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KAPLANSKY’S TERNARY QUADRATIC FORM
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Abstract. This paper proves that if N is a nonnegative eligible integer, coprime to 7,
which is not of the form x2+y2+7z2, thenN is square-free. The proof is modelled on that
of a similar theorem by Ono and Soundararajan, in which relations between the number
of representations of an integer np2 by two quadratic forms in the same genus, the pth
coefficient of an L-function of a suitable elliptic curve, and the class number formula prove
the theorem for large primes, leaving 3 cases which are easily numerically verified.

2000 Mathematics Subject Classification. Primary 11E25.

1. Introduction. A quadratic form is a homogeneous polynomial of degree 2 in
several variables. It is useful to consider the symmetric n-by-n matrix, A, associ-
ated with a quadratic form in n variables, that is, f(x1,x2, . . . ,xn) = x�Ax, where
x = (x1,x2, . . . ,xn). As such, we define the automorphs of f to be the matrices, T ,
in SLn(Z) such that T−1AT = A. We say that a quadratic form in n variables, f
represents t if there exists an x ∈ Zn such that t = x�Ax. We call x primitive if
gcd(x1,x2, . . . ,xn) = 1. Automorphs are significant because x�Ax = n implies that
Tx and T−1x also satisfy this equation.

We say a nonnegative integer t is eligible with respect to a form f if there are
no modularity conditions preventing f from representing n. Note that this does not
imply that f represents n.

In [5], Kaplansky studied the quadratic form φ1 = x2+y2+7z2, and proved that
certain subsets of the eligible numbers are always represented. First, we have to know
what the eligible numbers are. Basic number theory shows that they are the non-
negative integers not of the form 72m+1r , where r is not a quadratic residue modulo
7, that is, r ≡ 3, 5, or 6 (mod 7). Two of the subsets examined by Kaplansky, the
set of eligible numbers congruent to 1 (mod 4) and the set of numbers congruent
to 2 (mod 3) which are not the product of 14 and a perfect square, are not directly
related to the results in this paper. However, Kaplansky also showed that all eligible
integers divisible by 4 or 9 can be represented by φ1, which brings up the question
of whether this pattern holds true for other perfect squares. In general, we see that
k = f(x1,x2, . . . ,xn) implies that kp2 = f(px1,px2, . . . ,pxn), but knowing that kp2

is represented by f does not imply that k is represented by f . So, for a given prime
p, does φ1 represent all eligible integers divisible by p2? In almost all cases, we can
answer the question affirmatively by proving the following theorem.

Theorem 1.1. IfN is coprime to 7 and not of the form x2+y2+7z2 with x,y,z∈(Z),
then N is square-free.
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2. Preliminary remarks. The formφ1 is in a genus of two forms, the other one be-
ingφ2 = x2+2y2+2yz+4z2. These two forms have the same set of eligible integers,
and, as is the case with all genera of ternary quadratic forms, each eligible integer is
represented by at least one of them. Let A1 and A2 denote the matrices representing

the forms φ1 and φ2, respectively. We see that A1 =
[
1 0 0
0 1 0
0 0 7

]
has eight automorphs:

[
1 0 0
0 1 0
0 0 1

]
,
[
1 0 0
0 −1 0
0 0 −1

]
,
[
0 1 0
1 0 0
0 0 −1

]
,
[

0 1 0
−1 0 0
0 0 1

]
,
[−1 0 0

0 1 0
0 0 −1

]
,
[−1 0 0

0 −1 0
0 0 1

]
,
[
0 −1 0
1 0 0
0 0 1

]
,
[

0 −1 0
−1 0 0
0 0 −1

]
, while

A2 =
[
1 0 0
0 2 1
0 1 4

]
has two:

[
1 0 0
0 1 0
0 0 1

]
and

[
1 0 0
0 −1 0
0 0 −1

]
.

We say that two representations of an integer by a form are essentially distinct if one
cannot be written as the product of the other and an automorph of that form. Let s1(n)
and s2(n) be the number of primitive representations of n byφ1 andφ2, respectively.
If r1(n) and r2(n) are defined to be the total number of representations of n by
φ1 and φ2, respectively, G(N) denotes the number of essentially distinct primitive
representations of square-free N by the genus in question, and no representations of
N are fixed by multiplication by a non-trivial automorph, then

G(N)= r1(N)
8

+ r2(N)
2

. (2.1)

In particular, this holds when N is greater than 1 and is not represented by φ1. Also
note that r1(n) is the nth coefficient in the expansion of Θ(z)2Θ(7z), where Θ(n) =∑
n∈Zqn

2
and q = e2πiz. Define

f(z)= 1
2

∞∑
n=1

a(n)qn = 1
2

∞∑
n=1

(
r1(n)−r2(n)

)
qn

= q+q2−2q3−q4−2q6+q7−··· ,
(2.2)

where q = e2πiz. By Shimura’s general result in [7] pertaining to all quadratic forms
with integral coefficients, f ∈ S3/2(28,χ−28). Thus, g(z), the Shimura lift of f(z), is in
M2(14,χ0), and from the first proposition in [2], the number of coefficients needed to
recognize a modular form is

Nk
12

∏
p|N

(
1+ 1

p

)
, (2.3)

so by checking the first 4 coefficients, we see that

g(z)= η(z)η(2z)η(7z)η(14z)

= q
∞∏
n=1

(
1−qz)

∞∏
n=1

(
1−q2z) ∞∏

n=1

(
1−q7z) ∞∏

n=1

(
1−q14z)

= q−q2−2q3+q4+2q6+q7−··· =
∞∑
n=1

A(n)qn.

(2.4)

From the theory of Eichler and Shimura summarized by Birch and Swinnerton-Dyer
in [8], we know that g will be the inverse Mellin transform of L(E,s), for some elliptic
curve of conductor 14. We find an elliptic curve E :y2 = x3+x2+72x−368 in [3] with
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the appropriate conductor, and calculating the first four coefficients of its L-function,
we see that E is indeed the curve in question. By Hasse-Weil’s bound, for every primep,
|A(p)| ≤ 2

√p. The main result of the paper is restricted to integers coprime to 7, but
we can apply the following result to integers divisible by an even power of 7.

Proposition 2.1. φ1 represents 72mn if and only if it represents n.

Proof. It is sufficient to prove the proposition for m = 1. If φ1 represents n, it
clearly represents 49n. The other direction is simple algebra: x2+y2+7z2 = 49n⇒
x2+y2 ≡ 0 (mod 7)⇒ (x,y) ≡ (0,0) (mod 7). Letting x = 7a, and y = 7b, 49a2+
49b2+7z2 = 49n⇒ z2 ≡ 0 (mod 7). Letting z = 7c, divide by 49 to obtain a2+b2+
7z2 =n.

Proof of Theorem 1.1. Our proof is modelled after Ono and Soundararajan’s
proof in [6] of a corresponding result for φ = x2 + y2 + 10z2. Since f lies in
S3/2(28,χ−28), a one-dimensional space, it is an eigenform of all half-integral weight
Hecke operators T(p2), so for every prime p and integer n, there exists a complex
number λ(p), depending only on p, such that

λ(p)a(n)= a(np2)+χ−28(p)
(−n
p

)
a(n)+χ−28

(
p2)pa

(
n
p2

)
. (2.5)

Since each A(p) is an eigenvalue of Tp for g(z), and the Hecke operators commute
with the Shimura lift,A(p) is also an eigenvalue of Tp for f(z), and hence λ(p)=A(p).
If n is square-free, a(n/p2)= 0, so by our definition of a(n),

r1
(
np2)−r2(np2)=

(
A(p)−χ−28(p)

(−n
p

))(
r1(n)−r2(n)

)
. (2.6)

Let us assume that n> 1 is a square-free integer coprime to 7, and p is prime, but
not 7. If r1(np2)= 0, then r1(n)= 0, so

r2
(
np2

)
r2(n)

=A(p)−χ−28(p)
(−n
p

)
≤A(p)+1. (2.7)

But any non-primitive representation of np2 has gcd(x,y,z)= p, so

r2
(
np2)= s2(np2)+s2(n)= s2(np2)+r2(n). (2.8)

Since n ≠ 1, for any representation of n by φ2 has (x,y,z) ≠ (x,−y,−z), so
2G(np2)= s2(np2). Thus,

r2
(
np2

)
r2(n)

= 1+ s2
(
np2

)
r2(n)

= 1+ 2G
(
np2

)
2G(n)

= 1+ G
(
np2

)
G(n)

. (2.9)

By [4, Theorem 86], this equals 1+h(−28np2)/h(−28n), and applying the index for-
mula for h(−D) from [1], this simplifies to 1+p−(−28np

)≥ p. Substituting into (2.7),
p ≤A(p)+1. But since Hasse’s bound yields p ≤ 2

√p+1, this is impossible for p > 5.
For our exceptional cases; p ≤ 5, A(p) is not positive, so we still obtain a contradic-
tion. Thus, if n is coprime to 7, and p is a prime not equal to 7, φ1 represents np2,
and thus φ1 represents all non-square-free positive integers coprime to 7.



292 JAMES KELLEY

References

[1] D. A. Cox, Primes of the Form x2+ny2. Fermat, class field theory and complex multipli-
cation, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1989.
MR 90m:11016. Zbl 701.11001.

[2] G. Frey, Construction and arithmetical applications of modular forms of low weight, Elliptic
Curves and Related Topics (H. Kisilevsky et al., ed.), CRM Proc. Lect. Notes, vol. 4,
Amer. Math. Soc., Providence, RI, 1994, pp. 1–21. MR 95b:11042. Zbl 814.11027.

[3] K. James, L-series with nonzero central critical value, J. Amer. Math. Soc. 11 (1998), no. 3,
635–641. MR 98m:11040. Zbl 904.11015.

[4] B. W. Jones, The Arithmetic Theory of Quadratic Forms, Carus Monograph Series,
no. 10, The Mathematical Association of America, Buffalo, NY, 1950. MR 12,244a.
Zbl 041.17505.

[5] I. Kaplansky, The first nontrivial genus of positive definite ternary forms, Math. Comp. 64
(1995), no. 209, 341–345. MR 95c:11048. Zbl 826.11015.

[6] K. Ono and K. Soundararajan, Ramanujan’s ternary quadratic form, Invent. Math. 130
(1997), no. 3, 415–454. MR 99b:11036. Zbl 930.11022.

[7] G. Shimura,Onmodular forms of half integral weight, Ann. of Math. (2) 97 (1973), 440–481.
MR 48#10989. Zbl 266.10022.

[8] H. P. F. Swinnerton-Dyer and B. J. Birch, Elliptic curves and modular functions, Modu-
lar Functions of One Variable, IV (Proc. Internat. Summer School, Univ. Antwerp,
Antwerp, 1972), Lecture Notes in Math., vol. 476, Springer, Berlin, 1975, pp. 2–32.
MR 52#5685.

James Kelley: Department of Mathematics, University of California at Berkeley,
Berkeley, CA 94709, USA
E-mail address: kelley@math.psu.edu

http://www.ams.org/mathscinet-getitem?mr=90m:11016
http://www.emis.de/cgi-bin/MATH-item?701.11001
http://www.ams.org/mathscinet-getitem?mr=95b:11042
http://www.emis.de/cgi-bin/MATH-item?814.11027
http://www.ams.org/mathscinet-getitem?mr=98m:11040
http://www.emis.de/cgi-bin/MATH-item?904.11015
http://www.ams.org/mathscinet-getitem?mr=12:244a
http://www.emis.de/cgi-bin/MATH-item?041.17505
http://www.ams.org/mathscinet-getitem?mr=95c:11048
http://www.emis.de/cgi-bin/MATH-item?826.11015
http://www.ams.org/mathscinet-getitem?mr=99b:11036
http://www.emis.de/cgi-bin/MATH-item?930.11022
http://www.ams.org/mathscinet-getitem?mr=48:10989
http://www.emis.de/cgi-bin/MATH-item?266.10022
http://www.ams.org/mathscinet-getitem?mr=52:5685
mailto:kelley@math.psu.edu

