
IJMMS 25:9 (2001) 565–569
PII. S0161171201005178
http://ijmms.hindawi.com
© Hindawi Publishing Corp.

A GAUSS TYPE FUNCTIONAL EQUATION
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Abstract. Gauss’ functional equation (used in the study of the arithmetic-geometricmean)
is generalized by replacing the arithmetic mean and the geometric mean by two arbi-
trary means.
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1. Introduction. By mean we understand a function M :R+×R+ →R+ which satis-
fies the condition

min(a,b)≤M(a,b)≤max(a,b) ∀a,b > 0. (1.1)

The mean is called symmetric if

M(a,b)=M(b,a) ∀a,b > 0. (1.2)

Usual examples are the power means given by

Pn(a,b)=
(
an+bn

2

)1/n
(1.3)

for n≠ 0, while for n= 0 it is the geometric mean

P0(a,b)=G(a,b)=
√
ab. (1.4)

Of course, the arithmetic mean is A= P1.
If M is a mean and p :R+ →R is a strictly monotonous function, the expression

M(p)(a,b)= p−1[M(p(a),p(b))] (1.5)

defines another mean M(p) which is called M-quasi mean (see [1]). For example, the
power means are A-quasi means. More exactly Pn =A(en), where

en(x)= xn for n≠ 0, e0(x)= lnx. (1.6)

In what follows, we refer to another famous example of mean. Given two positive
numbers a and b, we define define successively the terms

an+1 =A
(
an,bn

)
, bn+1 =G

(
an,bn

)
, n≥ 0, (1.7)

where ao = a and bo = b. It is known (see [1]) that (an)n≥o and (bn)n≥o are convergent
to a common limit which is denoted by A⊗G(a,b). It defines the arithmetic-geometric
mean of Gauss A⊗G.
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The following representation formula is also known (see [1])

A⊗G(a,b)= [f(a,b)]−1, (1.8)

where

f(a,b)= 1
2·π

∫ 2π

0

dθ√
a2 ·cos2θ+b2 ·sin2θ

. (1.9)

The proof of this formula is based on the fact that the function f verifies the relation

f
(
A(a,b),G(a,b)

)= f(a,b), (1.10)

which is called Gauss’ functional equation.
These results were generalized as follows. We denote

rn(θ)=
(
an ·cos2θ+bn ·sin2θ)1/n, n≠ 0,

r0(θ)= lim
n→0

rn(θ)= acos2θbsin2θ.
(1.11)

If p :R+ →R is a strictly monotonous function, then

Mp,n(a,b)= p−1
(

1
2π

∫ 2π

0
p
(
rn(θ)

)
dθ
)

(1.12)

defines a symmetric mean. The arithmetic-geometric mean of Gauss is obtained for
n= 2 and p(x)= x−1. For n=−2 and p(x)= x−2 the mean can be found in [7]. The
case n = 1 and p = log was studied in [2]. The essential step was done in [4] by the
consideration of the definition (1.12) for n= 2 with an arbitrary p. The values n=−1
and n = 1 were studied in [5, 6]. The general case (of arbitrary n) was studied in [8]
and continued in [9]. In [8], Gauss’ functional equation was also replaced by a more
general equation

F
(
Pq(a,b),Ps(a,b)

)= F(a,b). (1.13)

In this paper, we generalize themean (1.12) as well as the functional equation (1.13).

2. An integral mean. We consider the strictlymonotonous functionsp and q. Using
them, we define the functions

rq(θ)= q−1
[
q(a)·cos2θ+q(b)·sin2θ],

f (a,b;p,q)= 1
2π

∫ 2π

0
p
[
rq(θ)

]
dθ.

(2.1)

It is easy to prove that
Mp,q(a,b)= p−1

[
f(a,b;p,q)

]
(2.2)

defines a mean. Choosing q = en we obtain Mp,q =Mp,n. We so have generalized the
means (1.12). On the other hand, if we let p◦q−1 =Q, we have Mp,q =MQ,1(q). Thus,
Mp,q is a MQ,1-quasi mean.
It is thus enough to consider the function

f(a,b;p)= 1
2π

∫ 2π

0
p
(
a·cos2θ+b ·sin2θ)dθ (2.3)
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which defines the mean Mp =Mp,1 by

Mp(a,b)= p−1
[
f(a,b;p)

]
. (2.4)

In what follows, we assume that the function p is two times differentiable. From
any of the papers [5, 6, 8, 9], we can deduce the following result.

Lemma 2.1. The function f defined by (2.3) has the following partial derivatives:

f ′a(c,c;p)= f ′b(c,c;p)=
1
2
·p′(c),

f ′′aa(c,c;p)= f ′′bb(c,c;p)=
3
8
·p′′(c),

f ′′ab(c,c;p)=
1
8
·p′′(c).

(2.5)

3. The functional equation. We replace (1.13) by amore general functional equation

F
(
M(a,b),N(a,b)

)= F(a,b), (3.1)

where M and N are two given means. We prove the following result.

Lemma 3.1. If the function f , defined by (2.3), verifies the functional equation (3.1),
then the function p is a solution of the differential equation

p′′(c)·
{[
3·M′b(c,c)+N′b(c,c)

]·M′a(c,c)+[M′b(c,c)+3·N′b(c,c)]·N′a(c,c)−1
}

+4·p′′(c)·[M′′ab(c,c)+N′′ab(c,c)]= 0.
(3.2)

Proof. Taking in (3.1) the partial derivatives with respect to a, we obtain

F ′a
[
M(a,b),N(a,b)

]·M′a(a,b)+F ′b[M(a,b),N(a,b)]·N′a(a,b)= F ′a(a,b). (3.3)

Taking again the derivatives with respect to b, it follows that
{
F ′′aa

[
M(a,b),N(a,b)

]·M′b(a,b)+F ′′ab[M(a,b),N(a,b)]·N′b(a,b)
}
·M′a(a,b)

+
{
F ′′ab

[
M(a,b),N(a,b)

]·M′b(a,b)+F ′′bb[M(a,b),N(a,b)]·N′b(a,b)
}
·N′a(a,b)

+F ′a
[
M(a,b),N(a,b)

]·M′′ab(a,b)+F ′b[M(a,b),N(a,b)]·N′′ab(a,b)= F ′′ab(a,b).
(3.4)

For a = b = c and the function F = f , defined by (2.3), we apply Lemma 2.1 and
obtain (3.2).

Consequence 3.2. If the function f , defined by (2.3), verifies the functional equa-
tion (3.1), where the means M and N are symmetric, the function p is a solution of
the differential equation

p′′(c)+4·p′(c)·[M′′ab(c,c)+N′′ab(c,c)]= 0. (3.5)
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Proof. As the means are symmetric, their partial derivatives of the first order are
equal to 1/2 (see [3]), thus (3.2) becomes (3.5).

Consequence 3.3. If the function f , defined by (2.3), verifies the functional equa-
tion (1.13), then the function p is given by

p(c)= C ·cr+s−1+D, (3.6)

where C and D are arbitrary constants.

Proof. We have in (3.5), M = Pr and N = Ps. Thus

M′′ab(c,c)=
1−r
4·c , N′′ab(c,c)=

1−s
4·c . (3.7)

Replacing them in (3.5), we obtain the differential equation

p′′(c)+ 2−r −s
c

·p′(c)= 0 (3.8)

with the solution given above.

Remark 3.4. This last result was obtained in [8]. As it is shown in [9], the condition
is also sufficient for r =−s = 1.

Remark 3.5. Equation (3.1) can be further generalized at

F
(
g
(
M(a,b)

)
,g
(
N(a,b)

))= h(F(a,b)), (3.9)

where g and h are two given functions. We have in view the following result given
in [2]. The function f , defined by (2.3), verifies the relation

f
(
A2(a,b),G2(a,b); log

)= 2·f(a,b; log). (3.10)

4. Special means. A problem which is studied for the integral means defined in
[4, 5, 6, 8, 9] is that of the determination of the cases in which the mean reduces at
a given one, usually a power mean. Similar results can be given also in more general
circumstances. We prove the following lemma.

Lemma 4.1. If for a given mean N , we have Mp =N , then the function p verifies the
equation

p′′(c)·[8·N′a(c,c)·N′b(c,c)−1]+8·p′(c)·N′′ab(c,c)= 0. (4.1)

Proof. In the given hypotheses, we have

f(a,b;p)= p[N(a,b)]. (4.2)

Taking the partial derivatives with respect to a, we have

f ′a(a,b;p)= p′
[
N(a,b)

]·N′a(a,b). (4.3)

Then we take the derivative with respect to b, we obtain

f ′′ab(a,b;p)= p′′
[
N(a,b)

]·N′a(a,b)·N′b(a,b)+p′[N(a,b)]·N′′ab(a,b). (4.4)

For a= b = c, Lemma 2.1 gives (4.1).
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Consequence 4.2. If we have Mp =N, with the symmetric mean N , then the func-
tion p verifies the equation

p′′(c)+8·p′(c)·N′′ab(c,c)= 0. (4.5)

Consequence 4.3. If we have Mp = Pr , then the function p is given by

p(c)= C ·c2r−1+D, (4.6)

where C and D are arbitrary constants.

Remark 4.4. In [9], it is shown that the above condition is also sufficient for r = 0,
1/2, and 1.
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