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Abstract. We are concerned with the experiment on numerical conformal mappings. A
potentially theoretical scheme in the fundamental solutions method, different from the
conventional one, has been recently proposed for numerical conformal mappings of un-
bounded multiply connected domains. The scheme is based on the asymptotic theorem on
extremal weighted polynomials. The scheme has the characteristic called “invariant and
dual.” Applying the scheme for typical examples, we will show that the numerical results
of high accuracy may be obtained.
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1. Introduction. The fundamental solutionsmethod (or charge simulationmethod)

has been applied to the problem in electrical engineering, numerical conformal map-

pings [2, 3, 4, 10, 12] and Dirichlet problems [10, 16, 17].

The principle of the method is the approximation of the solution by a linear combi-

nation of logarithmic potentials. Though the method requires only solving a system

of simultaneous linear equations, it is possible to get a rather precise solution for

boundary problems with respect to domains bounded by smooth curves.

Amano [2, 3] has recently proposed two kinds of schemes of approximations for

the conformal mappings onto the domains with circular or radial cuts, respectively.

Kuhara [11, 12] has also established a construction method of the functions map-

ping multiply connected domains onto the rings with circular or radial slits, based

upon the works of Bergman [5] and using the fundamental solutions method. The

method is described from the two-dimensional electrostatic point of view.

A potentially theoretical scheme in the fundamental solutions method, different

from the conventional one, has been recently proposed for numerical conformal map-

pings of unbounded multiply connected domains [9]. The scheme is based on the as-

ymptotic theorem on extremal weighted polynomials [7, 8, 13, 14, 15]. The scheme

has the characteristic called “invariant and dual” with respect to interior and exterior

domains [9]. In this paper, applying the scheme for typical examples, we show that

the numerical results of high accuracy may be obtained.

2. Scheme for numerical conformal mapping. In this section, we show the scheme

computing the approximations for the conformal mappings of “unbounded” multiply

connected domains, which has been recently proposed in [9].
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Let D and D′ denote unbounded multiply connected domains whose boundaries γ
and γ′ consist of Jordan curves γi and γ′i (i= 0(1)m), respectively.
We assume that γ0, γ′0 enclose the origin. Let γ

′
0 be a circle {w : |w| = r0}. Let f(z)

map conformally D onto D′ with the continuation to a bijection mapping from

D∪γ to D′ ∪γ′, (2.1)

corresponding γi to γ′i . f(z) is uniquely determined under the condition f(∞)=∞,
f ′(∞)= 1 [1].

We have proposed in [9] the following scheme of approximations of f(z)

fn(z)= z
n∏
i=1

(
1− zn,i

z

)αi
,

n∑
i=1
αi = 1, (2.2)

where the charge points {zn,i}ni=1 are appropriately chosen interior to γ.
When D′ is {w : |w|> r0} with radial cuts

∑m
j=1γ

′
i , we propose the algorithm com-

puting approximations of f(z) as follows.

Scheme 2.1. The approximation fn(z) of f(z) may be obtained as follows:

(2a)
{
z(j)nj ,i

}nj
i=1 and

{
ζ(j)nj ,i

}nj
i=1 with n0 = ··· =nm =n are appropriately chosen inte-

rior to γj and on γj (j = 0(1)m), respectively.
(2b)Whenα(j)i (i=0(1)nj, j=0(1)m) are the solutions of a systemof (m+1)(n+1)

simultaneous linear equations using Dirichlet-Neumann and charge conditions

[11, 12]:

α(0)0 + log∣∣ζ(0)n0,k∣∣+
m∑
j=0

nj∑
i=1
α(j)i log

∣∣∣∣∣∣∣1−
z(j)nj ,i
ζ(0)n0,k

∣∣∣∣∣∣∣= 0
(
k= 1(1)n0

)
,

α(l)0 +arg
(
ζ(l)nl,k

)
+

m∑
j=0

nj∑
i=1
α(j)i arg


1− z

(j)
nj ,i

ζ(l)nl,k


= 0

(
k= 1(1)nl, l= 1(1)m

)
,

n0∑
i=1
α(0)i = 1,

nj∑
i=1
α(j)i = 0

(
j = 1(1)m

)
,

(2.3)

the charges at
{
z(j)nj ,i

}nj
i=1 are given by

{
α(j)i

}nj
i=1 (j = 1(1)m), respectively.

(2c) The approximation fn(z) is represented by

fn(z)= z
m∏
j=0

nj∏
i=1


1− z

(j)
nj ,i

z



α(j)i

,
n0∑
i=1
α(0)i = 1,

nj∑
i=1
α(j)i = 0

(
j = 1(1)m

)
. (2.4)

Note that the approximations

α(0)0 �− logr0, α(j)0 �−θj
(
j = 1(1)m

)
(2.5)

hold, where θj is the argument of γ′j .
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The invariant scheme of approximations has been first shown for the numerical

Dirichlet problem by Murota [16, 17]. It is physically natural and mathematically rea-

sonable.

The solutions of a system of simultaneous linear equations in Scheme 2.1 are also

invariant in the sense that the transformation z→ az (a > 0) implies

α(0)0 �→α(0)0 + loga,
α(j)0 �→α(j)0

(
j = 1(1)m

)
,

α(j)i �→α(j)i
(
i= 1(1)n, j = 0(1)m

)
.

(2.6)

3. A numerical example. We consider a function

w = f(z)= z+ 1
z−6

(
z = f−1(w)=

(
7−5√(w−8)/(w−4))(
1−√(w−8)/(w−4))

)
(3.1)

mapping D onto D′, where D′ is {w : |w|> 1} with a radial cut

{
w : 4≤ Re(w)≤ 8, Im(z)= 0

}
. (3.2)

This corresponds to Dirichlet-Neumann problem and easy to check the accuracy of

the approximation. We apply Scheme 2.1 to compute the approximations of f(z).
The charge points interior to γ1 and the collocation points on γ1 are so chosen that

lexp
(
2πj(i−1)

n

)
+6, j =√−1, (i= 1(1)n

)
(3.3)

with l= 0.75,0.5,0.25 and l= 1, respectively.

On the other hand, the charge points interior to γ0 and the collocation points on

γ0 are the images of the points

lexp
(
2πj(i−1)

n

)
, j =√−1, (i= 1(1)n

)
(3.4)

being distributed on {w : |w| = 0.75,0.5,0.25,1} under the inverse function f−1(w)
of f(z), respectively.
For n= 13, we solve a system of simultaneous linear equations (2.3) and obtain the

approximations fn(z).
The accuracy of the errors is estimated by

|fn(z)−f(z)| (3.5)

at the points on γ1

exp
(
2πj(i−1)

n
+ πj
n

)
+6, j =√−1, (i= 1(1)n

)
(3.6)

and the images of the points on γ0

exp
(
2πj(i−1)

n
+ πj
n

)
, j =√−1, (i= 1(1)n

)
. (3.7)

under the function f−1(w).
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By the maximum principle for the analytic functions, it is sufficient that the errors

are estimated only on the boundary.

The numerical results are presented for the following cases (under a minor modifi-

cation of the scheme in order to keep the continuity of the argument).

(3a) The charge distribution with l= 0.75.
We show the charges in (2b) interior to γ1 and γ0, respectively as follows:

Table 3.1. The charge distribution with n= 13, l= 0.75 on γ1.

−6.095578422303619D−002 5.357980215700247D−003 −5.370095750188362D−002
2.111998739887658D−002 −2.743036534771264D−002 5.611121564384160D−002
2.902003170269616D−002 2.902003170269579D−002 5.611121564384106D−002
−2.743036534771176D−002 2.111998739887570D−002 −5.370095750188297D−002
5.357980215700064D−003

Table 3.2. The charge distribution with n= 13, l= 0.75 on γ0.

7.693733748274377D−002 7.693054597318545D−002 7.692230818952048D−002
7.691974075923927D−002 7.691943391695984D−002 7.691958631030785D−002
7.691971610941527D−002 7.691971610941528D−002 7.691958631030788D−002
7.691943391695967D−002 7.691974075923903D−002 7.692230818952112D−002
7.693054597318509D−002

Note that
1
13
= 7.692307692307693D−002. (3.8)

The errors on γ1 and γ0 are as follows:

Table 3.3. The errors with n= 13, l= 0.75 on γ1.

7.906455437100468D−002 7.272028918873658D−002 6.874725258323458D−002
5.361607892270346D−002 5.209733883293302D−002 4.984156926710034D−002
4.894182325162078D−002 4.984156926709897D−002 5.209733883293163D−002
5.361607892270290D−002 6.874725258323204D−002 7.272028918873554D−002
7.906455437100488D−002

Table 3.4. The errors with n= 13, l= 0.75 on γ0.

1.917221469173348D−003 1.917212886788780D−003 1.917182701862004D−003
1.916825188166824D−003 1.916448045831497D−003 1.916203808715182D−003
1.916121835051632D−003 1.916203808714936D−003 1.916448045830375D−003
1.916825188167161D−003 1.917182701862035D−003 1.917212886788246D−003
1.917221469172982D−003
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Furthermore,

α(1)0 −(−θ1)=α(1)0 −(−0)= 1.741206340272162D−003, (3.9)

α(0)0 −(− logr0)=α(0)0 −(− log1)=−1.040834085586084D−017, (3.10)

which shows that (2.5) holds with high accuracy.

(3b) The charge distribution with l= 0.5.
We show the charges in (2b) interior to γ1 and γ0, respectively as follows:

Table 3.5. The charge distribution with n= 13, l= 0.5 on γ1.

5.676888435560761D−002 −1.336464863115225D−001 6.408202622703688D−002
−1.158867927979212D−001 9.337154978330532D−002 −4.215724143899066D−002
1.058525023602893D−001 1.058525023602879D−001 −4.215724143899442D−002
9.337154978331164D−002 −1.158867927979256D−001 6.408202622703865D−002
−1.336464863115230D−001

Table 3.6. The charge distribution with n= 13, l= 0.5 on γ0.

7.690431354619905D−002 7.691784500736430D−002 7.692657263421879D−002
7.692635000860265D−002 7.692605635027436D−002 7.692558594969530D−002
7.692543327674563D−002 7.692543327674435D−002 7.692558594969630D−002
7.692605635027493D−002 7.692635000860015D−002 7.692657263422217D−002
7.691784500736203D−002

Note that
1
13
= 7.692307692307693D−002. (3.11)

The errors on γ1 and γ0 are as follows:

Table 3.7. The errors with n= 13, l= 0.5 on γ1.

1.686595817949471D−002 1.594668522932475D−002 1.426456576379659D−002
1.245942289990706D−002 1.124520330394002D−002 1.730254947067371D−002
1.872540245176557D−002 1.730254947067469D−002 1.124520330394140D−002
1.245942289990679D−002 1.426456576379672D−002 1.594668522932589D−002
1.686595817949507D−002

Table 3.8. The errors with n= 13, l= 0.5 on γ0.

6.070869763412672D−005 6.733732155656440D−005 6.897867302145204D−005
6.621157003193045D−005 6.260984607098040D−005 6.000919726996125D−005
5.909032538686798D−005 6.000919726934812D−005 6.260984607020485D−005
6.621157003170747D−005 6.897867302240548D−005 6.733732155617585D−005
6.070869763390371D−005



60 TETSUO INOUE ET AL.

Furthermore,

α(1)0 −(−θ1)= 7.787235018993428D−005, (3.12)

α(0)0 −(− logr0)= 3.426078865054194D−017, (3.13)

which shows that (2.5) holds with high accuracy.

(3c) The charge distribution with l= 0.25.
We show the charges in (2b) interior to γ1 and γ0, respectively as follows:

Table 3.9. The charge distribution with n= 13, l= 0.25 on γ1.

−4.896753338030436D−002 −7.545409516631382D−002 −4.502745232832742D−002
−6.625722438826202D−002 −2.034627278488312D−002 −2.970889592876331D−003
2.345397009507822D−001 2.345397009509353D−001 −2.970889593038040D−003
−2.034627278472483D−002 −6.625722438839048D−002 −4.502745232824451D−002
−7.545409516635260D−002

Table 3.10. The charge distribution with n= 13, l= 0.25 on γ0.

7.692306130528526D−002 7.692308599892384D−002 7.692307475080235D−002
7.692307800922398D−002 7.692307646531414D−002 7.692307723249565D−002
7.692307689059898D−002 7.692307689069573D−002 7.692307723235956D−002
7.692307646552272D−002 7.692307800894760D−002 7.692307475107583D−002
7.692308599875447D−002

Note that
1
13
= 7.692307692307693D−002. (3.14)

The errors on γ1 and γ0 are as follows:

Table 3.11. The errors with n= 13, l= 0.25 on γ1.

2.620143221187881D−005 2.460270478748571D−005 2.165285311487771D−005
1.774249777583574D−005 1.308661337754165D−005 7.354889113223171D−006
2.287964484537497D−009 7.354889114253348D−006 1.308661337918933D−005
1.774249777787493D−005 2.165285311546687D−005 2.460270478816393D−005
2.620143221202827D−005

Table 3.12. The errors with n= 13, l= 0.25 on γ0.

4.903447136123618D−010 1.019052540368634D−009 9.883685502913276D−010
7.553265530481330D−010 4.968949958792792D−010 2.547095062921054D−010
8.554679187256638D−011 2.547094246284032D−010 4.968949414229016D−010
7.553265708226896D−010 9.883683875455573D−010 1.019053538929026D−009
4.903451511212511D−010
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Furthermore,

α(1)0 −(−θ1)= 2.378106242066085D−009, (3.15)

α(0)0 −(− logr0)= 8.673617379884036D−019, (3.16)

which shows that (2.5) holds with high accuracy.

The numerical example shows:

(3d) The data present the distribution of the charges and errors of the approxima-

tions, which are symmetric with respect to the real axis and with high accuracy.

(3e) When the charges and collocation points are distributed uniformly (see the

definition in [6]) as (3.4), the example shows that the approximations

αi � 1
n
(i= 1,2, . . . ,n), α(0)0 �− logr0, f (z)� fn(z) (3.17)

would hold with high accuracy.

We have examined the case of odd n. The case of n = 12 is shown in the follow-

ing (3f).

(3f) The charge distribution with l= 0.25.
We show the charges in (2b) interior to γ1 and γ0, respectively as follows:

Table 3.13. The charge distribution with n= 12, l= 0.25 on γ1.

−1.942606947010962D−001 5.972416806033705D−002 −1.896074309191883D−001
7.405835693044212D−002 −1.569787980380907D−001 2.128037039665000D−001
1.942606947011143D−001 2.128037039664623D−001 −1.569787980380575D−001
7.405835693042352D−002 −1.896074309191738D−001 5.972416806032727D−002

Table 3.14. The charge distribution with n= 12, l= 0.25 on γ0.

8.333347749250593D−002 8.333322686829960D−002 8.333337977798844D−002
8.333331344289655D−002 8.333334554423848D−002 8.333332530161311D−002
8.333334063736710D−002 8.333332530170494D−002 8.333334554409336D−002
8.333331344306075D−002 8.333337977783503D−002 8.333322686839680D−002

Note that
1
12
= 8.333333333333333D−002. (3.18)

The errors on γ1 and γ0 are as follows:

Table 3.15. The errors with n= 12, l= 0.25 on γ1.

4.889879193915697D−004 4.566691529354238D−004 4.003418633466522D−004
3.341897580605150D−004 2.746913382174855D−004 2.377726507971854D−004
2.377726507949406D−004 2.746913382176728D−004 3.341897580660071D−004
4.003418633444508D−004 4.566691529379670D−004 4.889879193896632D−004
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Furthermore,

α(1)0 −(−θ1)= 8.050910065412068D−009, (3.19)

α(0)0 −(− logr0)= 1.001802807376606D−016, (3.20)

which shows that (2.5) holds with high accuracy.

Table 3.16. The errors with n= 12, l= 0.25 on γ0.

2.472695830800364D−009 2.547021968349248D−009 1.880133758085106D−009
1.954951566801633D−009 1.938261615460128D−009 1.892427103310218D−009
1.892426551711589D−009 1.938261234766441D−009 1.954951344522423D−009
1.880133600747165D−009 2.547022633553721D−009 2.472696052933940D−009

We have shown the data exactly for the convenience of the readers in order to follow

the numerical experiment in Fortran 90 with double precision.

The numerical calculation has been performed in MsDevf90 (PC9821-NEC).

Acknowledgement. The authors express their gratitude to T. Fujii of Kobe Mer-

cantile Marine College for helping to make tables.

4. Concluding remark. The numerical scheme of approximations in this paper has

been applied for a doubly connected domains applying the charge simulation method.

The numerical experiments for other doubly connected domains and m(�= 2)-
multiply connected ones will be furthermore studied in a future paper.
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