FUZZY BCI-SUBALGEBRAS WITH INTERVAL-VALUED MEMBERSHIP FUNCTIONS

SUNG MIN HONG, YOUNG BAE JUN, SEON JEONG KIM, and GWANG IL KIM

(Received 3 May 2000)

ABSTRACT. The purpose of this paper is to define the notion of an interval-valued fuzzy BCI-subalgebra (briefly, an i-v fuzzy BCI-subalgebra) of a BCI-algebra. Necessary and sufficient conditions for an i-v fuzzy set to be an i-v fuzzy BCI-subalgebra are stated. A way to make a new i-v fuzzy BCI-subalgebra from old one is given. The images and inverse images of i-v fuzzy BCI-subalgebras are defined, and how the images or inverse images of i-v fuzzy BCI-subalgebras become i-v fuzzy BCI-subalgebras is studied.

2000 Mathematics Subject Classification. Primary 06F35, 03B52.

1. Introduction. The notion of BCK-algebras was proposed by Iami and Iséki in 1966. In the same year, Iséki [2] introduced the notion of a BCI-algebra which is a generalization of a BCK-algebra. Since then numerous mathematical papers have been written investigating the algebraic properties of the BCK/BCI-algebras and their relationship with other universal structures including lattices and Boolean algebras. Fuzzy sets were initiated by Zadeh [3]. In [4], Zadeh made an extension of the concept of a fuzzy set by an interval-valued fuzzy set (i.e., a fuzzy set with an interval-valued membership function). This interval-valued fuzzy set is referred to as an i-v fuzzy set. In [4], Zadeh also constructed a method of approximate inference using his i-v fuzzy sets. In [1], Biswas defined interval-valued fuzzy subgroups (i.e., i-v fuzzy subgroups) of Rosenfeld's nature, and investigated some elementary properties. In this paper, using the notion of interval-valued fuzzy set by Zadeh, we introduce the concept of an interval-valued fuzzy BCI-subalgebra (briefly, i-v fuzzy BCI-subalgebra) of a BCI-algebra, and study some of their properties. Using an i-v level set of an i-v fuzzy set, we state a characterization of an i-v fuzzy BCI-subalgebra. We prove that every BCI-subalgebra of a BCI-algebra X can be realized as an i-v level BCI-subalgebra of an i-v fuzzy BCI-subalgebra of X. In connection with the notion of homomorphism, we study how the images and inverse images of i-v fuzzy BCI-subalgebras become i-v fuzzy BCI-subalgebras.

2. Preliminaries. In this section, we include some elementary aspects that are necessary for this paper.

Recall that a *BCI-algebra* is an algebra (X, *, 0) of type (2, 0) satisfying the following axioms:

(I) ((x * y) * (x * z)) * (z * y) = 0,

(II) (x * (x * y)) * y = 0,

(III) x * x = 0, and

(IV) x * y = 0 and y * x = 0 imply x = y,

for every $x, y, z \in X$.

Note that the equality 0 * (x * y) = (0 * x) * (0 * y) holds in a BCI-algebra. A non-empty subset *S* of a BCI-algebra *X* is called a *BCI-subalgebra* of *X* if $x * y \in S$ whenever $x, y \in S$. A mapping $f : X \to Y$ of BCI-algebras is called a *homomorphism* if f(x * y) = f(x) * f(y) for all $x, y \in X$.

We now review some fuzzy logic concepts. Let *X* be a set. A *fuzzy set* in *X* is a function $\mu : X \to [0,1]$. Let *f* be a mapping from a set *X* into a set *Y*. Let ν be a fuzzy set in *Y*. Then the *inverse image* of ν , denoted by $f^{-1}[\nu]$, is the fuzzy set in *X* defined by $f^{-1}[\nu](x) = \nu(f(x))$ for all $x \in X$. Conversely, let μ be a fuzzy set in *X*. The *image* of μ , written as $f[\mu]$, is a fuzzy set in *Y* defined by

$$f[\mu](\gamma) = \begin{cases} \sup_{z \in f^{-1}(\gamma)} \mu(z) & \text{if } f^{-1}(\gamma) \neq \emptyset, \\ 0 & \text{otherwise,} \end{cases}$$
(2.1)

for all $y \in Y$, where $f^{-1}(y) = \{x \mid f(x) = y\}$.

An *interval-valued fuzzy set* (briefly, *i-v fuzzy set*) A defined on X is given by

$$A = \{ (x, [\mu_A^L(x), \mu_A^U(x)]) \}, \quad \forall x \in X \text{ (briefly, denoted by } A = [\mu_A^L, \mu_A^U]), \qquad (2.2)$$

where μ_A^L and μ_A^U are two fuzzy sets in *X* such that $\mu_A^L(x) \le \mu_A^U(x)$ for all $x \in X$.

Let $\bar{\mu}_A(x) = [\mu_A^L(x), \mu_A^U(x)], \forall x \in X$ and let D[0,1] denotes the family of all closed subintervals of [0,1]. If $\mu_A^L(x) = \mu_A^U(x) = c$, say, where $0 \le c \le 1$, then we have $\bar{\mu}_A(x) = [c,c]$ which we also assume, for the sake of convenience, to belong to D[0,1]. Thus $\bar{\mu}_A(x) \in D[0,1], \forall x \in X$, and therefore the i-v fuzzy set *A* is given by

$$A = \{ (x, \bar{\mu}_A(x)) \}, \quad \forall x \in X, \text{ where } \bar{\mu}_A : X \longrightarrow D[0, 1].$$

$$(2.3)$$

Now let us define what is known as *refined minimum* (briefly, rmin) of two elements in D[0,1]. We also define the symbols " \geq ", " \leq ", and "=" in case of two elements in D[0,1]. Consider two elements $D_1 := [a_1, b_1]$ and $D_2 := [a_2, b_2] \in D[0,1]$. Then

$$\operatorname{rmin}(D_1, D_2) = [\min\{a_1, a_2\}, \min\{b_1, b_2\}];$$

$$D_1 \ge D_2 \quad \text{if and only if } a_1 \ge a_2, \ b_1 \ge b_2;$$
(2.4)

and similarly we may have $D_1 \leq D_2$ and $D_1 = D_2$.

DEFINITION 2.1. A fuzzy set μ in a BCI-algebra X is called a *fuzzy BCI-subalgebra* of X if $\mu(x * y) \ge \min{\{\mu(x), \mu(y)\}}$ for all $x, y \in X$.

3. Interval-valued fuzzy BCI-subalgebras. In what follows, let *X* denote a BCI-algebra unless otherwise specified. We begin with the following two propositions.

136

PROPOSITION 3.1. Let f be a homomorphism from a BCI-algebra X into a BCI-algebra Y. If v is a fuzzy BCI-subalgebra of Y, then the inverse image $f^{-1}[v]$ of v is a fuzzy BCI-subalgebra of X.

PROOF. For any $x, y \in X$, we have

$$f^{-1}[v](x * y) = v(f(x * y)) = v(f(x) * f(y))$$

$$\geq \min\{v(f(x)), v(f(y))\}$$

$$= \min\{f^{-1}[v](x), f^{-1}[v](y)\}.$$
(3.1)

Hence $f^{-1}[\nu]$ is a fuzzy BCI-subalgebra of *X*.

PROPOSITION 3.2. Let $f : X \to Y$ be a homomorphism between BCI-algebras X and Y. For every fuzzy BCI-subalgebra μ of X, the image $f[\mu]$ of μ is a fuzzy BCI-subalgebra of Y.

PROOF. We first prove that

$$f^{-1}(y_1) * f^{-1}(y_2) \subseteq f^{-1}(y_1 * y_2)$$
(3.2)

for all $y_1, y_2 \in Y$. For, if $x \in f^{-1}(y_1) * f^{-1}(y_2)$, then $x = x_1 * x_2$ for some $x_1 \in f^{-1}(y_1)$ and $x_2 \in f^{-1}(y_2)$. Since f is a homomorphism, it follows that $f(x) = f(x_1 * x_2) = f(x_1) * f(x_2) = y_1 * y_2$ so that $x \in f^{-1}(y_1 * y_2)$. Hence (3.2) holds. Now let $y_1, y_2 \in Y$ be arbitrarily given. Assume that $y_1 * y_2 \notin \text{Im}(f)$. Then $f[\mu](y_1 * y_2) = 0$. But if $y_1 * y_2 \notin \text{Im}(f)$, that is, $f^{-1}(y_1 * y_2) = \emptyset$, then $f^{-1}(y_1) = \emptyset$ or $f^{-1}(y_2) = \emptyset$ by (3.2). Thus $f[\mu](y_1) = 0$ or $f[\mu](y_2) = 0$, and so

$$f[\mu](y_1 * y_2) = 0 = \min\{f[\mu](y_1), f[\mu](y_2)\}.$$
(3.3)

Suppose that $f^{-1}(y_1 * y_2) \neq \emptyset$. Then we should consider the two cases:

$$f^{-1}(y_1) = \emptyset$$
 or $f^{-1}(y_2) = \emptyset$, (3.4)

$$f^{-1}(y_1) \neq \emptyset$$
 and $f^{-1}(y_2) \neq \emptyset$. (3.5)

For the case (3.4), we have $f[\mu](y_1) = 0$ or $f[\mu](y_2) = 0$, and so

$$f[\mu](y_1 * y_2) \ge 0 = \min\{f[\mu](y_1), f[\mu](y_2)\}.$$
(3.6)

Case (3.5) implies, from (3.2), that

$$f[\mu](y_1 * y_2) = \sup_{z \in f^{-1}(y_1 * y_2)} \mu(z) \ge \sup_{z \in f^{-1}(y_1) * f^{-1}(y_2)} \mu(z)$$

$$= \sup_{x_1 \in f^{-1}(y_1), \ x_2 \in f^{-1}(y_2)} \mu(x_1 * x_2).$$
(3.7)

Since μ is a fuzzy BCI-subalgebra of *X*, it follows from the definition of a fuzzy BCI-subalgebra that

$$f[\mu](y_{1} * y_{2}) \geq \sup_{x_{1} \in f^{-1}(y_{1}), x_{2} \in f^{-1}(y_{2})} \min \{\mu(x_{1}), \mu(x_{2})\}$$

$$= \sup_{x_{1} \in f^{-1}(y_{1})} \left(\min \left\{ \sup_{x_{2} \in f^{-1}(y_{2})} \mu(x_{1}), \mu(x_{2}) \right\} \right)$$

$$= \sup_{x_{1} \in f^{-1}(y_{1})} \left(\min \left\{ \mu(x_{1}), \sup_{x_{2} \in f^{-1}(y_{2})} \mu(x_{2}) \right\} \right)$$

$$= \sup_{x_{1} \in f^{-1}(y_{1})} \left(\min \{\mu(x_{1}), f[\mu](y_{2})\} \right)$$

$$= \min \left\{ \sup_{x_{1} \in f^{-1}(y_{1})} \mu(x_{1}), f[\mu](y_{2}) \right\}$$

$$= \min \{f[\mu](y_{1}), f[\mu](y_{2})\}.$$
(3.8)

Hence $f[\mu](y_1 * y_2) \ge \min\{f[\mu](y_1), f[\mu](y_2)\}$ for all $y_1, y_2 \in Y$. This completes the proof.

DEFINITION 3.3. An i-v fuzzy set *A* in *X* is called an *interval-valued fuzzy BCI-subalgebra* (briefly, *i-v fuzzy BCI-subalgebra*) of *X* if

$$\bar{\mu}_A(x*y) \ge \operatorname{rmin}\left\{\bar{\mu}_A(x), \bar{\mu}_A(y)\right\} \quad \forall x, y \in X.$$
(3.9)

EXAMPLE 3.4. Let $X = \{0, a, b, c\}$ be a BCI-algebra with the following Cayley table:

TABLE 2	3.	1	
---------	----	---	--

*	0	а	b	С
0	0	С	0	а
а	а	0	а	с
b	b	С	0	а
С	С	а	С	0

let an i-v fuzzy set A defined on X be given by

$$\bar{\mu}_A(x) = \begin{cases} [0.2, 0.8] & \text{if } x \in \{0, b\}, \\ [0.1, 0.7] & \text{otherwise.} \end{cases}$$
(3.10)

It is easy to check that *A* is an i-v fuzzy BCI-subalgebra of *X*.

LEMMA 3.5. If A is an i-v fuzzy BCI-subalgebra of X, then $\bar{\mu}_A(0) \ge \bar{\mu}_A(x)$ for all $x \in X$.

PROOF. For every $x \in X$, we have

$$\bar{\mu}_{A}(0) = \bar{\mu}_{A}(x * x) \ge \min\{\bar{\mu}_{A}(x), \bar{\mu}_{A}(x)\}
= \min\{[\mu_{A}^{L}(x), \mu_{A}^{U}(x)], [\mu_{A}^{L}(x), \mu_{A}^{U}(x)]\}
= [\mu_{A}^{L}(x), \mu_{A}^{U}(x)] = \bar{\mu}_{A}(x),$$
(3.11)

this completes the proof.

THEOREM 3.6. Let A be an i-v fuzzy BCI-subalgebra of X. If there is a sequence $\{x_n\}$ in X such that

$$\lim_{n \to \infty} \bar{\mu}_A(x_n) = [1, 1], \tag{3.12}$$

then $\bar{\mu}_A(0) = [1,1]$.

PROOF. Since $\bar{\mu}_A(0) \ge \bar{\mu}_A(x)$ for all $x \in X$, we have $\bar{\mu}_A(0) \ge \bar{\mu}_A(x_n)$ for every positive integer *n*. Note that

$$[1,1] \ge \bar{\mu}_A(0) \ge \lim_{n \to \infty} \bar{\mu}_A(x_n) = [1,1].$$
(3.13)

Hence $\bar{\mu}_A(0) = [1, 1]$.

THEOREM 3.7. An *i*- ν fuzzy set $A = [\mu_A^L, \mu_A^U]$ in X is an *i*- ν fuzzy BCI-subalgebra of X if and only if μ_A^L and μ_A^U are fuzzy BCI-subalgebras of X.

PROOF. Suppose that μ_A^L and μ_A^U are fuzzy BCI-subalgebras of *X*. Let $x, y \in X$. Then

$$\bar{\mu}_{A}(x * y) = \left[\mu_{A}^{L}(x * y), \mu_{A}^{U}(x * y)\right]
\geq \left[\min\left\{\mu_{A}^{L}(x), \mu_{A}^{L}(y)\right\}, \min\left\{\mu_{A}^{U}(x), \mu_{A}^{U}(y)\right\}\right]
= \min\left\{\left[\mu_{A}^{L}(x), \mu_{A}^{U}(x)\right], \left[\mu_{A}^{L}(y), \mu_{A}^{U}(y)\right]\right\}
= \min\left\{\bar{\mu}_{A}(x), \bar{\mu}_{A}(y)\right\}.$$
(3.14)

Hence *A* is an i-v fuzzy BCI-subalgebra of *X*.

Conversely, assume that *A* is an i-v fuzzy BCI-subalgebra of *X*. For any $x, y \in X$, we have

$$[\mu_{A}^{L}(x * y), \mu_{A}^{U}(x * y)] = \bar{\mu}_{A}(x * y) \ge \min\{\bar{\mu}_{A}(x), \bar{\mu}_{A}(y)\}$$

= rmin { [$\mu_{A}^{L}(x), \mu_{A}^{U}(x)$], [$\mu_{A}^{L}(y), \mu_{A}^{U}(y)$] } (3.15)
= [min { $\mu_{A}^{L}(x), \mu_{A}^{L}(y)$ }, min { $\mu_{A}^{U}(x), \mu_{A}^{U}(y)$ }].

It follows that $\mu_A^L(x * y) \ge \min \{\mu_A^L(x), \mu_A^L(y)\}$ and $\mu_A^U(x * y) \ge \min \{\mu_A^U(x), \mu_A^U(y)\}$. Hence μ_A^L and μ_A^U are fuzzy BCI-subalgebras of *X*.

THEOREM 3.8. Let A be an i-v fuzzy set in X. Then A is an i-v fuzzy BCI-subalgebra of X if and only if the nonempty set

$$U(A; [\delta_1, \delta_2]) := \{ x \in X \mid \bar{\mu}_A(x) \ge [\delta_1, \delta_2] \}$$
(3.16)

is a BCI-subalgebra of X for every $[\delta_1, \delta_2] \in D[0, 1]$ *.*

We then call $\overline{U}(A; [\delta_1, \delta_2])$ the *i-v level BCI-subalgebra* of *A*.

PROOF. Assume that *A* is an i-v fuzzy BCI-subalgebra of *X* and let $[\delta_1, \delta_2] \in D[0, 1]$ be such that $x, y \in \overline{U}(A; [\delta_1, \delta_2])$. Then

$$\bar{\mu}_A(x \ast y) \ge \operatorname{rmin}\left\{\bar{\mu}_A(x), \bar{\mu}_A(y)\right\} \ge \operatorname{rmin}\left\{\left[\delta_1, \delta_2\right], \left[\delta_1, \delta_2\right]\right\} = \left[\delta_1, \delta_2\right], \quad (3.17)$$

and so $x * y \in \overline{U}(A; [\delta_1, \delta_2])$. Thus $\overline{U}(A; [\delta_1, \delta_2])$ is a BCI-subalgebra of *X*.

Conversely, assume that $\overline{U}(A; [\delta_1, \delta_2]) \ (\neq \emptyset)$ is a BCI-subalgebra of *X* for every $[\delta_1, \delta_2] \in D[0, 1]$. Suppose there exist $x_0, y_0 \in X$ such that

$$\bar{\mu}_A(x_0 * y_0) < \min\{\bar{\mu}_A(x_0), \bar{\mu}_A(y_0)\}.$$
(3.18)

Let $\bar{\mu}_A(x_0) = [\gamma_1, \gamma_2], \bar{\mu}_A(\gamma_0) = [\gamma_3, \gamma_4], \text{ and } \bar{\mu}_A(x_0 * \gamma_0) = [\delta_1, \delta_2].$ Then

$$[\delta_1, \delta_2] < \min\{[\gamma_1, \gamma_2], [\gamma_3, \gamma_4]\} = [\min\{\gamma_1, \gamma_3\}, \min\{\gamma_2, \gamma_4\}].$$
(3.19)

Hence $\delta_1 < \min\{\gamma_1, \gamma_3\}$ and $\delta_2 < \min\{\gamma_2, \gamma_4\}$. Taking

$$[\lambda_1, \lambda_2] = \frac{1}{2} (\bar{\mu}_A(x_0 * y_0) + \operatorname{rmin} \{ \bar{\mu}_A(x_0), \bar{\mu}_A(y_0) \}), \qquad (3.20)$$

we obtain

$$[\lambda_1, \lambda_2] = \frac{1}{2} ([\delta_1, \delta_2] + [\min\{\gamma_1, \gamma_3\}, \min\{\gamma_2, \gamma_4\}]) = \left[\frac{1}{2} (\delta_1 + \min\{\gamma_1, \gamma_3\}), \frac{1}{2} (\delta_2 + \min\{\gamma_2, \gamma_4\})\right].$$
(3.21)

It follows that

$$\min\{\gamma_{1}, \gamma_{3}\} > \lambda_{1} = \frac{1}{2}(\delta_{1} + \min\{\gamma_{1}, \gamma_{3}\}) > \delta_{1},$$

$$\min\{\gamma_{2}, \gamma_{4}\} > \lambda_{2} = \frac{1}{2}(\delta_{2} + \min\{\gamma_{2}, \gamma_{4}\}) > \delta_{2}$$
(3.22)

so that $[\min\{\gamma_1, \gamma_3\}, \min\{\gamma_2, \gamma_4\}] > [\lambda_1, \lambda_2] > [\delta_1, \delta_2] = \bar{\mu}_A(x_0 * y_0)$. Therefore, $x_0 * y_0 \notin \bar{U}(A; [\lambda_1, \lambda_2])$. On the other hand,

$$\bar{\mu}_{A}(x_{0}) = [\gamma_{1}, \gamma_{2}] \ge [\min\{\gamma_{1}, \gamma_{3}\}, \min\{\gamma_{2}, \gamma_{4}\}] > [\lambda_{1}, \lambda_{2}],
\bar{\mu}_{A}(\gamma_{0}) = [\gamma_{3}, \gamma_{4}] \ge [\min\{\gamma_{1}, \gamma_{3}\}, \min\{\gamma_{2}, \gamma_{4}\}] > [\lambda_{1}, \lambda_{2}],$$
(3.23)

and so $x_0, y_0 \in \overline{U}(A; [\lambda_1, \lambda_2])$. It contradicts that $\overline{U}(A; [\lambda_1, \lambda_2])$ is a BCI-subalgebra of *X*. Hence $\overline{\mu}_A(x * y) \ge \min{\{\overline{\mu}_A(x), \overline{\mu}_A(y)\}}$ for all $x, y \in X$. This completes the proof.

THEOREM 3.9. Every BCI-subalgebra of X can be realized as an i-v level BCI-subalgebra of an i-v fuzzy BCI-subalgebra of X.

PROOF. Let *Y* be a BCI-subalgebra of *X* and let *A* be an i-v fuzzy set on *X* defined by

$$\bar{\mu}_A(x) = \begin{cases} [\alpha_1, \alpha_2] & \text{if } x \in Y, \\ [0,0] & \text{otherwise,} \end{cases}$$
(3.24)

where $\alpha_1, \alpha_2 \in (0, 1]$ with $\alpha_1 < \alpha_2$. It is clear that $\tilde{U}(A; [\alpha_1, \alpha_2]) = Y$. We show that *A*

140

is an i-v fuzzy BCI-subalgebra of *X*. Let $x, y \in X$. If $x, y \in Y$, then $x * y \in Y$ and so

$$\bar{\mu}_A(x * y) = [\alpha_1, \alpha_2] = \operatorname{rmin} \{ [\alpha_1, \alpha_2], [\alpha_1, \alpha_2] \} = \operatorname{rmin} \{ \bar{\mu}_A(x), \bar{\mu}_A(y) \}.$$
(3.25)

If $x, y \notin Y$, then $\bar{\mu}_A(x) = [0,0] = \bar{\mu}_A(y)$ and thus

$$\bar{\mu}_A(x * y) \ge [0,0] = \min\{[0,0], [0,0]\} = \min\{\bar{\mu}_A(x), \bar{\mu}_A(y)\}.$$
(3.26)

If $x \in Y$ and $y \notin Y$, then $\bar{\mu}_A(x) = [\alpha_1, \alpha_2]$ and $\bar{\mu}_A(y) = [0, 0]$. It follows that

$$\bar{\mu}_A(x * y) \ge [0,0] = \operatorname{rmin}\left\{ \left[\alpha_1, \alpha_2 \right], [0,0] \right\} = \operatorname{rmin}\left\{ \bar{\mu}_A(x), \bar{\mu}_A(y) \right\}.$$
(3.27)

Similarly for the case $x \notin Y$ and $y \in Y$, we get $\bar{\mu}_A(x * y) \ge \text{rmin}\{\bar{\mu}_A(x), \bar{\mu}_A(y)\}$. Therefore *A* is an i-v fuzzy BCI-subalgebra of *X*, and the proof is complete.

THEOREM 3.10. Let Y be a subset of X and let A be an i-v fuzzy set on X which is given in the proof of Theorem 3.9. If A is an i-v fuzzy BCI-subalgebra of X, then Y is a BCI-subalgebra of X.

PROOF. Assume that *A* is an i-v fuzzy BCI-subalgebra of *X*. Let $x, y \in Y$. Then $\bar{\mu}_A(x) = [\alpha_1, \alpha_2] = \bar{\mu}_A(y)$, and so

$$\bar{\mu}_{A}(x * y) \ge \min\{\bar{\mu}_{A}(x), \bar{\mu}_{A}(y)\} = \min\{[\alpha_{1}, \alpha_{2}], [\alpha_{1}, \alpha_{2}]\} = [\alpha_{1}, \alpha_{2}].$$
(3.28)

This implies that $x * y \in Y$. Hence *Y* is a BCI-subalgebra of *X*.

THEOREM 3.11. If A is an i-v fuzzy BCI-subalgebra of X, then the set

$$X_{\bar{\mu}_A} := \{ x \in X \mid \bar{\mu}_A(x) = \bar{\mu}_A(0) \}$$
(3.29)

is a BCI-subalgebra of X.

PROOF. Let $x, y \in X_{\bar{\mu}_A}$. Then $\bar{\mu}_A(x) = \bar{\mu}_A(0) = \bar{\mu}_A(y)$, and so

$$\bar{\mu}_A(x * y) \ge \min\{\bar{\mu}_A(x), \bar{\mu}_A(y)\} = \min\{\bar{\mu}_A(0), \bar{\mu}_A(0)\} = \bar{\mu}_A(0).$$
(3.30)

Combining this and Lemma 3.5, we get $\bar{\mu}_A(x * y) = \bar{\mu}_A(0)$, that is, $x * y \in X_{\bar{\mu}_A}$. Hence $X_{\bar{\mu}_A}$ is a BCI-subalgebra of *X*.

The following is a way to make a new i-v fuzzy BCI-subalgebra from old one.

THEOREM 3.12. For an *i*-v fuzzy BCI-subalgebra A of X, the *i*-v fuzzy set A^* in X defined by $\bar{\mu}_{A^*}(x) = \bar{\mu}_A(0 * x)$ for all $x \in X$ is an *i*-v fuzzy BCI-subalgebra of X.

PROOF. Since the equality 0 * (x * y) = (0 * x) * (0 * y) holds for all $x, y \in X$, we have

$$\bar{\mu}_{A^*}(x * y) = \bar{\mu}_A(0 * (x * y)) = \bar{\mu}_A((0 * x) * (0 * y))
\geq \operatorname{rmin} \{\bar{\mu}_A(0 * x), \bar{\mu}_A(0 * y)\}
= \operatorname{rmin} \{\bar{\mu}_{A^*}(x), \bar{\mu}_{A^*}(y)\}$$
(3.31)

for all $x, y \in X$. Therefore A^* is an i-v fuzzy BCI-subalgebra of X.

DEFINITION 3.13 (Biswas [1]). Let f be a mapping from a set X into a set Y. Let B be an i-v fuzzy set in Y. Then the *inverse image* of B, denoted by $f^{-1}[B]$, is the i-v fuzzy set in X with the membership function given by $\bar{\mu}_{f^{-1}[B]}(x) = \bar{\mu}_{B}(f(x))$ for all $x \in X$.

LEMMA 3.14 (Biswas [1]). Let f be a mapping from a set X into a set Y. Let $m = [m^L, m^U]$ and $n = [n^L, n^U]$ be *i*-v fuzzy sets in X and Y, respectively. Then

- (i) $f^{-1}(n) = [f^{-1}(n^L), f^{-1}(n^U)],$
- (ii) $f(m) = [f(m^L), f(m^U)].$

THEOREM 3.15. Let f be a homomorphism from a BCI-algebra X into a BCI-algebra Y. If B is an i-v fuzzy BCI-subalgebra of Y, then the inverse image $f^{-1}[B]$ of B is an i-v fuzzy BCI-subalgebra of X.

PROOF. Since $B = [\mu_B^L, \mu_B^U]$ is an i-v fuzzy BCI-subalgebra of *Y*, it follows from Theorem 3.7 that μ_B^L and μ_B^U are fuzzy BCI-subalgebras of *Y*. Using Proposition 3.1, we know that $f^{-1}[\mu_B^L]$ and $f^{-1}[\mu_B^U]$ are fuzzy BCI-subalgebras of *X*. Hence, by Lemma 3.14 and Theorem 3.7, we conclude that $f^{-1}[B] = [f^{-1}[\mu_B^L], f^{-1}[\mu_B^U]]$ is an i-v fuzzy BCI-subalgebra of *X*.

DEFINITION 3.16 (Biswas [1]). Let f be a mapping from a set X into a set Y. Let A be an i-v fuzzy set in X. Then the *image* of A, denoted by f[A], is the i-v fuzzy set in Y with the membership function defined by

$$\bar{\mu}_{f[A]}(\gamma) = \begin{cases} \sup_{z \in f^{-1}(\gamma)} \bar{\mu}_A(z) & \text{if } f^{-1}(\gamma) \neq \emptyset, \ \forall \gamma \in Y, \\ [0,0] & \text{otherwise,} \end{cases}$$
(3.32)

where $f^{-1}(y) = \{x \mid f(x) = y\}.$

THEOREM 3.17. Let f be a homomorphism from a BCI-algebra X into a BCI-algebra Y. If A is an i-v fuzzy BCI-subalgebra of X, then the image f[A] of A is an i-v fuzzy BCI-subalgebra of Y.

PROOF. Assume that *A* is an i-v fuzzy BCI-subalgebra of *X*. Note that $A = [\mu_A^L, \mu_A^U]$ is an i-v fuzzy BCI-subalgebra of *X* if and only if μ_A^L and μ_A^U are fuzzy BCI-subalgebras of *X*. It follows from Proposition 3.2 that the images $f[\mu_A^L]$ and $f[\mu_A^U]$ are fuzzy BCI-subalgebras of *Y*. Combining Theorem 3.7 and Lemma 3.14, we conclude that $f[A] = [f[\mu_A^L], f[\mu_A^U]]$ is an i-v fuzzy BCI-subalgebra of *Y*.

ACKNOWLEDGEMENT. This work was supported by Korea Research Foundation Grant KRF-99-005-D00003.

REFERENCES

- [1] R. Biswas, *Rosenfeld's fuzzy subgroups with interval-valued membership functions*, Fuzzy Sets and Systems **63** (1994), no. 1, 87-90. CMP 1 273 001. Zbl 844.20060.
- K. Iséki, An algebra related with a propositional calculus, Proc. Japan Acad. 42 (1966), 26–29. MR 34#2433. Zbl 207.29304.
- [3] L. A. Zadeh, *Fuzzy sets*, Information and Control 8 (1965), 338-353. MR 36#2509. Zbl 139.24606.

[4] _____, *The concept of a linguistic variable and its application to approximate reasoning. I*, Information Sci. **8** (1975), 199–249. MR 52#7225a. Zbl 397.68071.

Sung Min Hong: Department of Mathematics, Gyeongsang National University, Chinju $660\mathchar`201$, Korea

E-mail address: smhong@nongae.gsnu.ac.kr

YOUNG BAE JUN: DEPARTMENT OF MATHEMATICS EDUCATION, GYEONGSANG NATIONAL UNI-VERSITY, CHINJU 660-701, KOREA

E-mail address: ybjun@nongae.gsnu.ac.kr

Seon Jeong Kim: Department of Mathematics, Gyeongsang National University, Chinju $660\mathchar`201$, Korea

E-mail address: skim@nongae.gsnu.ac.kr

GWANG IL KIM: DEPARTMENT OF MATHEMATICS, GYEONGSANG NATIONAL UNIVERSITY, CHINJU 660-701, KOREA

E-mail address: gikim@nongae.gsnu.ac.kr