REGULAR-UNIFORM CONVERGENCE AND THE OPEN-OPEN TOPOLOGY

KATHRYN F. PORTER

(Received 12 February 1999)

ABSTRACT. In 1994, Bânzaru introduced the concept of regular-uniform, or r-uniform, convergence on a family of functions. We discuss the relationship between this topology and the open-open topology, which was described in 1993 by Porter, on various collections of functions.

2000 Mathematics Subject Classification. Primary 54C35, 54E15; Secondary 54A10, 54A20.

1. Introduction. In [1], Bânzaru introduced the concept of regular-uniform, or r-uniform, convergence on a family of functions $F \subset Y^X$ and proved a number of facts about the topological space (F, T_r) where T_r is the topology induced by this convergence. Porter introduced the open-open topology [5] in 1993 and proved that on families of self-homeomorphisms on X that the open-open topology is equivalent to the topology of Pervin quasi-uniform convergence [3]; this in fact is true on C(X, Y), the collection of all continuous functions from X to Y. We shall show that the topology of r-uniform convergence on any subfamily F of the class of all continuous functions on X into Y is equivalent to the open-open topology [5], T_{00} , on F and hence, equivalent to the topology of Pervin quasi-uniform convergence on F.

Throughout this paper let (X, T) and (Y, T') be topological spaces. We will use Y^X to mean the collection of all functions from *X* into *Y* while C(X, Y) will represent the collection of all continuous functions from *X* into *Y*, and H(X) is the collection of all self-homeomorphisms on *X*.

2. Preliminaries. A net of functions $\{f_{\alpha}:(X,T) \to (Y,T')\}_{\alpha \in I}$ converges r-uniformly (or regular uniformly) to $f \in Y^X$ [1] if and only if for any $O \in T'$ such that $f^{-1}(O) \neq \phi$, there exists $i_{\theta} \in I = [0,1]$ such that $f_i(x) \in O$ for all $i \in I$ with $i \ge i_{\theta}$ and for all $x \in f^{-1}(O)$. This convergence defines a topology on F called the *topology of r-uniform* or regular uniform convergence.

In the same paper, Bânzaru also defined a topology, T_r , on $F \subset Y^X$ as follows: let $f \in F$ and $O \in T'$. Set

$$S(f;O) = \{g \in F : g(f^{-1}(O)) \subset O\},$$
(2.1)

then $S = \{S(f; O) : f \in F \text{ and } O \in T'\}$ is a subbasis for a topology T_r on F. Bânzaru then proved that this topology T_r on F is actually equivalent to the topology of r-uniform convergence on F.

Now let $O \in T$ and $U \in T'$ and define

$$(U,V) = \{h \in F : h(O) \subset U\}.$$
(2.2)

Then $S_{00} = \{(O, U) : O \in T \text{ and } U \in T'\}$ is a subbasis for the *open-open topology*, T_{00} , [5] on *F*.

In addition, the set $S_{co} = \{(C, U) \subset F : C \text{ is compact in } X \text{ and } U \text{ is open in } Y\}$ is a subbasis for the well-known *compact-open topology*, T_{co} , on F.

- Let *X* be a nonempty set and let *Q* be a collection of subsets of $X \times X$ such that
- (1) for all $U \in Q$, $\triangle = \{(x, x) \in X \times X : x \in X\} \subset U$,
- (2) for all $U \in Q$, if $U \subset V$ then $V \in Q$,
- (3) for all $U, V \in Q$, $U \cap V \in Q$, and
- (4) for all $U \in Q$, there exists some $W \in Q$ such that $W \circ W \subset U$ where $W \circ W = \{(p,q) \in X \times X : \text{there exists some } r \in X \text{ with } (p,r), (r,q) \in W\}$ then Q is a *quasi-uniformity on* X.

A quasi-uniformity, Q, on X induces a topology, T_Q , on X, where for each $x \in X$, the set $\{U[x] : U \in Q\}$ is a neighborhood system at x where U[x] is defined by $U[x] = \{y \in X : (x, y) \in U\}.$

A family, *S* of subsets of $X \times X$ which satisfies

- (i) for all $R \in S$, $\triangle \subset R$, and
- (ii) for all $R \in S$, there exists $T \in S$ such that $T \circ T \subset R$, is a *subbasis* for a quasiuniformity, Q, on X. This subbasis S generates a *basis*, B, for the quasiuniformity, Q, where B is the collection of all finite intersections of elements of S. The basis, B, generates the quasi-uniformity $Q = \{U \subset X \times X : \hat{B} \subset U \text{ for some} \ \hat{B} \in B\}$.

For a more thorough background on quasi-uniform spaces, see [2].

In 1962, Pervin [4] constructed a specific quasi-uniformity which induces a compatible topology for a given topological space. His construction is as follows: Let (X, T) be a topological space. For $O \in T$ define

$$S_O = (O \times O) \cup ((X \setminus O) \times X).$$
(2.3)

One can show that for $O \in T$, $S_O \circ S_O = S_O$ and $\triangle \subset S_O$, hence, the collection $\{S_O : O \in T\}$ is a subbasis for a quasi-uniformity, P, on X, called the *Pervin quasi-uniformity*.

Let *Q* be a compatible quasi-uniformity for (X,T) and let $F \subset C(X,Y)$. For $U \in Q$, define the set

$$W(U) = \{ (f,g) \in F \times F : (f(x),g(x)) \in U \text{ for all } x \in X \}.$$
(2.4)

Then the collection $B = \{W(U) : U \in Q\}$ is a basis for a quasi-uniformity, Q^* , on F, called *the quasi-uniformity of quasi-uniform convergence with respect to* Q [3]. The topology, T_{Q^*} , induced by Q^* on F, is called *the topology of quasi-uniform convergence with respect to* Q. If Q is the Pervin quasi-uniformity, P, then T_{P^*} is called the *topology of Pervin quasi-uniform convergence*.

358

3. The topologies. We first extend, to subsets of C(X, Y), the result from [5] that the open-open topology is equivalent to the topology of Pervin quasi-uniform convergence on a subgroup *G* of H(X).

THEOREM 3.1. Let $F \subset C(X, Y)$. The open-open topology, T_{00} , is equivalent to the topology of Pervin quasi-uniform convergence, T_{P*} , on F.

PROOF. Assume $F \subset C(X, Y)$. Let (O, U) be a subbasic open set in T_{oo} and let $f \in F$. Then $f(O) \subset U$. So $f \in W(S_U)[f]$ where

$$W(S_U)[f] = \{g \in F : (f(x), g(x)) \in S_U = U \times U \cup (X \setminus U) \times X, \forall x \in X\}.$$
(3.1)

Hence, if $g \in W(S_U)[f]$ and $x \in O$, then $f(x) \in U$ so $g(x) \in U$. Thus, $g \in (O, U)$ and $W(S_U)[f] \subset (O, U)$. Therefore, $T_{oo} \subset T_{P*}$.

Now let $V \in T_{P*}$ and $f \in V$. Then there exists $U \in P$ such that $f \in W(U)[f] \subset V$. Since $U \in P$, there exists some finite collection, $\{U_i : i = 1, 2, ..., n\} \subset T$ such that $\bigcap_{i=1}^n S_{U_i} \subset U$. Define $A = \bigcap_{i=1}^n (f^{-1}(U_i), U_i)$. Then A is an open set in T_{oo} and $f \in A$. Assume $g \in A$ and let $x \in X$. If $f(x) \in U_j$ for some $j \in \{1, 2, ..., n\}$, then $x \in f^{-1}(U_j)$. Then, since $g \in A, g(x) \in U_j$, hence, $(f(x), g(x)) \in U_j \times U_j \subset S_{U_j}$. If $f(x) \notin U_j$ for some $j \in \{1, 2, ..., n\}$, then $(f(x), g(x)) \in (X - U_j) \times X \subset S_{U_j}$. Thus, $g \in W(\bigcap_{i=1}^n S_{U_i})[f] \subset W(U)[f] \subset V$ so that $A \subset V$. Therefore, $T_{oo} = T_{P*}$ on F.

Next we show that the regular-uniform topology is equivalent to the open-open topology on any subset, F, of C(X, Y), and hence, also to the topology of Pervin quasi-uniform convergence on F.

THEOREM 3.2. For $F \subset C(X, Y)$, $T_{oo} = T_r$ on F.

PROOF. Note that a subbasic open set in T_r , $S(f;O) = \{g \in F : g(f^{-1}(O)) \subset O\}$ is equal to $(f^{-1}(O), O)$. Hence, if $f^{-1}(O)$ is open in X, which is the case when f is continuous, S(f;O) is a subbasic open set in T_{00} . Therefore, $T_r \subset T_{00}$.

Now let (O, U) be a subbasic open set in T_{oo} and let $f \in (O, U)$. Then $f(O) \subset U$ which implies that $O \subset f^{-1} \circ f(O) \subset f^{-1}(U)$. Since $f \circ f^{-1}(U) = U$, $f \in (f^{-1}(U), U) =$ $S(f;U) \in T_r$. If $g \in (f^{-1}(U), U)$, then $g(f^{-1}(U)) \subset U$. If $x \in O$, then $x \in f^{-1}(U)$ so that $g(x) \in U$ giving us that $g \in (O, U)$, whence $T_{oo} \subset T_r$ and we are done.

While it is always true that $T_{00} \subset T_r$ on $F \subset Y^X$, it is not necessarily true that $T_r = T_{00}$ for $F \subset Y^X$ as the following example shows.

EXAMPLE 3.3. Define the sets $X = \{1,2,3\}$, $T = \{\{1\}, \phi, X\}$, $Y = \{1,2,3,4\}$, $T' = \{\{1,2\},\{3,4\}, \phi, Y\}$ and $F = \{f_1, f_2, f_3, f_4\}$ which are given in Table 3.1. Then $T_{00} = \{\phi, F, \{f_1, f_2, f_3\}, \{f_4\}\}$. But $S(f_3; \{3,4\}) = \{f_3\} \notin T_{00}$. In fact, T_r is the discrete topology on F.

Bânsaru proved that for any $F \,\subset Y^X$, the compact-open topology, T_{co} , is coarser than T_r . However, although $T_{co} \subset T_{oo}$ on F when $F \subset C(X, Y)$, it is not necessarily true that $T_{co} \subset T_{oo}$ for $F \subset Y^X$. Consider Example 3.3 again. We have that ({2}, {3,4}) is in T_{co} and equals { f_3 }, but { f_3 } $\notin T_{oo}$. In this example, the compact-open topology on F is also the discrete topology and thus equals the regular-uniform topology on F.

KATHRYN F. PORTER

TABLE	3.1.	

x	$f_1(x)$	$f_2(x)$	$f_3(x)$	$f_4(x)$
1	1	1	1	3
2	2	1	4	1
3	3	1	1	4

TABLE	3.	.2.

x	$f_1(x)$	$f_2(x)$	$f_3(x)$	$f_4(x)$	$f_5(x)$	$f_6(x)$	$f_7(x)$	$f_8(x)$	$f_9(x)$
1	1	1	1	2	2	2	3	3	3
2	2	1	3	2	1	3	1	3	2

Another fact that has been proved in [1] about the regular-uniform topology is that if the topology for *Y* is regular, then $(C(X, Y), T_r)$ is closed in (Y^X, T_r) . However, this is not true when Y^X is given the open-open topology; that is, let (X, T) and (Y, T')be topological spaces such that (Y, T') is regular. Then $(C(X, Y), T_r)$, which is the same as $(C(X, Y), T_{00})$ is not necessarily closed in (Y^X, T_{00}) . The following example illustrates this.

EXAMPLE 3.4. Let $X = \{1,2\}$, $T = \{\phi, X, \{1\}\}$, $Y = \{1,2,3\}$, and $T' = \{\phi, Y, \{1\}, \{2,3\}\}$. The collection Y^X is given in Table 3.2. Note that T' is a partition topology and is thus regular. Also note that $f_1^{-1}(\{2,3\}) = \{2\}$ and so f_1 is not continuous. The only open sets in (Y^X, T_{00}) that contain f_1 are $(\phi, Y) = Y^X$ and $(\{1\}, \{1\}) = \{f_1, f_2, f_3\}$. Both of these sets contain the function f_2 which is continuous. Thus, C(X, Y) is not closed in (Y^X, T_{00}) , even though (Y, T') is regular.

ACKNOWLEDGEMENT. Professor Porter would like to thank the Faculty Development Committee of Saint Mary's College of California for their support.

REFERENCES

- T. Bânzaru, On topological structures of r-uniform convergence, Proceedings of 23rd Conference on Geometry and Topology (Cluj-Napoca, 1993) (D. Andrica et al., ed.), "Babeş-Bolyai" Univ., Cluj, Napoca, 1994, pp. 27–29. MR 96k:54021. Zbl 846.54012.
- [2] M. G. Murdeshwar and S. A. Naimpally, *Quasi-uniform Topological Spaces*, P. Noordhoff Ltd., Groningen, 1966. MR 35#2267. Zbl 139.40501.
- [3] S. A. Naimpally, Function spaces of quasi-uniform spaces, Nederl. Akad. Wetensch. Proc. Ser. A 68 27 (1966), 768-771. MR 32#4653. Zbl 134.41703.
- W. J. Pervin, *Quasi-uniformization of topological spaces*, Math. Ann. 147 (1962), 316–317. MR 25#3506b. Zbl 101.40501.
- [5] K. F. Porter, *The open-open topology for function spaces*, Int. J. Math. Math. Sci. 16 (1993), no. 1, 111-116. MR 94b:54057. Zbl 807.54017.

KATHRYN F. PORTER: DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE, SAINT MARY'S College of California, Moraga, CA 94575, USA

E-mail address: kporter@stmarys-ca.edu