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1. Introduction. It is well known that in the Alexander-Spanier cohomology theory
[17, 18] or in the isomorphic theory of Cech [9], if the coefficient group G is topological
then either the theory does not take into account the topology on G [9, 18], or considers
only the case when G is compact to obtain a compact cohomology [4, 1]. Continuous
cohomology naturally arises when the coefficient group of a cohomology theory is
topological [2, 3, 11]. The partially continuous Alexander-Spanier cohomology theory
[14] can be considered as a variant of the continuous cohomology of a space with two
topologies in the sense of Bott-Haefliger [15]; also it is isomorphic to the continuous
cohomology of a simplicial space defined by Brown-Szczarba [2].

The idea of K-groups [5, 6], where K is a locally-finite simplicial complex, is used
to introduce the K-types of Alexander-Spanier cohomology with coefficients in a pair
(G,G") of topological abelian groups [7, 8]; namely, K-Alexander-Spanier and partially
continuous K-Alexander-Spanier cohomologies H, H}:. Itis proved that these K-types
satisfied the seven Eilenberg-Steenrod axioms [9]; the excision axiom for the second
K-type is verified for compact Hausdorff spaces when (G,G’) are absolutely retract.
Therefore, the uniqueness theorem of the cohomology theory on the category of com-
pact polyhedral pairs [9] asserts that our Alexander-Spanier K-types over a pair of
absolute retract coefficient abelian groups are naturally isomorphic.

In the present work, we prove that the K-Alexander-Spanier cohomology of a closed
subset in a paracompact space is isomorphic to the direct limit of the K-Alexander-
Spanier cohomology of its neighborhoods, and that the partially continuous K-
Alexander-Spanier cohomology of a neighborhood retract closed subspace of a Haus-
dorff space is isomorphic to the direct limit of the partially continuous K-Alexander-
Spanier cohomology of its neighborhoods. Also a version of the continuity property
is proved. Moreover, we study some applications of the K-type cohomologies.

2. Alexander-Spanier cohomology of K-types. Here we mention the notations
which we used throughout [7, 8].

For an object (X,A) of the category Q of the pairs of topological spaces and their
continuous maps, denote by Q(X,A) [Q(X,A)] the set of the pairs & = (x, '), where
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o is an open covering of X and «’ is a subcollection of « covering A[’ = xn AJ; it is
directed with respect to the refinement relation & < §, that is, « < 8 and «’ < 8’ [9].
Denote by C4(™ (X) the group of functions @7 : X4(M+! . G, where T is a simplex in
K, q(T) =q+dimT, g > 0, and X denotes either a space X or & € Q(X). Let C1™ (X)
be the subgroup of the direct product [[;cx C2™ (X) consisting of such @ = {pT}
for which the condition (k) is satisfied, which states that there is a cofinite subset
(@) of K, that is, K — T (@) is finite such that () 1(G’) = X4+ v1 e ¥(@). The
coboundary 67: C1(X) — C1*1(X) is given by

q(T)+1
(81p) = > (-DipTp T L (a0 N [oiT]@f, 2.1)
i=1 oest(T)

where st(T) = {0 € K: T is (dimo — 1)-face of o}, plm : X7+l — X7 is the projection
defined by: if £ is the T-tuple consisting of t = (xo,...,Xx¢) € X7*! with x; omitted,
then pi” (t) = f;, 0 < i < T. The cohomology groups of the cochain complex C*(X) =
{C4(X), 64} is, in general, uninteresting, as shown in the following theorem [8].

THEOREM 2.1. IfdimK = 0, then H1(C* (X)) = G*X (the subgroup of GX = [[,cx G7,
G = G, consisting of those elements having all but a finite number of their T-coordinates
inG'), and H1(C*(X)) = 0, when q + 0.

To pass to more interesting cohomology groups, the topology of the space X will
be used to define that ¢ € C2(X) is said to be K-locally zero on M < X if there is
x € Qx (M) (the set of external covering of M by open subsets of X) such that @
vanishes on « N M, that is, each @7 vanishes on (xnM)3™+! where ™ = ufug:
Uy € «}. The subgroups of C4(X) consisting of those elements which are K-locally
zero on X, A, respectively, are denoted by CS(X), C1(X,A). The K-Alexander-Spanier
cohomology of (X,A) over (G,G’), denoted by Hf (X,A), is the cohomology of the
quotient cochain complex Cf (X,A) = C*(X,A)/C§ (X).If f:(X,A) — (Y,B) isin Q,
B e Q(Y,B) and & = f~1(B), then f defines a cochain map f*: C¢ (Y,B) — Cf (X,A),
where T(f9¢@) = T(g) for each @ € C4(Y). In turn, f* induces the homomorphism
f* HE(Y,B) — HE(X,A).

On the other hand, for & € Q(X,A), denote by C2 the subgroup of C& = C4(a)
consisting of those @ that vanish on «’ N A. Then we obtain a direct system {CZ }o(x.4)
such that any map f € Q constitutes a map F : {CE}Q(Y’B) - {C%}ax.a) [9]; its limit
is F=.

THEOREM 2.2. The K -Alexander-Spanier cohomology functor {H, f*} is naturally
isomorphic to the functor {lim{H* (Ciawx.a), Fo*} [7].

In the previous part, the topology on (G, G) plays no role; to pass to the second coho-
mology of K-type we characterize an element @ € C4(X) to be K-partially continuous
ifitis continuous on some « € Q(X), thatis, 7 | ®2T+! are continuous functions. Let
L1(X) be the group of all such elements, and Mg (X) = L*(X)/Cj (X). The subgroup
of C&, where « € Q(X), consisting of the K-continuous elements @, that is, 7 are
continuous, is denoted by Ma. Leti: A — X, define M{ (X, A) to be the mapping cone of
i* 1 M (X) — ME(A), (see [13, 18]), assuming that M (X,A) = M (X) e M ' (A), and
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the coboundary is A9(@,y) = (-69,i4@ + 5971 y). The cohomology of MF (X, A) is
the partially continuous K-Alexander-Spanier cohomology of (X, A) over the topolog-
ical pair (G,G’) of coefficient groups; it is denoted by H} (X, A).

On the other hand, if & € Q(X,A), then i defines a cochain map i’ : MZ — MZ; its
mapping cone is denoted by M}.

THEOREM 2.3. For a pair (X,A) € Q with A closed, M{ (X, A) is naturally isomorphic
to im{M3 }&x,4) [7].

THEOREM 2.4. For a discrete space, and q = 0, H} (X) = H (X).

PROOF. Since X4(M*1 admits a discrete topology, it follows that each T-coordinate
@7 of @ € CE(X) is continuous [16]. Then @ is K-partially continuous with respect to
any « € Q(X). Therefore, L1(X) = C{(X) and M{ (X) = CF (X). O

3. Tautness and continuity properties. This article is devoted to study the taut-
ness property for both Alexander-Spanier cohomology of K-types. One of its applica-
tions is the continuity property.

The star of a subset A in a space X with respect to @ € Q(X) is

St(A, ) = U{Uxy € i UgNA = D}, (3.1)

The star of «x is
o = {st(Uy, &) : U € &} (3.2)

DEFINITION 3.1. Let &, 8 € Q(X), then B is a star-refinement of &, written & <*
if < B*.

Denote by N'(A) the collections of neighborhoods {N} of A in X;itis directed down-
ward by inclusion. If Ny < N>, then the inclusion 1y, n, : N2 = N; induces the homo-
morphisms 713, v, : Hi (N1) — HE (N2). Also iy : A = N induces i} : Hg (N) — H (A),
and they define a homomorphism

I° UM {HE(N), 705, N, Feay — Hi (A). (3.3)

THEOREM 3.2 (Tautness). A closed subspace of a paracompact space is a taut sub-
space relative to the K-Alexander-Spanier cohomology, that is, I° is an isomorphism
for each q and any pair (G,G") of coefficient groups.

PROOF. (1) I* is an epimorphism. Let h € H}? (A) with representative @ € C_g (A),
written as h = [@]. Let @ € C4(A) such that @ € @. Then thereis & = {uy = vqaNA:
va € X is open} € Q(A) such that

(81) | x4M+2 =0, (3.4)

Since A is closed, it follows that 8 = {vy} U {X — A} € Q(X). The paracompactness
of X is equivalent to the existence of such y € Q(X) that 8 <* y, and a neighborhood
N of A and an extension f : N — A (not necessarily continuous) of the identity map id
of A, thatis, fiy =idy, such that f(u, NnN) < st(u,,y) for each u, € y [18]. One can
show that f defines a cochain map f*: C*(A) — C*(N) by (fip)T = @7 f@0+D) with
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T(f1p) = T(p), where f( : NT — AT given by f(xo,...,X7-1) = (f(X0),..., f (X7-1)).
The relation < y* yields that for each u, € y there is ug €  such that f(u,NN) €
st(uy,y) < ug. Because f(N) = A, then f(u, NN) € ugnNA < uy for some uy € .
By using (3.4), we get (89.f9p)T | (y nN)4(M+2 = 0, that is, §1(fip) € cg” (N). Then
f9@ represents a cocycle faip € C_‘I? (N) which, in turn, defines hy € FI,"}(N), that is,
hy = [fa@]. Let t € A19TD+1 then

(& (f19))T(t) = QT fO+DAT (1) — T (1), (3.5)

and therefore, i{hy = [(fin)i@] = [@] = h.

(2) I* is a monomorphism. Let h; € HE(Ny), @1 € CE(N7) and @1 € C7(N;) such
that @1 € 1, 1 € hy, and [h;] € KerI®.

First, one can consider that the neighborhood N; of A is a paracompact subset of
X. For, if N; is not so, then there is a paracompact subset M; of X such that M; < N;
(e.g., take M; = X) [10]. The inclusion 7my, N, induces an epimorphism ﬁ,@l N 18], let
Ty, N, W1 = @1. Thus the cohomology class of Hy (My) represented by ¢y is [hi],
which shows that N; can be taken paracompact.

Now, @; € Kerd4, or equivalently, there is & = {uq = Va " N1 : Vo S X is open} €
Q(N7) such that

(691)" | a2 =0, (3.6)

On the other hand, the assumption {le hy = 0 asserts that there exists ¢ € C’,?fl(A)
such that iy, @1 — 6971 € Cj(A), where @ € @. This means that there is 8 = {ug =
wgNA:wg < X is open} € Q(A) such that

(if,@1)" = (87 )" on AT+, 3.7)

Assume that B; = {ug, = wgN N} U {N; — A}. The paracompactness of N; asserts
the existence of y;,y» € Q(N;) for which & <* y; and B, <* y». The directedness of
Q(N;) implies that there is y € Q(N;) for which y;,y> < y; and so for each u, € y
there are u,, € y;, i=1,2 and ux € &, ug, € 1 such that

Uy C Uy, SSt(Uy,,Yi) S UaNUB,. (3.8)

Then
st(uy,y) s uaNug,, (3.9)

that is, &, 81 <* y. According to [18, Lemma 6.6.1], there is a neighborhood N> of N;
and f: N> — A (not necessarily continuous) such that fiy, =id4, and ug, € p1 such
that

S(uynNz) cst(uy,y) cug, Sug, NA=1ug. (3.10)

Then, by (3.7), we get
(8971 1) = (F4i% @1) on (ynNz)4 ™" (3.11)
1
Define D9 : Ci+1(N;) — C1(N>) by

if t = (x0,...,Xqm) € NI and g, € C17L(Ny) (3.12)
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then
q(T)
DY1) (8) = > (1) YT (Voye- s V10211 Zq(1)), (3.13)
r=0
where
yi=mnn (X)), zi=(in ) (x5) = fx)), (3.14)

and T(D%y1) = T(y1). By a similar calculation as given in [7], we get
(817D 1) " = (fi%, @1) " — (T, n, @1) " = (DT6%1) " (3.15)
By (3.9), (3.10) for each u, € y, there is uy € & such that
(uy NN2) U f(uy NN2) S Ug. (3.16)

Then, by (3.6), (3.11), and (3.15) consequently, we have

(891D )" = (f1if, @1)" = (M v, @1) T on (y nN2) T, (3.17)
and so
(Tl o @1)" = (891 (f1 lp-DT1g,))" on (ynN,)* ™+, (3.18)
N1N»

Therefore
Yo = fq71@ —Dq71091 S qul (Ng) (3.19)

such that
(M, ®1)" = (377 'w2)™ om (ynN) "™, (3.20)
that is, 7Ty, N, 11 = 0 which completes the proof. O

COROLLARY 3.3. Any one-point subset of a paracompact is a taut subspace relative
to Af.

The next part is devoted to studying the tautness property for Hj, which is also
valid for Hf. The idea and results of «-B-contiguous maps, introduced in [7] plays an
essential role in this study.

The inclusions 1y, n, : N2> = Ni, corresponding to the relations N; < N> in N(A),
define the direct system {H,?(N),ﬁfgl N, }- Also the inclusion iy : A — N, where N €
N(A), defines a map of direct systems [9]:

IN : {Hq (M;)!ﬁuB}Q(N) - {Hq (Mg)aﬁ&B}Q(A)l (321)

where x € Q(N), & = i;,l () = N A. On the other hand, {fj*v} defines a homomor-
phism
I Hm{HE (N), 705 n, Vo a) — HEA. (3.22)

THEOREM 3.4 (Tautness). If A is a closed subset in a Hausdorf{f space X such that A
is a neighborhood retract, then A is a taut subspace relative to the cohomology H}.
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PROOF. (1) [ is an epimorphism. Let h € FI,?(A), without loss of generality, the
neighborhood retractness of A in X yields that A has an open neighborhood U (in X)
such that U < N and a retraction 7; : U — A (if U; is an open neighborhood of A of
which A is retract but U; ¢ N, take U = U; nIntN). Let iy : A — U then, I*[¥] (h)] =
% (1h) =id,(h) = h.

(2) I* is a monomorphism. Let [h] € Ker[®. It is sufficient to construct V € N (A)
satisfying N < V and 773, h = 0. Since the cohomology functor commutes with the
direct limit [18]. Theorem 2.3 asserts that one may assume that h belongs to
@{Hq(M;),ﬁjﬁ}Q<N) with representative hy € H?(MZ), where

&= {Uuy=wsNN:wy< X is open} € Q(N). (3.23)
Let 01 = {wa} U{X —A}, &= 1 NA,
B=1{ug=1"(us) N (uanU):p +uzc &}, (3.24)

V=Uuy T=T1|V:V <A and & = 1 nV. Then & € Q(A), &' = xnV € Q(V),
ug < ug for each ug + ¢, B is a family of open subsets in U and so open in X, V is
an open neighborhood of A such that V € U, and B € Q(V). Since ug = ugNuy <
VNug = Uy, it follows that &’ < B. Also &’ NA = xnNA =& and j~ !B = & where
jiA-V.If€:V < N, and [@] € H1(M}), then

s glalel = ji (@™ | T [ 10} = [{@T | &1}, (3.25)

that is,
Jis gl = T oo (3.26)

where {f/,a :M% — M} is induced by iy : A — N.

On the other hand, (jT)ug < ug and so j1,idy : V — V are - B-contiguous [7].

It follows that (i?lv)g,ﬁ, (ﬁ’)g,ﬁ :Mg - Mg are cochain homotopic [7]. Then (i?lv)’gfﬁ
= (ﬁ);fﬁ = 74 4J4, which yields that j; is a monomorphism. Because i3 (ha = 0,
equation (3.26) yields that fra,BE;ﬁha = 0. Since ngh(x,ﬁ;ﬂﬁ(ﬂaha) represent the zero

element of im{H (M), s} o), it follows that 7ty h = [f5h] = 0. 0

The rest of this article is centered around a special case of the continuity property
for Hf. As an application of the continuity property the cohomology groups satisfy a
much stronger form of the excision axiom.

The following results can be deduced from those given in [9].

LEMMA 3.5. Let X be the intersection of a nested system {Xy, g« } A, then
(i) X and lim{Xy, ga}r are homeomorphic.
(ii) If the nested system consists of compact Hausdorff spaces then X is a closed
subset of each X.
(iii) If N is an open neighborhood of X in X (for some « € A), then there is B > « in
A such that Xg < N.
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The inclusions iy : X = X define a map
I {H{ (Xa), g} — HE(X), (3.27)

its direct limit is denoted by I*.

THEOREM 3.6 (weak continuity). If X is the intersection of a nested system {X,
Tt A Of compact Hausdorff spaces, then I* is an isomorphism.

PROOF. Since each X, is a paracompact Hausdorff space [10] and X is closed in X
(Lemma 3.5), it follows, by Theorem 3.2, that X is a taut subspace in X, relative to H}.

(1) I* is an epimorphism. Let h € HE(X), then, according to Theorem 3.2, there
exists an open neighborhood N of X in X, and hy € H (N), such that i};(hy) = h. By
Lemma 3.5, there is § > o in A such that Xpg € N. Let ig: X = Xg, jg : Xp — N. Because
iE (.]_EI/LN) = (m)*h]\f = 1?;'\7]’1]\] = h, then I~ [J_E]/LN] = h.

(2) I® is a monomorphism. Let [hy] € KerI®, that is, iXh, = 0. The tautness of X
in X yields, by Theorem 3.2, an open neighborhood N of X in X, such that hy is the
unique element for which iyf hy = 0, where iy : X — N. Because iy (i5hy) = i5ha = 0,
then i{hy = 0.Let B > xin A such that Xg = N, then 7t fgho = (inig) *ha = j (ixhe) =
0, thatis, [hy] = 0. O

4. Applications. One of the good applications of the Alexander-Spanier cohomol-
ogy of K-types is the study of the 0-dimensional cohomology groups and their relation
with the connectedness of the space [7]. In this article, two applications are given. In a
next work, we hope to give more applications. As a first application, we define the par-
tially continuous K-Alexander-Spanier cohomology of an excision map and calculate
its value for some dimensions.

Let f*: M{ (Y,B) — Mf (X, A) be the cochain map induced by the map f in Q. Define
M{ (f) to be the mapping cone of F* by

ME(f) = MUY, B)e M{ ™ (X, A)
-1 -1 -2 4.1)
=MiY)eM{ (ByeM! (X))o ME 7 (A),

and the coboundary is

Aq((Pz,llJz.(Pl,ll/l)
= (=AY @2, p2), AU @1, 1) + f1(P2,¥2))

_ s s -1
= (5q<P2ﬁiq(P2*5q71W2.*5q71<P1 + [0, 17 1 + 8972y +f|A>q Yo.

4.2)
Then there is a short exact sequence
+ * * -
0 — ME(X,A) 2= M{ (f) == M{(Y,B) — 0,, 4.3)

N
where A*, x* are injection, projection, respectively; M* (X, A) is the complex My (X, A)
with the dimensions all raised by one, and M* (Y, B) is the complex M* (Y, B) with the
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sign of the coboundary changed [12]. Note that H4(M{ (Y,B)) = H,?(Y,B). Let V be an
open subset of X such that V cIntA, B= X -V, and C = A—-V. Put the excision map
e:(B,C) = (X,A) in (4.3) instead of f, and then apply the cohomology functor to get
the long exact sequence

A e) X At (x,A) - AYB,C0) A A o) — - (4.4)

Thus the groups Hi (e), "' (e) measure how much the cohomological groups deviate
from the excision axiom.

THEOREM 4.1. IfdimK =0, e: (B,C) = (X,A) is an excision map, where A is closed
and (G,G’) any pair of topological abelian groups, then Hz(e) =0whenq=0o0rq=1.

PROOF. (1) Case g =0. We have
M2(e) = M2(X,A) = M2 (X) = LY (X). (4.5)

Let @ € M2(e) such that Ay = 0, then i°¢ = 0, ép = 0. Then @ = 0 [7], which
means that Ker A = 0.
(2) Case g = 1. We have

M} (e) = My (X)®L°(A) @ LO(B). (4.6)

It is sufficient to show that Ker Al < Im A0, Let (@, >, @1,0) € Ker Al, then

Slo=0, T@r=-5p, 4.7)
e =8, (4.8)
A (-y2) =joi, (4.9)

wherei:A- X, j:C—Bande; =¢e|C.
By (4.9), there exists @ € MY (X) [7] such that

Pp=—y,, &p=0p. (4.10)
By (4.8), (4.9), and (4.10), we get

i1(°p-@2) =0, &("p-p;)=0. 4.11)
Then 6°@p = @» [7], which together with (4.11) yield (g,0,0,0) € M,%(e) such that
A%@,0,0,0) = (@2, P2,91,0). O

Combining the sequence (4.4) and the above theorem, we get the following result.

COROLLARY 4.2. Under the assumptions of Theorem 4.1, the map &*° :HI%(X,A) -
HY(B,C) is an isomorphism but é*! is a monomorphism.

Next we give a second application to the work introduced in this paper.

Let n:(G,G") — (F,F") be a homeomorphism of pairs of (discrete) abelian groups,
which is an epimorphism, (L,L’) = Kern and A: (L,L") = (G,G’). Then for each & €
Q(X,A), the maps n,A define naturally a short exact sequence

0— C4(&L,L') — CY&G,G') — CI(&;F,F') — 0; 4.12)
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its cohomology is a long exact sequence [12] denoted by Ss. One can show that
{Satax,a) is a direct system, its direct limit [7, 8] is

- — A (X, A, F') — HE(X, AL L) — HE(X,A;G,G)

’ o (4.13)
— HY(X,AF,F') — HF W (X, A;LL) — -+

Now instead of F take the factor group G/G’ and so F’ will be the null subgroup of
G/G’. Then the above sequence yields the following result.

THEOREM 4.3. Consider (X,A) has a trivial (q —1)-dimensional space K -Alexander-
Spanier cohomology group with finite cochains, and a trivial (q + 1)-dimensional K -
Alexander-Spanier cohomology with infinite cochains, taken over the coefficient groups
G/G' and G', respectively. Then the group H}}(X,A;G,G’) defined over an arbitrary
pair (G,G’) of coefficient groups is the extension of the cohomology group H} (X, A;G')
with infinite cochains over G’ by the group H(X,A,G/G’) with finite cochains over
G/G'.
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