ON HENSTOCK-DUNFORD AND HENSTOCK-PETTIS INTEGRALS

YE GUOJU and AN TIANQING

(Received 22 October 1998)

ABSTRACT. We give the Riemann-type extensions of Dunford integral and Pettis integral, Henstock-Dunford integral and Henstock-Pettis integral. We discuss the relationships between the Henstock-Dunford integral and Dunford integral, Henstock-Pettis integral and Pettis integral. We prove the Harnack extension theorems and the convergence theorems for Henstock-Dunford and Henstock-Pettis integrals.

2000 Mathematics Subject Classification. Primary 26A39, 28B05; Secondary 28B20, 46G10, 46G12.

1. Introduction. During 1957–1958, R. Henstock and J. Kurzweil, independently, gave a Riemann-type integral called the Henstock-Kurzweil integral (or Henstock integral) (see [7]). It is a kind of nonabsolute integral and contains the Lebesgue integral. It has been proved that this integral is equivalent to the special Denjoy integral [7]. The Dunford, Pettis integrals are generalizations of the Lebesgue integral to Banach-valued functions. In [5], R. A. Gordon gave two Denjoy-type extensions of the Dunford, Pettis integrals, the Denjoy-Dunford and Denjoy-Pettis integrals, and discussed their properties.

In this paper, we give the Riemann-type extensions of Dunford, Pettis integrals, the Henstock-Dunford, Henstock-Pettis integrals, and discuss the relationships between the Henstock-Dunford integral and Dunford integral, Henstock-Pettis integral and Pettis integral. We prove the Harnack extension theorems and the convergence theorems for Henstock-Dunford and Henstock-Pettis integrals.

Throughout this paper, *X* denotes a real Banach space and X^* its dual. $B(X^*) = \{x^* \in X^* : || x^* || \le 1\}$ is the unit ball in X^* . $I_0 = [a, b]$ is a closed interval in \mathbb{R} .

We first give some preliminaries. A partition *D* of [a,b] is a finite collection of interval-point pairs (I,t) with the intervals nonoverlapping and their union [a,b]. Here *t* is the associated point of *I*. We write $D = \{(I,t)\}$, it is said to be δ -fine partition of [a,b] if for each interval-point pair (I,t), we have $t \in I \subset (t-\delta(t),t+\delta(t))$.

DEFINITION 1.1 (see [7]). A function $f : [a,b] \to \mathbb{R}$ is Henstock integrable if there exists a function $F : [a,b] \to \mathbb{R}$ such that for every $\epsilon > 0$ there is a function $\delta(t) > 0$ such that for any δ -fine partition $D = \{[u,v];t\}$ of [a,b], we have

$$\left|\sum \left[f(t)(v-u) - F(u,v)\right]\right| < \epsilon, \tag{1.1}$$

where the sum \sum is understood to be over $D = \{([u, v], t)\}$ and F(u, v) = F(v) - F(u). We write $(H) \int_{I_0} f = F(I_0)$. The function *f* is said to be Henstock integrable on the set $E \subset [a, b]$ if the function $f\chi_E$ is Henstock integrable on [a, b]. We write $(H) \int_{I_0} f\chi_E = (H) \int_E f$.

DEFINITION 1.2 (see [1, 5, 7]). A function $f : [a, b] \to \mathbb{R}$ is Denjoy (or special Denjoy) integrable if there exists an *ACG* (or *ACG*^{*}) function $F : [a, b] \to \mathbb{R}$ such that $D_{ap}F(t) = f(t)$ (or F'(t) = f(t)) almost everywhere on [a, b]. Where $D_{ap}F(t)$ denotes the approximate derivative of F at t. We write $(D) \int_{I_0} f = F(I_0)$ (or $(D^*) \int_{I_0} f = F(I_0)$).

The function *f* is said to be Denjoy (or special Denjoy) integrable on the set $E \subset [a,b]$ if the function $f\chi_E$ is Denjoy (or special Denjoy) integrable on [a,b]. We write $(D) \int_{I_0} f\chi_E = (D) \int_E f$ (or $(D^*) \int_{I_0} f\chi_E = (D^*) \int_E f$).

If f is special Denjoy integrable, then f is Denjoy integrable.

LEMMA 1.3 (see [7]). A function $f : [a,b] \to \mathbb{R}$ is Henstock integrable on [a,b] if and only if f is the special Denjoy integrable on [a,b].

DEFINITION 1.4 (see Gordon [5]). (a) A function $f : [a,b] \to X$ is Denjoy-Dunford integrable on [a,b] if for each x^* in X^* the function x^*f is Denjoy integrable on [a,b] and if for every interval I in [a,b] there exists a vector x_I^{**} in X^{**} such that $x_I^{**}(x^*) = \int_I x^*f$ for all x^* in X^* . We write $x_{I_0}^{**} = (DD) \int_{I_0} f = F(I_0)$ and F is called the primitive of f on I_0 .

(b) A function $f : [a,b] \to X$ is Denjoy-Pettis integrable on [a,b] if f is Denjoy-Dunford integrable on [a,b] and if $x_I^{**} \in X$ for every interval I in [a,b]. We write $x_{I_0}^{**} = (DP) \int_{I_0} f = F(I_0)$ and F is called the primitive of f on I_0 .

The function *f* is said to be integrable in one of the above senses on the set $E \subset [a, b]$ if the function $f \chi_E$ is integrable in that sense on [a, b].

LEMMA 1.5 (see [3]). A function $f : [a,b] \to X$ is Denjoy-Dunford integrable on [a,b] if and only if x^*f is Denjoy integrable on [a,b] for all $x^* \in X^*$.

2. Definition and properties. In the following, we give the Riemann-type extensions of Dunford, Pettis integrals, and discuss the relationships between Henstock-Dunford integral and Dunford integral, Henstock-Pettis integral and Pettis integral.

DEFINITION 2.1. (a) A function $f : [a,b] \to X$ is Henstock-Dunford integrable on [a,b] if for each x^* in X^* the function x^*f is Henstock integrable on [a,b] and if for every interval I in [a,b] there exists a vector x_I^{**} in X^{**} such that $x_I^{**}(x^*) = \int_I x^*f$ for all x^* in X^* . We write $x_{I_0}^{**} = (HD) \int_{I_0} f = F(I_0)$ and F is called the primitive of f on I_0 .

(b) A function $f : [a,b] \to X$ is Henstock-Pettis integrable on [a,b] if f is Henstock-Dunford integrable on [a,b] and if $x_I^{**} \in X$ for every interval I in [a,b]. We write $x_{I_0}^{**} = (HP) \int_{I_0} f = F(I_0)$ and F is called the primitive of f on I_0 .

The function *f* is said to be integrable in one of the above senses on the set $E \subset [a, b]$ if the function $f \chi_E$ is integrable in that sense on [a, b].

By the above definitions and Definition 1.4, it is easy to see that if f is Henstock-Dunford (or Henstock-Pettis) integrable on I_0 , then f is Denjoy-Dunford (or Denjoy-Pettis) integrable.

THEOREM 2.2. A function $f : [a,b] \to X$ is Henstock-Dunford integrable on [a,b] if and only if $x^* f$ is Henstock integrable on [a,b] for all $x^* \in X^*$.

PROOF. If *f* is Henstock-Dunford integrable on [a,b], for every $x^* \in X^*$, by Definition 2.1, x^*f is Henstock integrable on [a,b]. Conversely, if x^*f is Henstock integrable on [a,b]. It follows from Lemma 1.3 that x^*f is Denjoy integrable on [a,b] and $(D) \int_a^b x^*f = (H) \int_a^b x^*f$. It follows from Lemma 1.5 that *f* is Denjoy-Dunford integrable on [a,b], and for every interval *I* in [a,b] there exists a vector x_I^{**} in X^{**} such that $x_I^{**}(x^*) = (D) \int_I x^*f$ for all x^* in X^* , that is, $x_I^{**}(x^*) = (H) \int_I x^*f$ for all x^* in X^* . So *f* is Henstock-Dunford integrable on [a,b].

THEOREM 2.3. If the function $f : [a,b] \rightarrow X$ is Henstock-Dunford integrable on [a,b], then each perfect set in [a,b] contains a portion on which f is Dunford integrable.

PROOF. Since the function $f : [a,b] \to X$ is Henstock-Dunford integrable on [a,b], then for each $x^* \in X^*$, x^*f is Henstock integrable on [a,b]. It follows from [8] that each perfect set in [a,b] contains a portion on which x^*f is Lebesgue integrable. So f is Dunford integrable on a portion.

THEOREM 2.4. If the function $f : [a,b] \to X$ is Henstock-Dunford integrable on [a,b], then there is a sequence $\{X_k\}$ of closed subsets such that $X_k \subset X_{k+1}$ for all $k, \bigcup_{k=1}^{\infty} X_K = [a,b]$, f is Dunford integrable on each X_k and

$$\lim_{k \to \infty} (Dunford) \int_{X_k \cap [a,x]} f(t) \, dt = (HD) \int_a^x f(t) \, dt \text{ weakly}$$
(2.1)

uniformly on [a,b].

PROOF. It follows from Theorem 2.2 that a function $f : [a,b] \to X$ is Henstock-Dunford integrable on [a,b] if and only if x^*f is Henstock integrable on [a,b] for all $x^* \in X^*$. From [8], x^*f is Henstock integrable on [a,b], then there is a sequence $\{X_k\}$ of closed subsets such that $X_k \subset X_{k+1}$ for all $k, \bigcup_{k=1}^{\infty} X_k = [a,b], x^*f$ is Lebesgue integrable on each X_k and

$$\lim_{k \to \infty} (L) \int_{X_k \cap [a,x]} x^* f(t) \, dt = (H) \int_a^x x^* f(t) \, dt \tag{2.2}$$

uniformly on [a,b] for each $x^* \in X^*$. So we obtain that f is Dunford integrable on each X_k and

$$\lim_{k \to \infty} (\text{Dunford}) \int_{X_k \cap [a,x]} f(t) \, dt = (HD) \int_a^x f(t) \, dt \text{ weakly}$$
(2.3)

uniformly on [*a*,*b*].

THEOREM 2.5. If the function $f : [a,b] \to X$ is Henstock-Dunford integrable on [a,b], then there exists a sequence $\{X_k\}$ of closed sets, $\bigcup_{k=1}^{\infty} X_k = [a,b]$, f is Dunford integrable on each X_k .

PROOF. Since *f* Henstock-Dunford integrable on [a,b], by Definition 2.1, for each $x^* \in X^*$, x^*f is Henstock integrable on [a,b], and for every interval $I \subset [a,b]$,

 $\int_I x^* f = x^* \int_I f$, and $F(I) = \int_I f \in X$. Since $x^* f$ is Henstock integrable, then $x^* F$ is ACG^* . So there is a sequence $\{X_k\}$ of closed subsets such that $\bigcup_{k=1}^{\infty} X_k = [a, b]$ and $x^* F$ is VB^* on each X_k . From [7, Lemma 6.18], $x^* f$ is Lebesgue integrable on each X_k . So we obtain that f is Dunford integrable on each X_k .

THEOREM 2.6. Suppose that X contains no copy of c_0 and $f : [a,b] \rightarrow X$. If the function f is Henstock-Pettis integrable on [a,b], then each perfect set in [a,b] contains a portion on which f is Pettis integrable.

PROOF. Since the function $f : [a,b] \to X$ is Henstock-Pettis integrable on [a,b], then f is Denjoy-Pettis integrable on [a,b]. It follows from [5, Theorem 38] that each perfect set in [a,b] contains a portion on which f is Pettis integrable.

In the fact, from [3, Theorem 10], we have that if each Henstock-Pettis integrable function defined on [a, b] is Pettis integrable on a portion of every close set, then *X* does not contain c_0 .

THEOREM 2.7. Suppose that X contains no copy of c_0 and $f : [a,b] \to X$ is a measurable. If the function $f : [a,b] \to X$ is Henstock-Pettis integrable on [a,b], then there exists a sequence $\{X_k\}$ of closed sets with $X_k \uparrow [a,b]$ such that for each $x^* \in X^*$, f is Pettis integrable on each X_k , and

$$\lim_{k \to \infty} (Pettis) \int_{X_k} f = (HP) \int_a^b f \text{ weakly.}$$
(2.4)

PROOF. Since *f* is Henstock-Pettis integrable on [a, b], then *f* is Henstock-Dunford integrable on [a, b]. By Theorem 2.4, there is a sequence $\{X_k\}$ of closed subsets such that $X_k \subset X_{k+1}$ for all $k, \bigcup_{k=1}^{\infty} X_K = [a, b], x^* f$ is Lebesgue integrable on each X_k and

$$\lim_{k \to \infty} (L) \int_{X_k \cap [a,x]} x^* f(t) \, dt = (H) \int_a^x x^* f(t) \, dt \tag{2.5}$$

uniformly on [a,b] for each $x^* \in X^*$. So we obtain that f is Dunford integrable on each X_k . From [2, Theorem 2.5, page 54], f is Pettis integrable on [a,b] and

$$\lim_{k \to \infty} (\text{Pettis}) \int_{X_k \cap [a,x]} f(t) \, dt = (HP) \int_a^x f(t) \, dt \text{ weakly}$$
(2.6)

uniformly on each X_k , that is,

$$\lim_{k \to \infty} (\text{Pettis}) \int_{X_k} f = (HP) \int_a^b f \text{ weakly.}$$
(2.7)

In Theorem 2.7, if we remove the condition that f is a measurable, then we have the following theorem.

THEOREM 2.8. Suppose that X contains no copy of c_0 . If the function $f : [a,b] \to X$ is Henstock-Pettis integrable on [a,b], then there exists a sequence $\{X_k\}$ of closed sets, $\bigcup_{k=1}^{\infty} X_k = [a,b]$, f is Pettis integrable on each X_k .

PROOF. Since *f* is Henstock-Pettis integrable on [a,b], by Definition 2.1, for each $x^* \in X^*$, x^*f is Henstock integrable on [a,b], and for every interval $I \subset [a,b]$,

 $\int_I x^* f = x^* \int_I f$, and $F(I) = \int_I f \in X$. Since $x^* f$ is Henstock integrable, then $x^* F$ is ACG^* . So there is a sequence $\{X_k\}$ of closed subsets such that $\bigcup_{k=1}^{\infty} X_k = [a,b]$ and $x^* F$ is VB^* on each X_k . For each $k \in N$, let $(a,b) - X_k = \bigcup_{n=1}^{\infty} (c_n^k, d_n^k)$. Then

$$\sum_{n=1}^{\infty} \left| x^* \int_{c_n^k}^{d_n^k} f \right| < \infty.$$
(2.8)

Since *X* contains no copy of c_0 , by Bessaga-Pelczynski theorem [2, page 22], $\sum_{n=1}^{\infty} \int_{c_n^k}^{d_n^k} f$ is unconditionally convergent in norm. Also

$$\sum_{n=1}^{\infty} \sup_{\left[a_n^k, b_n^k\right] \subset \left[c_n^k, d_n^k\right]} \left| x^* \int_{a_n^k}^{b_n^k} f \right| < \infty.$$
(2.9)

By Harnack extension theorem [7, page 41], we have

$$\int_{X_k} x^* f = \int_a^b x^* f - \sum_{n=1}^\infty \int_{c_n^k}^{d_n^k} x^* f = x^* \left(\int_a^b f - \sum_{n=1}^\infty \int_{c_n^k}^{d_n^k} f \right).$$
(2.10)

Hence $\int_{X_k} f = \int_a^b f - \sum_{n=1}^\infty \int_{c_n^k}^{d_n^k} f \in X$ and $\int_{X_k} x^* f = x^* \int_{X_k} f$.

So, for every closed set $H \subset X_k$, we have $\int_H x^* f = x^* \int_H f$ and $\int_H f \in X$. Since $\int_a^b f \chi_{X_k} = \int_{X_k} f \in X$, $\int_a^b f \chi_H = \int_H f \in X$, then for every closed interval $I \subset [a,b]$, $\int_I f \chi_{X_k} = \int_{I \cap X_k} f \in X$. By [5, Theorem 23, page 79], $f \chi_{X_k}$ is Pettis integrable on [a,b], that is, f is Pettis integrable on each X_k .

3. The extension theorems and convergence theorems. Now we consider the extension theorems and convergence theorems of the Henstock-Dunford and Henstock-Pettis integrals.

THEOREM 3.1. Let *E* be a closed subset in [a,b] and (a,b) - E the union of $\{(a_k,b_k)\}$, k = 1,2,... If $f : [a,b] \to X$ is Henstock-Dunford integrable on *E* and each interval $[a_k,b_k]$ with

$$\sum_{k=1}^{\infty} \omega \left(\int_{a_k}^{t} x^* f, [a_k, b_k] \right) < \infty$$
(3.1)

for each $x^* \in X^*$, then f is Henstock-Dunford integrable on [a,b] and

$$\left\langle x^*, (HD) \int_a^b f \right\rangle = \left\langle x^*, (HD) \int_a^b f \chi_E \right\rangle + \sum_{k=1}^\infty \left\langle x^*, (HD) \int_{a_k}^{b_k} f \right\rangle$$
 (3.2)

for each $x^* \in X^*$.

PROOF. From the conditions of Theorem 3.1, we have the function x^*f satisfies the hypothesis of [7, Corollary 7.11]. So we have x^*f is Henstock integrable on [a,b] and

$$(H)\int_{a}^{b} x^{*}f = (H)\int_{a}^{b} x^{*}f\chi_{E} + \sum_{k=1}^{\infty} (H)\int_{a_{k}}^{b_{k}} x^{*}f.$$
(3.3)

It follows from Theorem 2.2 that f is Henstock-Dunford integrable on [a, b] and the above equality means that

$$\left\langle x^*, (HD) \int_a^b f \right\rangle = \left\langle x^*, (HD) \int_a^b f \chi_E \right\rangle + \sum_{k=1}^\infty \left\langle x^*, (HD) \int_{a_k}^{b_k} f \right\rangle$$
 (3.4)

for each $x^* \in X^*$.

THEOREM 3.2. Let *E* be a closed subset in [a,b] and $\{(a_k,b_k)\}$ be an enumeration of the intervals contiguous to *E* in (a,b). Suppose that $f:[a,b] \to X$ is Henstock-Pettis integrable on *E* and each interval $[a_k,b_k]$. If $\sum_{k=1}^{\infty} \omega(\int_{a_k}^t x^* f, [a_k,b_k]) < \infty$ for each $x^* \in X^*$ and the series $\sum_{k=1}^{\infty} (HP) \int_{[a_k,b_k] \cap J} f$ is unconditionally convergent for every subinterval *J* of [a,b], then *f* is Henstock-Pettis integrable on [a,b] and

$$(HP)\int_{a}^{b} f = (HP)\int_{a}^{b} f\chi_{E} + \sum_{k=1}^{\infty} (HP)\int_{a_{k}}^{b_{k}} f.$$
(3.5)

PROOF. From Theorem 3.1, we have the function f is Henstock-Dunford integrable on [a, b] and $(H) \int_{a}^{b} x^* f = (H) \int_{a}^{b} x^* f \chi_E + \sum_{k=1}^{\infty} (H) \int_{a_k}^{b_k} x^* f$. To show that f is in fact Henstock-Pettis integrable on [a, b]. We need to show that $(HD) \int_J f$ belongs to X for each closed interval J in [a, b].

Let $E_0 = E \cap J$. Then E_0 is a closed set. Since f_{XE} is Henstock-Pettis integrable on J, then f_{XE_0} is Henstock-Pettis integrable on J, that is, f is Henstock-Pettis integrable on E_0 . And $\{(a_k, b_k) \cap J\}$ is an enumeration of the intervals contiguous to E_0 in J, so f is Henstock-Pettis integrable on them and $\sum_k (HP) \int_{[a_k, b_k] \cap J} f$ is an unconditionally convergent series in X. Now, if we apply Theorem 3.1 to E_0 in J, we get

$$\left\langle x^*, (HD) \int_J f \right\rangle = \left\langle x^*, (HP) \int_J f \chi_{E_0} \right\rangle + \sum_{k=1}^{\infty} \left\langle x^*, (HP) \int_{[a_k, b_k] \cap J} f \right\rangle$$
(3.6)

for each $x^* \in X^*$, that is,

$$\left\langle x^*, (HD) \int_J f \right\rangle = \left\langle x^*, (HP) \int_J f \chi_{E_0} + \sum_{k=1}^{\infty} (HP) \int_{[a_k, b_k] \cap J} f \right\rangle$$
(3.7)

for each $x^* \in X^*$. We conclude that

$$(HD)\int_{J} f = (HP)\int_{J} f\chi_{E_{0}} + \sum_{k=1}^{\infty} (HP)\int_{[a_{k},b_{k}]\cap J} f.$$
(3.8)

Hence, f is Henstock-Pettis integrable on [a, b] and

$$(HP)\int_{a}^{b} f = (HP)\int_{a}^{b} f\chi_{E_{0}} + \sum_{k=1}^{\infty} (HP)\int_{[a_{k},b_{k}]\cap J} f.$$
(3.9)

COROLLARY 3.3. Suppose that X contains no copy of c_0 . Let E be a closed subset in [a,b] and $\{(a_k,b_k)\}$ be an enumeration of the intervals contiguous to E in (a,b). Suppose that $f : [a,b] \rightarrow X$ is Henstock-Pettis integrable on E and each interval $[a_k,b_k]$.

If $\sum_{k=1}^{\infty} \omega(\int_{a_k}^{t} x^* f, [a_k, b_k]) < \infty$ for each $x^* \in X^*$, then f is Henstock-Pettis integrable on [a, b] and

$$(HP)\int_{a}^{b} f = (HP)\int_{a}^{b} f\chi_{E} + \sum_{k=1}^{\infty} (HP)\int_{a_{k}}^{b_{k}} f.$$
(3.10)

THEOREM 3.4. Suppose that X is weakly sequentially complete and $f : [a,b] \rightarrow X$ is Henstock-Dunford integrable on [a,b]. If f is measurable, then f is Henstock-Pettis integrable on [a,b].

PROOF. It is similar to the proof of [5, Theorem 40].

LEMMA 3.5 (see [1, 5]). Let Γ be a family of open intervals in (a, b) and suppose that Γ has the following properties:

- (1) *if* (α, β) *and* (β, γ) *belong to* Γ *, then* (α, γ) *belongs to* Γ *;*
- (2) *if* (α, β) *belong to* Γ *, then every open interval in* (α, β) *belongs to* Γ *;*
- (3) if (α, β) belong to Γ for every interval in $[\alpha, \beta] \subset (c, d)$, then (c, d) belongs to Γ ;
- (4) if all of the intervals contiguous to the perfect set E ⊂ [a,b] belong to Γ, then there exists an interval I in Γ such that I ∩ E ≠ Ø.

Then Γ contains the interval (a,b).

LEMMA 3.6. Suppose that $f_n : [a,b] \to \mathbb{R}$, $f : [a,b] \to \mathbb{R}$, and

(1) $f_n \rightarrow f$ almost everywhere on [a,b] as $n \rightarrow \infty$, where each f_n is Henstock (or D^*) integrable on [a,b];

(2) the primitives F_n of f_n are continuous uniformly in n and ACG^* uniformly in n. Then f is Henstock (or D^*) integrable on [a,b] and

$$\lim_{n \to \infty} \int_{a}^{b} f_{n} = \int_{a}^{b} f.$$
(3.11)

DEFINITION 3.7. Let $F : [a, b] \rightarrow X$ and let *E* be a subset of [a, b].

(a) *F* is BV^* on *E* if $\sup\{\sum_i \omega(F; [c_i, d_i])\}$ is finite, where the supremum is taken over all finite collections $\{[c_i, d_i]\}$ of nonoverlapping intervals that have endpoints in *E*, ω denotes the oscillation of *F* over $[c_i, d_i]$, that is,

$$\omega(F; [c_i, d_i]) = \sup\{||F(x) - F(y)||; x, y \in [c_i, d_i]\}.$$
(3.12)

(b) *F* is *AC*^{*} on *E* if for each $\epsilon > 0$ there exists $\delta > 0$ such that $\sum_i \omega(F; [c_i, d_i]) < \epsilon$ whenever $\{[c_i, d_i]\}$ is a finite collection of nonoverlapping intervals that have endpoints in *E* and satisfy $\sum_i (d_i - c_i) < \delta$.

(c) *F* is BVG^* on *E* if *E* can be expressed as a countable union of sets on each of which *F* is BV^* .

(d) *F* is ACG^* on *E* if *F* is continuous on *E* and if *E* can be expressed as a countable union of sets on each of which *F* is AC^* .

THEOREM 3.8. Suppose that X is weakly sequentially complete and

- (1) $f_n \rightarrow f$ weakly almost everywhere on [a, b] as $n \rightarrow \infty$, where each f_n is Henstock-Pettis integrable on [a, b];
- (2) the primitives F_n of f_n are continuous uniformly in n and ACG^* uniformly in n.

Then f *is Henstock-Pettis integrable on* [a,b] *and*

$$\lim_{n \to \infty} \int_{a}^{b} f_{n} = \int_{a}^{b} f \text{ weakly.}$$
(3.13)

PROOF. Let

$$\Gamma = \left\{ (\alpha, \beta) \subset [a, b] : f \text{ is Henstock-Pettis integrable on } [\alpha, \beta], \int_{\alpha}^{\beta} f_n \longrightarrow \int_{\alpha}^{\beta} f \text{ weakly} \right\}.$$
(3.14)

We must show that Γ contains (a, b) and by Lemma 3.5 it is sufficient to verify that Γ satisfies Romanovski's four conditions.

Conditions (1) and (2) are easily verified.

Suppose that (α, β) belongs to Γ for every interval $[\alpha, \beta]$ in (c, d). For each positive integer n > 2/(d-c), define $I_n = (c+1/n, d-1/n)$ and let $x_n = x_{I_n}^{**}$.

Then we have

$$x_{(c,d)}^{**}(x^*) = \int_c^d x^* f = \lim_{n \to \infty} \int_{I_n} x^* f = \lim_{n \to \infty} x^*(x_n)$$
(3.15)

for each x^* in X^* . Since X is weakly sequentially complete, the sequence $\{x_n\}$ converges weakly to an element x_0 of X and we must have $x_{(c,d)}^{**} = x_0$. It follows easily that (c,d) belongs to Γ and this verifies condition (3).

Now let *E* be a perfect set in [a, b] such that each of the intervals in [a, b] contiguous to *E* belongs to Γ .

Since $\{F_n\}$ is continuous uniformly in n and ACG^* uniformly in n, then for each $x^* \in X^*$, $\{x^*F_n\}$ is continuous uniformly in n and ACG^* uniformly in n, and $x^*f_n \rightarrow x^*f$ almost everywhere in [a,b]. It follows from [1] that x^*f is special Denjoy integrable on [a,b]. So there exists an interval [u,v] with $u, v \in E$ and $E \cap (u,v) \neq \emptyset$ such that $\{F_n\}$ is AC^* uniformly in n on $P = E \cap (u,v)$ and the series $\sum_k \omega(F_n; [u_k, v_k])$ unconditionally converges where $(u,v) - E = \bigcup_k (u_k, v_k)$. Hence $\sum_k \omega(\int_{u_k}^t x^*f_n; [u_k, v_k])$ $< \infty$ for each $x^* \in X^*$. By Corollary 3.3, we have

$$\int_{u}^{v} f_{n} = \int_{P} f_{n} + \sum_{k} \int_{u_{k}}^{v_{k}} f_{n}.$$
(3.16)

 $\{F_n\}$ is AC^* uniformly in n on P, $\{x^*F_n : x^* \in B(X^*), n \in \mathbb{N}\}$ is AC^* uniformly in n on P. So $\{x^*f_n : x^* \in B(X^*), n \in \mathbb{N}\}$ is uniformly integrable on P (see [2]), that is, for $E \subset P$,

$$\lim_{|E|\to 0} \int_{E} |x^* f_n| = 0 \quad \text{uniformly in } x^* \in B(X^*) \text{ and } n.$$
(3.17)

It follows from [4, Theorem 3] that *f* is Pettis integrable on *P* and $\int_P f_n \to \int_P f$ weakly. Since $\{F_n\}$ is *AC*^{*} uniformly in *n* on *P*, so for every $\epsilon > 0$ there exists *N* such that $\sum_{k=N}^{\infty} \| \int_{u_k}^{v_k} f_n \| < \epsilon$, n = 1, 2, ... For every $x^* \in B(X^*)$, we have $\sum_{k=N}^{\infty} | \int_{u_k}^{v_k} x^* f_n | < \epsilon$, n = 1, 2, ... So $\sum_{k=N}^{\infty} | \int_{u_k}^{v_k} x^* f | < \epsilon$. Since *X* is weakly sequentially complete and *X* does not contain c_0 , hence $\sum_k \int_{u_k}^{v_k} f$ unconditionally converges. By (3.16),

$$x^* \int_u^v f_n = x^* \int_P f_n + x^* \sum_k \int_{u_k}^{v_k} f_n.$$
(3.18)

Let $n \to \infty$, we have

$$x_{(u,v)}^{**}(x^*) = x^* \int_P f + x^* \sum_k \int_{u_k}^{v_k} f.$$
(3.19)

Hence

$$\mathbf{x}_{(u,v)}^{**} = \int_{P} f + \sum_{k} \int_{u_{k}}^{v_{k}} f \in X,$$
(3.20)

that is, *f* is Henstock-Pettis integrable on [u, v]. So $(u, v) \in \Gamma$. This shows that (u, v) belongs to Γ and Γ satisfies condition (4). This completes the proof.

THEOREM 3.9. Suppose that X is weakly sequentially complete and $f_n \to f$ weakly almost everywhere on [a,b] as $n \to \infty$, where each f_n is Henstock-Pettis integrable on [a,b]. If there is a scalar function g with $|| f_n(\cdot) || \le g(\cdot)$ almost everywhere for all n and if $\int g < \infty$, then f is Henstock-Pettis integrable on [a,b] and

$$\lim_{n \to \infty} \int_{a}^{b} f_{n} = \int_{a}^{b} f \text{ weakly.}$$
(3.21)

PROOF. It is similar to the proof of Theorem 3.8.

DEFINITION 3.10. Let $\{f_{\alpha}\}$ be a family of Henstock-Pettis integrable functions defined on [a, b]. The family $\{x^* f_{\alpha} : x^* \in B(X^*)\}$ is uniformly integrable in the generalized sense on [a, b], if for each perfect set $E \subset [a, b]$ there exists an interval $[c, d] \subset [a, b]$ with $c, d \in E$ and $E \cap (c, d) \neq \emptyset$ such that $\{x^* f_{\alpha} : x^* \in B(X^*)\}$ is uniformly integrable on $P = E \cap (c, d)$ and for every α the series $\sum_k \int_{c_k}^{d_k} f_{\alpha}$ is unconditionally convergent where $(c, d) - E = \bigcup_k (c_k, d_k)$.

THEOREM 3.11. Suppose that X is weakly sequentially complete and

(1) $f_n \rightarrow f$ weakly almost everywhere on [a,b] as $n \rightarrow \infty$, where each f_n is Henstock-Pettis integrable on [a,b].

(2) The family $\{x^* f_n : x^* \in B(X^*), n \in \mathbb{N}\}$ is uniformly integrable in the generalized sense on [a,b].

(3) For each $x^* \in X^*$, $\lim_{n\to\infty} \int_c^d x^* f_n = \int_c^d x^* f$ uniformly for every $[c,d] \subset [a,b]$. Then f is Henstock-Pettis integrable on [a,b] and

$$\lim_{n \to \infty} \int_{a}^{b} f_{n} = \int_{a}^{b} f \text{ weakly.}$$
(3.22)

PROOF. It is similar to the proof of Theorem 3.8. The only difference is that the family $\{x^* f_n : x^* \in B(X^*), n \in \mathbb{N}\}$ is uniformly integrable in the generalized sense on [a,b], then there is a portion $P = E \cap I$ of E such that the family $|x^* f_n \chi_E|$ is uniformly integrable on P. So f is Pettis integrable on P.

THEOREM 3.12. Suppose that *X* is weakly sequentially complete and

- (1) $f_n \rightarrow f$ weakly almost everywhere on [a, b] as $n \rightarrow \infty$, where each f_n is Henstock-Pettis integrable on [a, b] and f is measurable,
- (2) the primitives F_n of f_n are weakly continuous uniformly in n and weakly ACG^{*} uniformly in n, that is, for every x^{*} ∈ X^{*}, x^{*}F_n are continuous uniformly in n and ACG^{*} uniformly in n.

475

Then f *is Henstock-Pettis integrable on* [a,b] *and*

$$\lim_{n \to \infty} \int_{a}^{b} f_{n} = \int_{a}^{b} f \text{ weakly.}$$
(3.23)

PROOF. For each x^* in X^* , we have

- (1) $x^* f_n \rightarrow x^* f$ almost everywhere on [a, b] as $n \rightarrow \infty$, where each $x^* f_n$ is Henstock integrable on [a, b],
- (2) the primitives x^*F_n of x^*f_n are continuous uniformly in n and ACG^* uniformly in n. It follows from Lemma 3.6 that x^*f is Henstock integrable on [a,b] and

$$\int_{a}^{b} x^{*} f_{n} \longrightarrow \int_{a}^{b} x^{*} f \quad \text{as } n \longrightarrow \infty.$$
(3.24)

By Theorem 2.2, f is Henstock-Dunford integrable on [a, b]. Since X is weakly sequentially complete and f is measurable, by Theorem 3.4, f is Henstock-Pettis integrable on [a, b].

THEOREM 3.13. Suppose that the unit ball $B(X^*)$ of X^* is weak^{*} sequentially compact and

(1) $f_n \rightarrow f$ weakly almost everywhere in [a, b] as $n \rightarrow \infty$, where each f_n is Henstock-Pettis integrable on [a, b],

(2) the primitives F_n of f_n are continuous uniformly in n and ACG^* uniformly in n. Then f is Henstock-Pettis integrable on [a,b] and

$$\lim_{n \to \infty} \int_{a}^{b} f_{n} = \int_{a}^{b} f \text{ weakly.}$$
(3.25)

PROOF. Suppose that $I \,\subset I_0$. Let *C* be the weak closure of $\{\int_I f_n : n \in \mathbb{N}\}$. For each x^* in X^* , $\{x^*F_n : n \in \mathbb{N}\}$ is continuous uniformly in *n* and ACG^* uniformly in *n* in [a, b], and further $\int_a^b x^* f_n = x^* \int_a^b f_n$. A convergence theorem, namely Lemma 3.6, guarantees that x^*f is Henstock integrable on [a, b] and $\lim_{n\to\infty} \int_a^b x^* f_n = \int_a^b x^* f$ for each x^* in X^* . We observe that *C* is bounded and that $C - \{\int_I f_n : n \in \mathbb{N}\}$ contains at most one point. We will prove that *C* is weakly compact.

Suppose that *C* is not weakly compact. An appeal to a theorem of James [6, Theorem 1] produces a bounded sequence (x_k^*) in X^* , a sequence (x_n) in *C*, and an $\epsilon > 0$ such that $x_k^*(x_n) = 0$ for k > n and $x_k^*(x_n) > \epsilon$ for $n \ge k$. By passing to subsequences and relabelling, we can find a subsequence $(\int_I g_n)$ of $(\int_I f_n)$ and a subsequence (y_k^*) of x_k^* such that

$$y_{k}^{*} \int_{I} g_{n} = \int_{I} y_{k}^{*} g_{n} = 0 \quad \text{for } k > n,$$

$$y_{k}^{*} \int_{I} g_{n} = \int_{I} y_{k}^{*} g_{n} > \epsilon \quad \text{for } n \ge k,$$

$$\lim_{n \to \infty} \int_{I} x^{*} g_{n} = \int_{I} x^{*} f \quad \forall x^{*} \text{ in } X^{*}.$$
(3.26)

Since the unit ball $B(X^*)$ of X^* is weak^{*} sequentially compact, the sequence (γ_k^*) has a subsequence $(\gamma_{k_i}^*)$ which weak^{*} converges to γ_0^* , so $\lim_{j\to\infty} \gamma_{k_i}^* f = \gamma_0^* f$ on I_0 ,

 $\lim_{j\to\infty} y_{k_j}^* F = y_0^* F \text{ on } I_0, \text{ that is, } \lim_{j\to\infty} \int_I y_{k_j}^* f = \int_I y_0^* f. \text{ To force a contradiction, note} that for each$ *k* $, <math>\lim_{n\to\infty} \int_I y_k^* f_n = \int_I y_k^* f. \text{ Hence } \int_I y_k^* f \ge \epsilon \text{ for each k, and } \int_I y_0^* f \ge \epsilon.$ On the other hand, notice that since each g_n is Henstock-Pettis integrable, $(y_{k_j}^*)$ weak* converges to y_0^* , hence

$$\lim_{j \to \infty} \int_{I} \mathcal{Y}_{k_{j}}^{*} g_{n} = \lim_{j \to \infty} \mathcal{Y}_{k_{j}}^{*} \int_{I} g_{n} = \mathcal{Y}_{0}^{*} \int_{I} g_{n} = \int_{I} \mathcal{Y}_{0}^{*} g_{n}.$$
(3.27)

Since this holds for each *n*, and since $\lim_{n\to\infty} \int_I y_0^* g_n = \int_I y_0^* f$, we see that $\int_I y_0^* f = 0$. This contradicts the inequality $\int_I y_0^* f \ge \epsilon$, and proves that *C* is weakly compact. Since $\lim_{n\to\infty} \int_I x^* f_n = \int_I x^* f$, the sequence $(\int_I f_n)$ of the Henstock-Pettis integrals is weakly Cauchy. It follows from the weak compactness of *C* that $\lim_{n\to\infty} \int_I f_n$ exists weakly in *X*. Denote $F(I) = \int_I f = \lim_{n\to\infty} \int_I f_n$ weakly, then $x^*F(I) = x^* \int_I f = \int_I x^* f$ for each x^* in X^* . So *f* is Henstock-Pettis integrable on [a, b] and

$$\lim_{n \to \infty} \int_{a}^{b} f_{n} = \int_{a}^{b} f \text{ weakly.}$$
(3.28)

COROLLARY 3.14. Suppose that X is a reflexive Banach space and

- (1) $f_n \rightarrow f$ weakly almost everywhere on [a, b] as $n \rightarrow \infty$, where each f_n is Henstock-Pettis integrable on [a, b],
- (2) the primitives F_n of f_n are weakly continuous uniformly in n and weakly ACG* uniformly in n on [a,b].

Then f is Henstock-Pettis integrable on [a,b] and

$$\lim_{n \to \infty} \int_{a}^{b} f_{n} = \int_{a}^{b} f \text{ weakly.}$$
(3.29)

THEOREM 3.15. If the following conditions are satisfied:

- (1) $\lim_{n\to\infty} f_n = f$ weakly almost everywhere on [a,b], where each f_n is Henstock-Dunford integrable on [a,b],
- (2) the primitives F_n of f_n are weakly continuous uniformly in n and weakly ACG^* uniformly in n.

Then f is Henstock-Dunford integrable on [a,b] and

$$\lim_{n \to \infty} \int_{a}^{b} f_{n} = \int_{a}^{b} f \text{ weakly.}$$
(3.30)

PROOF. Since

- (1) $\lim_{n\to\infty} x^* f_n = x^* f$ almost everywhere on [a, b],
- (2) the primitives x^*F_n of x^*f_n are continuous uniformly in n and ACG^* uniformly in n.

Then, as in the proof of Theorem 3.12, x^*f is Henstock integrable on [a,b] and

$$\lim_{n \to \infty} \int_{a}^{b} x^{*} f_{n} = \int_{a}^{b} x^{*} f.$$
(3.31)

By Theorem 2.2, f is Henstock-Dunford integrable on [a,b] and

$$\lim_{n \to \infty} \int_{a}^{b} f_{n} = \int_{a}^{b} f \text{ weakly.}$$
(3.32)

References

- V. G. Čelidze and A. G. Džvaršeišvili, *The Theory of the Denjoy Integral and some Applications*, Series in Real Analysis, vol. 3, World Scientific Publishing Co., New Jersey, 1989, translated from Russian, with a preface and an appendix by P. S. Bullen. MR 90k:26013. Zbl 744.26006.
- [2] J. Diestel and J. J. Uhl, Jr., *Vector Measures*, Mathematical Surveys, no. 15, American Mathematical Society, Rhode Island, 1977, with a foreword by B. J. Pettis. MR 56#12216. Zbl 369.46039.
- [3] J. L. Gámez and J. Mendoza, On Denjoy-Dunford and Denjoy-Pettis integrals, Studia Math. 130 (1998), no. 2, 115–133. MR 99k:28013. Zbl 980.39999.
- [4] R. F. Geitz, *Pettis integration*, Proc. Amer. Math. Soc. 82 (1981), no. 1, 81–86. MR 82c:28018. Zbl 506.28007.
- [5] R. A. Gordon, *The Denjoy extension of the Bochner, Pettis, and Dunford integrals*, Studia Math. 92 (1989), no. 1, 73-91. MR 90b:28011. Zbl 681.28006.
- [6] R. C. James, Weak compactness and reflexivity, Israel J. Math. 2 (1964), 101–119. MR 31#585. Zbl 127.32502.
- [7] P. Y. Lee, Lanzhou Lectures on Henstock Integration, Series in Real Analysis, vol. 2, World Scientific Publishing Co., New Jersey, 1989. MR 92j:26010. Zbl 699.26004.
- [8] G. Q. Liu, On necessary conditions for Henstock integrability, Real Anal. Exchange 18 (1992/93), no. 2, 522-531. MR 94e:26014. Zbl 788.26008.

YE GUOJU: DEPARTMENT OF MATHEMATICS, NORTHWEST NORMAL UNIVERSITY, LANZHOU 730070, CHINA

E-mail address: yeguoju@21cn.com

AN TIANQING: DEPARTMENT OF MATHEMATICS, NORTHWEST NORMAL UNIVERSITY, LANZHOU 730070, CHINA