ON AZUMAYA ALGEBRAS WITH A FINITE AUTOMORPHISM GROUP

GEORGE SZETO and LIANYONG XUE

(Received 26 October 2000)

ABSTRACT. Let *B* be a ring with 1, *C* the center of *B*, and *G* a finite automorphism group of *B*. It is shown that if *B* is an Azumaya algebra such that $B = \bigoplus \sum_{g \in G} J_g$ where $J_g = \{b \in B \mid bx = g(x)b$ for all $x \in B\}$, then there exist orthogonal central idempotents $\{f_i \in C \mid i = 1, 2, ..., m \text{ for some integer } m\}$ and subgroups H_i of *G* such that $B = (\bigoplus \sum_{i=1}^m Bf_i) \oplus D$ where Bf_i is a central Galois algebra with Galois group $H_i|_{Bf_i} \cong H_i$ for each i = 1, 2, ..., m and *D* is contained in *C*.

2000 Mathematics Subject Classification. 16S35, 16W20.

1. Introduction. Let A be an Azumaya algebra, G a finite algebra automorphism group of *A*, and $J_g = \{a \in A \mid ax = g(x)a \text{ for all } x \in A\}$ for each $g \in G$. In [6], it was shown that $J_g J_h = J_{gh}$ for all $g, h \in G$. In [2], let *B* be a separable algebra over a commutative ring R and G a finite algebra automorphism group of B. Assume that $B = \bigoplus \sum_{g \in G} J_g$ where J_g are similarly defined as for *A*. Then, *B* is a central Galois algebra with Galois group *G* if and only if for each $g \in G$, $J_g J_{g^{-1}} = C$, the center of *B*. Thus, any Azumaya algebra B with a finite algebra automorphism group G such that $B = \bigoplus \sum_{g \in G} J_g$ is a central Galois algebra with Galois group G. By changing the algebra automorphism group G to a ring automorphism group G, the purpose of the present paper is to generalize the above fact. We will show that if *B* is an Azumaya *C*-algebra with a finite ring automorphism group *G* such that $B = \bigoplus \sum_{g \in G} J_g$, then there exist orthogonal central idempotents $\{f_i \in C \mid i = 1, 2, ..., m \text{ for some integer } m\}$ and subgroups H_i of G such that $B = (\bigoplus \sum_{i=1}^m Bf_i) \oplus Bf$ where Bf_i is a central Galois algebra with Galois group $H_i|_{Bf_i} \cong H_i$ for each $i = 1, 2, ..., m, f = 1 - \sum_{i=1}^m f_i$, and Bf = Cf. Since a Galois algebra B with Galois group G is an Azumaya algebra such that $B = \bigoplus \sum_{g \in G} J_g$, our result can be applied to Galois algebras. Moreover, if B is a separable extension of B^G such that $B = \bigoplus \sum_{g \in G} J_g$, then the direct summand Bfis a commutative Galois algebra with Galois group $G|_{Bf} \cong G$. An example is given to demonstrate the results and to illustrate that an Azumaya algebra B such that $B = \bigoplus \sum_{g \in G} J_g$ is not necessarily a Galois algebra with Galois group G.

2. Definitions and notations. Throughout, *B* will represent a ring with 1, *C* the center of *B*, *G* a ring automorphism group of *B* of order *n* for some integer *n*, and B^G the set of elements in *B* fixed under each element in *G*. We denote $J_g = \{b \in B \mid bx = g(x)b \text{ for all } x \in B\}$ and $I_g = BJ_g \cap C$ for each $g \in G$.

Let *A* be a subring of a ring *B* with the same identity 1. We denote $V_B(A)$ the commutator subring of *A* in *B*. We follow the definitions of a Galois extension, a separable

extension, and an Azumaya algebra as given in [1, 5, 7]. The ring *B* is called a separable extension of *A* if there exist $\{a_i, b_i \text{ in } B, i = 1, 2, ..., m$ for some integer *m* $\}$ such that $\sum a_i b_i = 1$, and $\sum ba_i \otimes b_i = \sum a_i \otimes b_i b$ for all *b* in *B* where \otimes is over *A*. An Azumaya algebra is a separable extension of its center. The ring *B* is called a Galois extension of B^G with Galois group *G* if there exist elements $\{a_i, b_i \text{ in } B, i = 1, 2, ..., m\}$ for some integer *m* such that $\sum_{i=1}^{m} a_i g(b_i) = \delta_{1,g}$ for each $g \in G$. The algebra *B* is called a Galois algebra over *R* if *B* is a Galois extension of *R* which is contained in *C*, and *B* is called a central Galois extension if *B* is a Galois extension of *C*.

3. The structure theorem. In this section, we assume that *B* is an Azumaya *C*-algebra with a finite ring automorphism group *G* such that $B = \bigoplus \sum_{g \in G} J_g$. We will show a structure theorem for such a *B*. We begin with some properties of the *C*-module J_g for $g \in G$ similar to those as for a Galois algebra (see [4, Proposition 2]).

LEMMA 3.1. For all $g, h \in G$,

(1) $J_g J_h = I_g J_{gh} = I_h J_{gh}$ where $I_g = B J_g \cap C$ and $I_h = B J_h \cap C$.

(2) There is a unique idempotent $e_g \in C$ such that $BJ_g = Be_g$ and $J_g J_{g^{-1}} = e_g C$.

PROOF. (1) Since *B* is an Azumaya *C*-algebra and BJ_g is an ideal of *B*, $BJ_g = BI_g$ (see [1, Proposition 1.11, page 46]). By hypothesis, $B = \bigoplus \sum_{g \in G} J_g$, so $BJ_h = \sum_{g \in G} J_g J_h$. Noting that $J_g J_h \subset J_{gh}$ and $B = \bigoplus \sum_{g \in G} J_{gh}$, we have that $BJ_h = \bigoplus \sum_{g \in G} J_g J_h$. Hence $\bigoplus \sum_{g \in G} J_g J_h = BJ_h = BI_h = \bigoplus \sum_{g \in G} J_g hI_h$. Thus, $J_g J_h = I_h J_{gh}$. Similarly, $J_g J_h = I_g J_{gh}$.

(2) By (1), $J_g J_h = I_g J_{gh}$ for all $g, h \in G$. By letting h = 1, we have $I_g J_g = J_g J_1 = J_g C = J_g$, and by letting $h = g^{-1}$, we have $J_g J_{g^{-1}} = I_g J_1 = I_g C = I_g$. Thus, $(I_g)^2 = I_g J_g J_{g^{-1}} = J_g J_{g^{-1}} = J_g J_{g^{-1}} = J_g J_{g^{-1}} = I_g$. Moreover, since $B = \oplus \sum_{g \in G} J_g$ is an Azumaya *C*-algebra, J_g is a finitely generated and projective *C*-module for each $g \in G$. Hence $BJ_g \cong B \otimes_C J_g$ is a finitely generated and projective ideal of *B*. This implies that $I_g (= BJ_g \cap C)$ is a finitely generated and projective ideal of *C*. But $(I_g)^2 = I_g$, so $I_g = Ce_g$ for some idempotent $e_g \in C$ (see [4, Lemma 2] and [3, Theorem 76]). Therefore, $BJ_g = BI_g = Be_g$ and $J_g J_{g^{-1}} = I_g = e_g C$. Since e_g is the identity of Be_g , it is unique.

By Lemma 3.1(2), for each $g \in G$, there is a unique idempotent $e_g \in C$ such that $BJ_g = Be_g$. The Boolean algebra generated by the elements $\{e_g \mid g \in G \text{ and } BJ_g = Be_g\}$ is denoted by *E*.

LEMMA 3.2. Let e be a nonzero element in E of the form $e = \prod_{h \in H} e_h$ for some maximum subset H of G. Then H is a subgroup of G and h(e) = e for each $h \in H$.

PROOF. For any $g, h \in H$,

$$Be_{\mathcal{G}}e_h = (BJ_{\mathcal{G}})(BJ_h) = B(J_{\mathcal{G}}J_h) = B(I_{\mathcal{G}}J_{\mathcal{G}}h) = (BI_{\mathcal{G}})(BJ_{\mathcal{G}}h) = Be_{\mathcal{G}}e_{\mathcal{G}}h.$$
(3.1)

Hence $e_g e_h = e_g e_{gh}$. Thus, $e_g e_h = e_g e_h^2 = e_g e_{gh} e_h$. Therefore, $e = e e_{gh}$. Thus, $gh \in H$ by the maximality of H. Since G is finite, that $gh \in H$ whenever $g, h \in H$ implies that H is a subgroup of G. Noting that, for a subgroup H, $gHg^{-1} = H$ for all $g \in H$, we have that

$$g(Be) = g(B(\Pi_{h \in H}J_h)) = B(\Pi_{h \in H}g(J_h)) = B(\Pi_{h \in H}J_{aha^{-1}}) = B(\Pi_{h \in H}J_h) = Be \quad (3.2)$$

for each $g \in H$. Hence, g(e) = e for each $g \in H$ because e is the identity of Be.

Next we show that $H|_{Be}$ is an algebra automorphism group.

LEMMA 3.3. Let *e* be a nonzero element in *E* of the form $e = \prod_{h \in H} e_h$ for some maximum subset *H* of *G*. Then *h* restricted to *Ce* is an identity for each $h \in H$.

PROOF. For any $h \in H$ and $b \in J_h$, bc = h(c)b for all $c \in C$, so (c - h(c))b = 0. Hence $(c - h(c))J_h = \{0\}$. Therefore $B(c - h(c))e_h = (c - h(c))Be_h = (c - h(c))BJ_h = B(c - h(c))J_h = \{0\}$. Thus, $(c - h(c))e_h = 0$. But $e = \prod_{h \in H} e_h$, so (c - h(c))e = 0. Moreover, h(e) = e for each $h \in H$ by Lemma 3.2, so 0 = (c - h(c))e = (c - h(c))h(e) = ch(e) - h(c)h(e) = ce - h(ce), that is, h(ce) = ce for all $c \in C$.

LEMMA 3.4. Let $J_h^{(Bf)} = \{b \in Bf \mid bx = h(x)b \text{ for all } x \in Bf\}$ for any $f \in E$ and $h \in G$. If h(f) = f, then $J_h^{(Bf)} = fJ_h$.

PROOF. It is clear that $fJ_h \subset J_h^{(Bf)}$. Conversely, for any $b \in J_h^{(Bf)}$, b = fb and bx = h(x)b for each $x \in Bf$. Hence for any $y \in B$, by = (fb)y = b(yf) = h(yf)b = h(y)fb = h(y)b. Therefore, $b \in J_h$, and so $b = fb \in fJ_h$. Thus, $J_h^{(Bf)} = fJ_h$.

Let *e* and *H* be given as in Lemma 3.2. We have a structure theorem for the Azumaya *Ce*-algebra *Be* with an algebra automorphism group $H|_{Be} \cong H$ and for the Azumaya *C*-algebra *B* with a ring automorphism group *G*, respectively.

THEOREM 3.5. Let *e* be a nonzero element in *E* of the form $e = \prod_{h \in H} e_h$ for some maximum subset *H* of *G*. Then Be is a central Galois algebra with Galois group $H|_{Be} \cong H$.

PROOF. By Lemma 3.2, *H* is a subgroup of *G* and h(e) = e for any $h \in H$. By Lemma 3.3, *h* restricted to *Ce* is an identity for each $h \in H$. Hence $H|_{Be}$ is a *Ce*-algebra automorphism group of *Be*. Since *B* is an Azumaya *C*-algebra, *Be* is an Azumaya *Ce*-algebra (see [1, Proposition 1.11, page 46]). By Lemma 3.4, $J_h^{(Be)} = eJ_h$ for each $h \in H$, so $Be = \bigoplus \sum_{g \in G} J_g e = \bigoplus \sum_{g \in H} eJ_g \oplus \sum_{g \notin H} eJ_g$. Since *H* is a maximum subset of *G* such that $e = \prod_{h \in H} e_h$, $ee_g = 0$ for each $g \notin H$. This implies that $BeJ_g = Bee_g =$ {0}. Therefore, $eJ_g = \{0\}$ for each $g \notin H$. Thus, $Be = \bigoplus \sum_{g \in H} eJ_g = \bigoplus \sum_{g \in H} J_g^{(Be)}$. Moreover, $J_h^{(Be)} J_{h^{-1}}^{(Be)} = (eJ_h)(eJ_{h^{-1}}) = eJ_hJ_{h^{-1}} = ee_hC = Ce$ which is the center of *Be* by Lemma 3.1. Thus, *Be* is a central Galois algebra over *Ce* with Galois group $H|_{Be}$ (see [2, Theorem 1]). Next, we claim that $H|_{Be} \cong H$. Since $e \neq 0$, $\{0\} \neq Be = Bee_h =$ $BeJ_h = BJ_h^{(Be)}$ for each $h \in H$. Hence $J_h^{(Be)} \neq \{0\}$ for each $h \in H$. Now, if $h|_{Be} = 1$, then $\{0\} \neq Ce = J_h^{(Be)} = eJ_h \subset C \cap J_h = J_1 \cap J_h$. But $B = \oplus \sum_{g \in G} J_g$, so $J_1 = J_h$. Therefore h = 1. This implies that $h|_{Be} \neq 1$ whenever $h \neq 1$ in *H*. Thus, $H|_{Be} \cong H$.

THEOREM 3.6. Let *B* be an Azumaya *C*-algebra with a finite ring automorphism group *G* such that $B = \bigoplus \sum_{g \in G} J_g$, then there exist orthogonal idempotents $\{f_i \in C \mid i = 1, 2, ..., m \text{ for some integer } m\}$ and subgroups H_i of *G* such that $B = (\bigoplus \sum_{i=1}^m Bf_i) \oplus Cf$ where Bf_i is a central Galois algebra with Galois group $H_i|_{Bf_i} \cong H_i$ for each i = 1, 2, ..., m and $f = 1 - \sum_{i=1}^m f_i$.

PROOF. Let $\{f_i \in E \mid i = 1, 2, ..., k\}$ be the set of all distinct nonzero elements in E of the form $f_i = \prod_{h \in H_i} e_h$ for some maximum subset (subgroup) H_i of G as given in Lemma 3.2. Then they are orthogonal. Hence $B = (\bigoplus \sum_{i=1}^k Bf_i) \oplus Bf$ where $f = 1 - \sum_{i=1}^k f_i$ such that Bf_i is a central Galois algebra with Galois group $H_i|_{Bf_i} \cong H_i$ for each

i = 1, 2, ..., k by Theorem 3.5. Next, we claim that Bf = Cf. Since $\{f_i \mid i = 1, 2, ..., k\}$ is the set of all distinct nonzero elements in *E* of the form $f_i = \prod_{h \in H_i} e_h$ for some maximum subset (subgroup) H_i of *G*, *g* permutes the set $\{f_i \mid i = 1, 2, ..., k\}$ for each $g \in G$. Hence g(f) = f for each $g \in G$. Hence, by Lemma 3.4, $J_g^{(Bf)} = fJ_g$ for each $g \in G$. Therefore, $Bf = \bigoplus \sum_{g \in G} J_g f = \bigoplus \sum_{g \in G} J_g^{(Bf)} = \{0\}$ for each $g \neq 1$ in *G*, then $Bf = J_1^{(Bf)} = fJ_1 = Cf$, and so we are done. If $J_g^{(Bf)} \neq \{0\}$ for some $g \neq 1$ in *G*, we can repeat the above argument to have more direct summands of central Galois algebras. Since *E* is finite, we have only finitely many central orthogonal idempotents $\{f_i \in E \mid i = 1, 2, ..., m$ for some integer m such that $B = (\bigoplus \sum_{i=1}^m Bf_i) \oplus Bf$ where Bf_i is a central Galois algebra with Galois group $H_i|_{Bf_i} \cong H_i$ for each i = 1, 2, ..., m and Bf = Cf. This completes the proof.

REMARK 3.7. Theorem 3.6 generalizes the following theorem of Harada (see [2, Theorem 1]):

Let B be a separable R-algebra with automorphism group G. If $B = \bigoplus \sum_{g \in G} J_g$ and $J_g J_{g^{-1}} = C$ for each $g \in G$, then B is a central Galois algebra with Galois group G.

REMARK 3.8. Any Galois algebra with Galois group *G* satisfies the conditions as given in Theorem 3.6. There are Azumaya *C*-algebras *B* such that $B = \bigoplus \sum_{g \in G} J_g$, but *B* is not a Galois algebra with Galois group *G* (see Example 3.11). However, for a Galois extension *B* of B^G with Galois group *G*, the condition that *B* is a Galois algebra with Galois group *G* and that $B = \bigoplus \sum_{g \in G} J_g$ are equivalent as given by the following proposition.

PROPOSITION 3.9. For a Galois extension B of B^G with Galois group G, B is a Galois algebra with Galois group G if and only if $B = \bigoplus \sum_{g \in G} J_g$.

PROOF. Since *B* is a Galois extension of B^G with Galois group G, $V_B(B^G) = \bigoplus \sum_{g \in G} J_g$ (see [4, Proposition 1]). Hence $B = \bigoplus \sum_{g \in G} J_g$ if and only if $V_B(B^G) = B$, that is, $B^G \subset C$.

As an application of Theorem 3.6, we obtain a structure theorem for a separable extension *B* of B^G such that $B = \bigoplus \sum_{g \in G} J_g$.

THEOREM 3.10. Let *B* be a separable extension of B^G such that $B = \bigoplus \sum_{g \in G} J_g$, then there exist orthogonal idempotents $\{f_i \in C \mid i = 1, 2, ..., m \text{ for some integer } m\}$ and subgroups H_i of *G* such that $B = (\bigoplus \sum_{i=1}^m Bf_i) \oplus Bf$ where Bf_i is a central Galois algebra with Galois group $H_i|_{Bf_i} \cong H_i$ for each i = 1, 2, ..., m, $f = 1 - \sum_{i=1}^m f_i$, and Bf = Cf is a commutative Galois algebra with Galois group $G|_{Bf} \cong G$ if $f \neq 0$.

PROOF. For any $a \in B^G$ and $b = \sum_{g \in G} b_g \in B$ where $b_g \in J_g$, $b_g a = g(a)b_g = ab_g$ for each $g \in G$, so $ba = \sum_{g \in G} b_g a = a \sum_{g \in G} b_g = ab$ for any $b \in B$. Thus, $a \in C$ for any $a \in B^G$. Therefore, $B^G \subset C$. Noting that B is a separable algebra over B^G , we have that B is an Azumaya C-algebra. But $B = \bigoplus \sum_{g \in G} J_g$, so, by Theorem 3.6, there exist orthogonal idempotents $\{f_i \in C \mid i = 1, 2, ..., m \text{ for some integer } m\}$ and subgroups H_i of G such that $B = (\bigoplus \sum_{i=1}^m Bf_i) \oplus Bf$ where Bf_i is a central Galois algebra with Galois group $H_i|_{Bf_i} \cong H_i$ for each i = 1, 2, ..., m, Bf = Cf, and $f = 1 - \sum_{i=1}^m f_i$. Thus, it suffices to show that Bf(=Cf) is a commutative Galois algebra with Galois group

 $G|_{Bf} \cong G$ in case $f \neq 0$. In fact, since B^G is contained in C and B is separable over B^G , C is separable over B^G (see [1, Theorem 3.8, page 55]), and so Cf is separable over $B^G f$ (see [1, Proposition 1.11, page 46]). Moreover, since $f \in C^G$, $B^G f \subset (B^G f)^G \subset (Cf)^G$. Hence Cf is separable over $(Cf)^G$ (see [1, Proposition 1.11, page 46]). Furthermore, by Lemma 3.4, $J_g^{(Cf)} = J_g^{(Bf)} = fJ_g$ for each $g \in G$ so $J_g^{(Cf)} \subset C \cap J_g = \{0\}$ for each $g \neq 1$ in G. This implies that $g|_{Cf} \neq$ identity whenever $g \neq 1$ in G (for $J_1^{(Cf)} = Cf$). Thus, $G|_{Bf} \cong G$ and Bf(=Cf) is a commutative Galois algebra with Galois group $G|_{Bf} \cong G$ (see [2, Proposition 2]). This completes the proof.

We conclude the present paper with an example to demonstrate the results in Theorem 3.6 and illustrate that an Azumaya *C*-algebra *B* such that $B = \bigoplus \sum_{g \in G} J_g$, but not necessarily a Galois algebra with Galois group *G*.

EXAMPLE 3.11. Let $\mathbb{R}[i, j, k]$ be the real quaternion algebra over the field of real numbers \mathbb{R} , \mathbb{Z} the integer ring, $D = (\mathbb{Z} + \sqrt{-1}\mathbb{Z}) \otimes_{\mathbb{Z}} (\mathbb{Z} + \sqrt{-1}\mathbb{Z})$, $B = \mathbb{R}[i, j, k] \oplus D$, and $G = \{1, g_i, g_j, g_k\}$ where $g_i(a, d_1 \otimes d_2) = (iai^{-1}, \overline{d_1} \otimes d_2)$, $g_j(a, d_1 \otimes d_2) = (jaj^{-1}, d_1 \otimes \overline{d_2})$, and $g_k(a, d_1 \otimes d_2) = (kak^{-1}, \overline{d_1} \otimes \overline{d_2})$, for all $(a, d_1 \otimes d_2)$ in B, where \overline{d} is the conjugate of the complex number d. Then,

(1) The center of *B* is $C = \mathbb{R} \oplus D$.

(2) *B* is an Azumaya *C*-algebra.

(3) $J_1 = C = \mathbb{R} \oplus D$, $J_{g_i} = \mathbb{R}(i,0)$, $J_{g_i} = \mathbb{R}(j,0)$, $J_{g_k} = \mathbb{R}(k,0)$. Hence $B = \oplus \sum_{g \in G} J_g$.

(4) By (3), $J_g J_{g^{-1}} = C(1,0)$ for each $g \neq 1$ in *G*. Hence, $f_1 = (1,0)$ is the only nonzero element in *E* of the form $f_1 = \prod_{h \in H_1} e_h$ for some maximum subset H_1 of *G* (here $H_1 = G$) and $f = 1 - f_1 = (0, 1 \otimes 1)$.

(5) $B = (\bigoplus \sum_{i=1}^{m} Bf_i) \oplus Cf$ where m = 1, Bf_i is a central Galois algebra with Galois group $H_i|_{Bf_i} \cong H_i$ for each i = 1, 2, ..., m.

(6) $B^G = \mathbb{R} \oplus (\mathbb{Z} \otimes \mathbb{Z}) = \mathbb{R} \oplus \mathbb{Z}.$

(7) Since *D* is not separable over \mathbb{Z} , *B* is not separable over $B^G (= \mathbb{R} \oplus \mathbb{Z})$. Hence *B* is not a Galois algebra with Galois group *G*.

ACKNOWLEDGEMENT. This paper was written under the support of a Caterpillar Fellowship at Bradley University. We would like to thank Caterpillar Inc. for the support.

REFERENCES

- F. DeMeyer and E. Ingraham, *Separable Algebras over Commutative Rings*, Lecture Notes in Mathematics, vol. 181, Springer-Verlag, Berlin, 1971. MR 43#6199. Zbl 215.36602.
- M. Harada, Supplementary results on Galois extension, Osaka J. Math. 2 (1965), 343–350. MR 33#151. Zbl 178.36903.
- [3] T. Kanzaki, On Galois algebra over a commutative ring, Osaka J. Math. 2 (1965), 309-317. MR 33#150. Zbl 163.28802.
- [4] I. Kaplansky, *Commutative Rings*, Allyn and Bacon, Massachusetts, 1970. MR 40#7234. Zbl 203.34601.
- [5] P. Nuss, Extensions galoisiennes non commutatives: normalité, cohomologie non abélienne [Noncommutative Galois extensions: normality, nonabelian cohomology], Comm. Algebra 28 (2000), no. 7, 3223-3251 (French). MR 2001d:16050. Zbl 01475110.
- [6] A. Rosenberg and D. Zelinsky, Automorphisms of separable algebras, Pacific J. Math. 11 (1961), 1109-1117. MR 26#6215. Zbl 116.02501.

[7] G. Szeto and L. Xue, On characterizations of a center Galois extension, Int. J. Math. Math. Sci. 23 (2000), no. 11, 753–758. MR 2001c:16061. Zbl 01501976.

GEORGE SZETO: DEPARTMENT OF MATHEMATICS, BRADLEY UNIVERSITY, PEORIA, IL 61625, USA *E-mail address*: szeto@hilltop.bradley.edu

LIANYONG XUE: DEPARTMENT OF MATHEMATICS, BRADLEY UNIVERSITY, PEORIA, IL 61625, USA *E-mail address*: lxue@hilltop.bradley.edu

758