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RADIATION EFFECTS ON UNSTEADY MHD FREE CONVECTION
WITH HALL CURRENT NEAR AN INFINITE

VERTICAL POROUS PLATE
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Abstract. Radiation effect on unsteady free convection flow of an electrically conducting,
gray gas near equilibrium in the optically thin limit along an infinite vertical porous plate
are investigated in the presence of strong transverse magnetic field imposed perpendicu-
larly to the plate, taking Hall currents into account. A similarly parameter length scale (h),
as a function of time and the suction velocity are considered to be inversely proportional
to this parameter. Similarity equations are then derived and solved numerically using the
shooting method. The numerical values of skin friction and the rate of heat transfer are
represented in a table. The effects of radiation parameter, Hall parameter, and magnetic
field parameters are discussed and shown graphically.
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1. Introduction. Free convection flows past different types of vertical bodies are

studied because of their wide applications and hence it has attracted the attention

of numerous investigators and scientists. Literature on unsteady MHD convection

heat transfer with or without Hall currents are very extensive due to its technical

importance in the scientific community. Some of the literature surveys and reviews

of pertinent work in this field are documented by Schlichting [8], Soundagekhar et al.

[10], Raptis et al. [7], Raptis and Perdikis [6], K. Vajravelu [11], Sacheti et al. [4], and

M. A. Al-Nimr and S. Masoud [1]. In all these studies the Hall current effects are not

considered.

The unsteady hydromagnetic free convective flow with Hall current is studied by

Singh and Raptis [9]. P. C. Ram [5] studied the effects of Hall and ion-slip currents on

free convective heat generating flow in a rotating fluid. The Laplace transform tech-

nique has been applied to obtain an exact solution in a closed form, when the plate

is moving with a velocity which is an arbitrary function of time. In all these studies,

the effect of radiation are not considered. In space technology applications and at

higher operating temperatures, radiation effects can be quite significant. Since radia-

tion is quite complicated, many aspects of its effect on free convection or combined

convection have not been studied in recent years. However, Cogley et al. [2] showed

that, in the optically thin limit for a gray gas near equilibrium the following relation

holds:

∂qr
∂y

= 4
(
T −Tω

)
I, (1.1)
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where

I =
∫∞
0
Kλω

(
∂ebλ
∂T

)
ω
dλ, (1.2)

T is the temperature, qr is the radiative heat flux, kλ is the absorption coefficient, ebλ
is Plank’s function, and ω is the properties of the wall.

Greif et al. [3] showed that, for an optically thin limit, the fluid does not absorb its

own emitted radiation, this means that there is no self-absorption, but the fluid does

absorb radiation emitted by the boundaries.

In space technology and in nuclear engineering applications, such a problem is quite

common. But in these fields, the presence of strong magnetic field and Hall current

taking effects play an important role and these effects have not been studied in the

case of free convective flow of a radiation gas under the condition mentioned above.

In this paper, we investigate the solution which the buoyancy, radiation, and Hall

currents act simultaneously.

2. Mathematical formulation. Consider unsteady free convection flow of a viscous

incompressible and electrically conducting fluid, along an infinite vertical porous plate

subjected to time-dependent suction velocity. The flow is assumed to be in the x-
direction which is taken along the plate in the upward direction and the y-axis per-

pendicular to it. A uniform strong magnetic field B0 is assumed to be applied in the

y-direction and the inducedmagnetic field of the flow is negligible in comparison with

the applied one which corresponds to very small magnetic Reynolds number [10]. On

neglecting the viscous dissipation effects, the flow under consideration is governed

by the following equations:

∂v
∂y

= 0, (2.1)

∂u
∂t
+v ∂u

∂y
= gβ

(
T −T0

)+v ∂2u
∂y2

− σµ2
eB

2
0

ρ
(
1+m2

) (u+mw), (2.2)

∂w
∂t
+v ∂w

∂y
= ∂2w

∂y2
+ σµ2

eB
2
0

ρ
(
1+m2

) (mu−w), (2.3)

∂T
∂t
+v ∂T

∂y
= k
ρcp

∂2T
∂y2

− 4
(
T −Tw

)
I

ρcp
, (2.4)

where (u,w) are the x and z components of velocity, v is the suction velocity, T is the

temperature of the fluid, u is the kinematics viscosity, σ is the electric conductivity,

ρ is the density of the fluid, k is the thermal conductivity, cp is the specific heat

at constant pressure, β is the volumetric coefficient of thermal expansion, g is the

acceleration due to gravity, and m is the Hall parameter.

The boundary conditions are given by

u= 0, w = 0, T = Tw, at y = 0,

u �→ 0, w �→ 0, T �→ T0, at y �→∞, (2.5)

we now define the similarity variables as follows:

u=u0F(η), w =u0G(η), θ(η)= T −T0

Tw−T0
, η= y

h
, (2.6)
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where h (= h(t)) is a similarly parameter length scale and u0 is the free stream

velocity. In terms of h(t), a convenient solution of (2.1) can be given by

v =−v0

(
u
h

)
, (2.7)

where v0 is a nondimensional transpiration parameter, clearly v0 > 0 and V0 < 0

indicates suction or injection, respectively.

Accordingly (2.2), (2.3), and (2.4) take the form

−h
ν
∂h
∂t

ηF ′ −v0F ′ = F ′′ −Grθ− M
1+m2

(F+mG),

−h
ν
∂h
∂t

ηG′ −v0G′ −v0G′ =G′′ + M
1+m2

(mF−G),

−h
ν
∂h
∂t

ηθ′ −v0θ′ = 1
pr

θ′′ −R(θ−1),

(2.8)

where the Grashof number Gr = gβh2(Tw − T∞)/ν2, the magnetic parameter M =
σµ2

eB
2
0h2/νρ, Prandtl number pr = ρνcp/K, and radiation parameter R = 4Ih2/ρcpν .

The boundary conditions corresponding to (2.8) are

F = 0, G = 0, θ = 1, at η= 0,

F �→ 0, G �→ 0, θ �→ 0, at η �→∞. (2.9)

Equations (2.8) are similar except for the term (h/ν)(∂h/∂t), where t appears ex-

plicitly. Thus, the similarity condition requires that (h/ν)(∂h/∂t) must be constant.

Hence it is assumed that (
h
ν

)
∂h
∂t
= C, (2.10)

where C is an arbitrary constant.

At C = 2 and by integrating equation (2.10), one obtainsh= 2
√
νt, which defines the

well-established scaling parameter for unsteady boundary layer problems [8]. Hence,

the similarity equations are obtained as

F ′′ +2
(
η+a0

)
F ′ = −Grθ− M

1+m2
(F+mG),

G′′ +2
(
η+a0

)
g′ = − M

1+m2
(mF−G),

θ′′ +2pr
(
η+a0

)
θ′ −Rpr (θ−1)= 0,

(2.11)

where a0 = v0/2.
From the velocity field, we can study the skin friction. It is given by

τx =−µ ∂u∂y
∣∣∣∣
y=0

, τz =−µ ∂w∂y
∣∣∣∣
y=0

, (2.12)

and in view of (2.6), we have

τx =−µhF
′(0), τz =−µhG

′(0). (2.13)

The values of F ′(0) and G′(0) are presented in Table 2.1 for Pr = 0.7 and different

values of m and M .
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Table 2.1

m R M F ′(0) G′(0)
0.5 0.1 5 6.82251 −1.960666
0.7 0.1 5 7.95135 −2.92623
0.5 0.1 7 3.17975 −3.65579
0.5 0.4 5 7.3583 −1.945

3. Results and conclusion. The results of the numerical computations are dis-

played in Figures 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, and 3.8 for the primary velocity F ,
secondary velocity G, and temperature θ, respectively for Pr = 0.73, Gr = 5, v0 = 0.5,
and for different values of M,m, and R. It is seen, as expected from Figures 3.1, 3.2,

and 3.3, that the primary velocity F decreases with increasing the magnetic parameter

M , while the secondary velocity profiles G and temperature profiles θ increase when

M increases.
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Figure 3.1. The variation of F against η for m= 0.1 and R = 1.
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Figure 3.2. The variation of G against η for m= 0.1 and R = 1.
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Figure 3.3. The variation of θ against η for m= 0.1 and R = 1.
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Figure 3.4. The variation of F against η for M = 0.2 and R = 1.

Figures 3.4, 3.5, and 3.6 show the F,G, and θ profiles at different values of m, we

see that F increases with increasing the parameter m, but the temperature profiles θ
decrease with increasing m. Figure 3.5 shows that the secondary velocity G begins to

develop as the Hall parameter m increases in the interval 0 ≤m ≤ 1 and decreases

for m> 1.

The effects of the thermal radiation parameter R on the primary velocity and tem-

perature profiles in the boundary layer are illustrated in Figures 3.7 and 3.8, respec-

tively. Increasing the thermal radiation parameter R produces significant increase in

the thermal condition of the fluid and its thermal boundary layer. This increase in the

fluid temperature induces more flow in the boundary layer causing the velocity of the

fluid there to increase.

From Table 2.1 we observe that an increase of M leads to a decrease in the value

of τx . But τx increases with the increase of m and R. As regards τz, we observe that

the values τz are all negative, and hence the separation in the z-direction may occur,

the increase in both M and m leads to the decrease in τz, but τz increases with the

increase of F . We can conclude a set of results corresponding to various special cases:
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Figure 3.5. The variation of G against η for M = 0.2 and R = 1.
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Figure 3.6. The variation of θ against η for M = 0.2 and R = 1.
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Figure 3.7. The variation of F against η for m= 0.1 and M = 0.2.
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Figure 3.8. The variation of θ against η for m= 0.1 and M = 0.2.

(1) Substitute M = 0, m= 0, and R = 0 in (2.8) yields identical results to those well

known in hydrodynamics [8].

(2) Substitute m = 0 and R = 0 in (2.8) yields identical results to those well known

in [4].
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