respect to
any α∈Ω(X). Therefore, Lq(X)= Cq

K(X) and M≠
K (X)= C̄≠

K (X).

3. Tautness and continuity properties. This article is devoted to study the taut-
ness property for both Alexander-Spanier cohomology of K-types. One of its applica-
tions is the continuity property.

The star of a subset A in a space X with respect to α∈Ω(X) is

st(A,α)=∪{Uα ∈α :Ud∩A≠∅}. (3.1)

The star of α is
α∗ = {st(Uα,α

)
:uα ∈α

}
. (3.2)

Definition 3.1. Let α,β ∈ Ω(X), then β is a star-refinement of α, written α <∗ β
if α< β∗.

Denote by �(A) the collections of neighborhoods {N} ofA in X; it is directed down-
ward by inclusion. If N1 < N2, then the inclusion πN1N2 : N2 ↩ N1 induces the homo-
morphisms π̄∗N1N2

: H̄q
K(N1)→ H̄q

K(N2). Also iN : A↩ N induces ī∗N : H̄q
K(N)→ H̄q

K(A),
and they define a homomorphism

I∞ : lim�����������������������������������→
{
H̄q
K(N),π̄

∗
N1N2

}
�(A) �→ H̄q

K(A). (3.3)

Theorem 3.2 (Tautness). A closed subspace of a paracompact space is a taut sub-
space relative to the K-Alexander-Spanier cohomology, that is, I∞ is an isomorphism
for each q and any pair (G,G′) of coefficient groups.

Proof. (1) I∞ is an epimorphism. Let h ∈ H̄q
K(A) with representative ϕ̄ ∈ C̄q

K(A),
written as h = [ϕ̄]. Let ϕ ∈ Cq(A) such that ϕ ∈ ϕ̄. Then there is α = {uα = να∩A :
να ⊆X is open} ∈Ω(A) such that

(
δqϕ

) |αq(τ)+2 = 0. (3.4)

Since A is closed, it follows that β = {να}∪{X−A} ∈Ω(X). The paracompactness
of X is equivalent to the existence of such γ ∈Ω(X) that β <∗ γ, and a neighborhood
N ofA and an extension f :N →A (not necessarily continuous) of the identity map idA
of A, that is, fiN = idA, such that f(uγ∩N)⊆ st(uγ,γ) for each uγ ∈ γ [18]. One can
show that f defines a cochain map f≠ : C≠(A)→ C≠(N) by (f qϕ)τ =ϕτf (q(τ)+1) with
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τ̆(f qϕ)= τ̆(ϕ), where f (τ) :Nτ →Aτ given by f(x0, . . . ,xτ−1)= (f (x0), . . . ,f (xτ−1)).
The relation β < γ∗ yields that for each uγ ∈ γ there is uβ ∈ β such that f(uγ∩N)⊆
st(uγ,γ) ⊆ uβ. Because f(N) = A, then f(uγ ∩N) ⊆ uβ∩A ⊆ uα for some uα ∈ α.
By using (3.4), we get (δqf qϕ)τ | (γ∩N)q(τ)+2 = 0, that is, δq(f qϕ)∈ Cq+1

0 (N). Then
fqϕ represents a cocycle fqϕ ∈ C̄q

K(N) which, in turn, defines hN ∈ H̄q
K(N), that is,

hN = [f qϕ]. Let t ∈Aq(τ)+1, then

(
iqN
(
fqϕ

))τ(t)=ϕτf (q(τ)+1)i(q(τ)+1)N (t)=ϕτ(t), (3.5)

and therefore, ī∗NhN = [(f iN)qϕ]= [ϕ̄]= h.
(2) I∞ is a monomorphism. Let h1 ∈ H̄q

K(N1), ϕ̄1 ∈ C̄q
K(N1) and ϕ1 ∈ Cq(N1) such

that ϕ1 ∈ ϕ̄1, ϕ̄1 ∈ h1, and [h1]∈ KerI∞.
First, one can consider that the neighborhood N1 of A is a paracompact subset of

X. For, if N1 is not so, then there is a paracompact subset M1 of X such that M1 <N1

(e.g., take M1 = X) [10]. The inclusion πM1N1 induces an epimorphism π̄≠
M1N1

[8], let
π̄q
M1N1

ψ̄1 = ϕ̄1. Thus the cohomology class of H̄q
K(M1) represented by ψ̄1 is [h1],

which shows that N1 can be taken paracompact.
Now, ϕ̄1 ∈ Kerδq, or equivalently, there is α = {uα = να∩N1 : να ⊆ X is open} ∈

Ω(N1) such that (
δqϕ1

)τ ∣∣ αq(τ)+2 = 0. (3.6)

On the other hand, the assumption ī∗N1
h1 = 0 asserts that there exists ϕ̄ ∈ C̄q−1

K (A)
such that iqN1

ϕ1−δq−1ϕ ∈ Cq
0 (A), where ϕ ∈ ϕ̄. This means that there is β = {uβ =

ωβ∩A :ωβ ⊆X is open} ∈Ω(A) such that

(
iqN1

ϕ1
)τ = (δq−1ϕ)τ on βq(τ)+1. (3.7)

Assume that β1 = {uβ1 = ωβ∩N1}∪ {N1−A}. The paracompactness of N1 asserts
the existence of γ1,γ2 ∈ Ω(N1) for which α <∗ γ1 and β1 <∗ γ2. The directedness of
Ω(N1) implies that there is γ ∈ Ω(N1) for which γ1,γ2 < γ; and so for each uγ ∈ γ
there are uγi ∈ γi, i= 1,2 and uα ∈α, uβ1 ∈ β1 such that

uγ ⊂uγi ⊆ st
(
uγi ,γi

)⊆uα∩uβ1 . (3.8)

Then
st
(
uγ,γ

)⊆uα∩uβ1 , (3.9)

that is, α,β1 <∗ γ. According to [18, Lemma 6.6.1], there is a neighborhood N2 of N1

and f : N2 → A (not necessarily continuous) such that fiN2 = idA, and uβ1 ∈ β1 such
that

f
(
uγ∩N2

)⊆ st
(
uγ,γ

)⊆uβ1 ⊆uβ1∩A=uβ. (3.10)

Then, by (3.7), we get

(
δq−1fq−1ϕ

)τ = (fqiqN1
ϕ1
)

on
(
γ∩N2

)q(τ)+1. (3.11)

Define Dq : Cq+1(N1)→ Cq(N2) by

if t = (x0, . . . ,xq(τ)
)∈Nq(τ)+1

2 and ψ1 ∈ Cq+1(N1
)

(3.12)
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then

(
Dqψ1

)τ(t)=
q(τ)∑
r=0

(−1)γψτ
1

(
y0, . . . ,yτ,zτ , . . . ,zq(τ)

)
, (3.13)

where

yj =πN1N2

(
xj
)
, zj =

(
iN1f

)(
xj
)= f(xj), (3.14)

and τ̆(Dqψ1)= τ̆(ψ1). By a similar calculation as given in [7], we get

(
δq−1Dq−1ϕ1

)τ = (fqiqN1
ϕ1
)τ−(πq

N1N2
ϕ1
)τ−(Dqδqϕ1

)τ . (3.15)

By (3.9), (3.10) for each uγ ∈ γ, there is uα ∈α such that

(
uγ∩N2

)∪f (uγ∩N2
)⊆uα. (3.16)

Then, by (3.6), (3.11), and (3.15) consequently, we have

(
δq−1Dq−1ϕ1

)τ = (fqiqN1
ϕ1
)τ−(πq

N1N2
ϕ1
)τ

on
(
γ∩N2

)q(τ)+1, (3.17)

and so (
πq
N1N2

ϕ1
)τ = (δq−1(fq−1ϕ−Dq−1ϕ1

))τ
on

(
γ∩N2

)q(τ)+1. (3.18)

Therefore

ψ2 = fq−1ϕ−Dq−1ϕ1 ∈ Cq−1(N2
)

(3.19)

such that (
πq
N1N2

ϕ1
)τ = (δq−1ψ2

)τ
on

(
γ∩N2

)q(τ)+1, (3.20)

that is, π̄N1N2h1 = 0 which completes the proof.

Corollary 3.3. Any one-point subset of a paracompact is a taut subspace relative
to H̄∗K .

The next part is devoted to studying the tautness property for H̃∗K , which is also
valid for H̄∗K . The idea and results of α-β-contiguous maps, introduced in [7] plays an
essential role in this study.

The inclusions πN1N2 : N2 ↩ N1, corresponding to the relations N1 < N2 in �(A),
define the direct system {H̃q

K(N),π̃
∗
N1N2

}. Also the inclusion iN : A ↩ N , where N ∈
�(A), defines a map of direct systems [9]:

IN :
{
Hq(M≠

α
)
, π̃∗αβ

}
Ω(N) �→

{
Hq(M≠

α̃
)
, π̃∗α̃β̃

}
Ω(A), (3.21)

where α ∈ Ω(N), α̃ = i−1N (α) = α∩A. On the other hand, {ĩ∗N} defines a homomor-
phism

Ĩ∞ : lim�����������������������������������→
{
H̃q
K(N),π̃

∗
N1N2

}
�(A) �→ H̃q

KA. (3.22)

Theorem 3.4 (Tautness). If A is a closed subset in a Hausdorff space X such that A
is a neighborhood retract, then A is a taut subspace relative to the cohomology H̃∗K .
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Proof. (1) Ĩ∞ is an epimorphism. Let h ∈ H̃q
K(A), without loss of generality, the

neighborhood retractness of A in X yields that A has an open neighborhood U(in X)
such that U ⊆ N and a retraction τ1 : U → A (if U1 is an open neighborhood of A of
which A is retract but U1 � N , take U = U1∩ IntN). Let iU : A↩ U then, Ĩ∞[τ̃∗1 (h)] =
ĩ∗U(τ̃

∗
1 h)= ĩd

∗
A(h)= h.

(2) Ĩ∞ is a monomorphism. Let [h] ∈ Ker Ĩ∞. It is sufficient to construct V ∈ �(A)
satisfying N < V and π̃∗NVh = 0. Since the cohomology functor commutes with the
direct limit [18]. Theorem 2.3 asserts that one may assume that h belongs to
lim�����������������������������������→{Hq(M≠

α ),π̃
∗
αβ}Ω(N) with representative hα ∈Hq(M≠

α ), where

α= {uα =ωα∩N :ωα ⊆X is open
}∈Ω(N). (3.23)

Let α1 = {ωα}∪{X−A}, α̃=α1∩A,

β= {uβ = τ−11

(
uα̃
)∩(uα∩U

)
:φ≠uα̃ ∈ α̃

}
, (3.24)

V = ∪uβ, τ = τ1 | V : V ↩ A, and α′ = α1∩V . Then α̃ ∈ Ω(A), α′ = α∩V ∈ Ω(V),
uα̃ ⊆ uβ for each uα̃ ≠ φ, β is a family of open subsets in U and so open in X, V is
an open neighborhood of A such that V ⊆ U , and β ∈ Ω(V). Since uβ = uβ∩uα ⊆
V ∩uα = uα′ , it follows that α′ < β. Also α′ ∩A = α∩A = α̃ and j−1β = α̃, where
j :A↩ V . If 4 : V ↩N , and [ϕ]∈Hq(M≠

α ), then

j̃∗β π̃
∗
α′β4̃

∗
α[ϕ]= j̃∗β

[{(
ϕτ ∣∣α′q(τ)+1)∣∣βq(τ)+1}]= [{ϕτ ∣∣α̃q(τ)+1}], (3.25)

that is,

j̃∗β π̃
∗
α′β4̃

∗
α = ĩ∗N,α, (3.26)

where ĩ≠N,α :M≠
α →M≠

α̃ is induced by iN :A↩N .
On the other hand, (jτ)uβ ⊆uβ and so jτ , idV : V → V are β−β-contiguous [7].

It follows that (ĩdV )
q
β−β, (j̃r)

q
β−β :Mq

β →Mq
β are cochain homotopic [7]. Then (ĩdV )∗β−β

= (j̃r)∗β−β = r̃∗α̃−βj̃
∗
β , which yields that j̃∗β is a monomorphism. Because ĩ∗N,αhα = 0,

equation (3.26) yields that π̃∗α′β4̃∗αhα = 0. Since 4̃∗αhα,π̃∗α′β(4̃αhα) represent the zero

element of lim�����������������������������������→{Hq(M≠
α ),π̃

∗
αβ}Ω(N), it follows that π̃∗NVh= [4̃∗αhα]= 0.

The rest of this article is centered around a special case of the continuity property
for H̄∗K . As an application of the continuity property the cohomology groups satisfy a
much stronger form of the excision axiom.

The following results can be deduced from those given in [9].

Lemma 3.5. Let X be the intersection of a nested system {Xα,πβα}Λ, then
(i) X and lim←����������������������������������� {Xα,πβα}Λ are homeomorphic.
(ii) If the nested system consists of compact Hausdorff spaces then X is a closed

subset of each Xα.
(iii) If N is an open neighborhood of X in Xα (for some α∈Λ), then there is β >α in

Λ such that Xβ ⊆N .
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The inclusions iα :X ↩Xα define a map

I :
{
H̄q
K
(
Xα
)
, π̄∗αβ

}
Λ �→ H̄q

K(X), (3.27)

its direct limit is denoted by Ī∞.

Theorem 3.6 (weak continuity). If X is the intersection of a nested system {Xα,
πβα}Λ of compact Hausdorff spaces, then Ī∞ is an isomorphism.

Proof. Since each Xα is a paracompact Hausdorff space [10] and Xα is closed in X
(Lemma 3.5), it follows, by Theorem 3.2, that X is a taut subspace in Xα relative to H̄∗K .

(1) Ī∞ is an epimorphism. Let h ∈ H̄q
K(X), then, according to Theorem 3.2, there

exists an open neighborhood N of X in Xα and hN ∈ H̄q
K(N), such that ī∗N(hN)= h. By

Lemma 3.5, there is β >α in Λ such that Xβ ⊆N . Let iβ :X ↩Xβ, jβ :Xβ ↩N . Because
ī∗β (j̄

∗
β hN)= (jβiβ)∗hN = ī∗NhN = h, then Ī∞[j̄∗β hN]= h.

(2) Ī∞ is a monomorphism. Let [hα] ∈ Ker Ī∞, that is, ī∗αhα = 0. The tautness of X
in Xα yields, by Theorem 3.2, an open neighborhood N of X in Xα such that hN is the
unique element for which ī′∗N hN = 0, where i′N :X ↩N . Because ī′∗N (ī∗Nhα)= ī∗αhα = 0,
then ī∗Nhα = 0. Let β >α inΛ such thatXβ ⊆N , then π̄∗αβhα = (iNiβ)∗hα = j̄∗β (ī∗Nhα)=
0, that is, [hα]= 0.

4. Applications. One of the good applications of the Alexander-Spanier cohomol-
ogy of K-types is the study of the 0-dimensional cohomology groups and their relation
with the connectedness of the space [7]. In this article, two applications are given. In a
next work, we hope to give more applications. As a first application, we define the par-
tially continuous K-Alexander-Spanier cohomology of an excision map and calculate
its value for some dimensions.

Let f̃≠ :M≠
K (Y ,B)→M≠

K (X,A) be the cochainmap induced by themap f inQ. Define
M≠

K (f) to be the mapping cone of f̃≠ by

Mq
K(f)=Mq

K(Y ,B)⊕Mq−1
K (X,A)

=Mq
K(Y)⊕Mq−1

K (B)⊕Mq−1
K (X)⊕Mq−2

K (A),
(4.1)

and the coboundary is

�̃q(ϕ2,ψ2,ϕ1,ψ1
)

= (−�̃q(ϕ2,ψ2
)
,�q(ϕ1,ψ1

)+ f̃ q(ϕ2,ψ2
))

=
(
δqϕ2,−ĩqϕ2−δq−1ψ2,−δq−1ϕ1+ f̃ qϕ2, ĩq−1ϕ1+δq−2ψ1+ f̃ |A

)q−1
ψ2.
(4.2)

Then there is a short exact sequence

0 �→ +
M≠

K(X,A)
λ≠
��������������������������������������������������������������������→M≠

K (f)
x≠
�������������������������������������������������������������������������→ M̄≠

K (Y ,B) �→O2, (4.3)

where λ≠, χ≠ are injection, projection, respectively;
+
M≠(X,A) is the complexM≠

K (X,A)
with the dimensions all raised by one, and M̄≠(Y ,B) is the complexM≠(Y ,B) with the
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sign of the coboundary changed [12]. Note that Hq(M̄≠
K (Y ,B))= H̃q

K(Y ,B). Let V be an
open subset of X such that V̄ ⊆ IntA, B = X−V , and C =A−V . Put the excision map
e : (B,C)↩ (X,A) in (4.3) instead of f , and then apply the cohomology functor to get
the long exact sequence

··· �→ H̃q
K(e)

χ̃∗
����������������������������������������������������������������������→ H̃q

K(X,A)
ẽ∗
����������������������������������������������������������������→ H̃q

K(B,C)
λ̃∗
��������������������������������������������������������������������→ H̃q+1

K (e) �→ ··· . (4.4)

Thus the groups H̃q
K(e),H̃

q+1
K (e)measure howmuch the cohomological groups deviate

from the excision axiom.

Theorem 4.1. If dimK = 0, e : (B,C)↩ (X,A) is an excision map, where A is closed
and (G,G′) any pair of topological abelian groups, then H̃q

K(e)= 0 when q = 0 or q = 1.

Proof. (1) Case q = 0. We have

M0
K(e)=M0

K(X,A)=M0
K(X)= L0

K(X). (4.5)

Let ϕ ∈ M0
K(e) such that �̃ϕ = 0, then ĩ0ϕ = 0, ẽϕ = 0. Then ϕ = 0 [7], which

means that Ker�̃0 = 0.
(2) Case q = 1. We have

M1
K(e)=M′

K(X)⊕L0(A)⊕L0(B). (4.6)

It is sufficient to show that Ker�̃1 ⊆ Im�̃0. Let (ϕ2,ψ2,ϕ1,0)∈ Ker�̃1, then

δ1ϕ = 0, ĩ′ϕ2 =−δ0ψ2, (4.7)

ẽ1ϕ2 = δ0ϕ1, (4.8)

ẽ01
(−ψ2

)= j̃ϕ1, (4.9)

where i :A↩X, j : C ↩ B and e1 = e | C .
By (4.9), there exists ϕ ∈M0

K(X) [7] such that

ĩ0ϕ =−ψ2, ẽ0ϕ =ϕ1. (4.10)

By (4.8), (4.9), and (4.10), we get

ĩ1
(
δ0ϕ−ϕ2

)= 0, ẽ1
(
δ0ϕ−ϕ2

)= 0. (4.11)

Then δ0ϕ = ϕ2 [7], which together with (4.11) yield (ϕ,0,0,0) ∈ M0
K(e) such that

�̃0(ϕ,0,0,0)= (ϕ2,ψ2,ϕ1,0).

Combining the sequence (4.4) and the above theorem, we get the following result.

Corollary 4.2. Under the assumptions of Theorem 4.1, the map ẽ∗0 : H̃0
K(X,A)→

H̃0
K(B,C) is an isomorphism but ẽ∗1 is a monomorphism.

Next we give a second application to the work introduced in this paper.
Let η : (G,G′)→ (F,F ′) be a homeomorphism of pairs of (discrete) abelian groups,

which is an epimorphism, (L,L′) = Kerη and λ : (L,L′)↩ (G,G′). Then for each ᾱ ∈
Ω(X,A), the maps η,λ define naturally a short exact sequence

0 �→ Cq(ᾱ,L,L′) �→ Cq(ᾱ;G,G′) �→ Cq(ᾱ;F,F ′) �→ 0; (4.12)
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its cohomology is a long exact sequence [12] denoted by Sᾱ. One can show that
{Sᾱ}Ω(X,A) is a direct system, its direct limit [7, 8] is

··· �→ H̄q−1
K

(
X,A;F,F ′

)
�→ H̄q

K
(
X,A′;L,L′

)
�→ H̄q

K
(
X,A;G,G′

)
�→ H̄q

K
(
X,A,F,F ′

)
�→ H̄q+1

K
(
X,A;L,L′

)
�→ ··· .

(4.13)

Now instead of F take the factor group G/G′ and so F ′ will be the null subgroup of
G/G′. Then the above sequence yields the following result.

Theorem 4.3. Consider (X,A) has a trivial (q−1)-dimensional space K-Alexander-
Spanier cohomology group with finite cochains, and a trivial (q+ 1)-dimensional K-
Alexander-Spanier cohomology with infinite cochains, taken over the coefficient groups
G/G′ and G′, respectively. Then the group H̄q

K(X,A;G,G′) defined over an arbitrary
pair (G,G′) of coefficient groups is the extension of the cohomology group H̄q

K(X,A;G′)
with infinite cochains over G′ by the group H̄q

K(X,A,G/G′) with finite cochains over
G/G′.
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