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EFFECTS OF POISEUILLE FLOW ON PERISTALTIC TRANSPORT
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Abstract. The effects of Poiseuille flow on peristaltic transport in a cylindrical tube has
been investigated. A perturbation solution is obtained, which satisfies the momentum
equation for the case in which the amplitude ratio (wave amplitude/tube radius) is chosen
as a small parameter. The results show that the fluid phase mean axial velocity increases
with increasing the Poiseuille parameter k. The phenomena of reflux is discussed. Numer-
ical results are reported for various values of k.
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1. Introduction. The term “peristalsis” is used for the mechanism by which a fluid

can be transported through a distensible tube when contraction or expansion waves

propagate progressively along its length. Peristaltic action is used by human organs

(such as ureter, male reproductive system, gastro-intestinal tract, bile duct) to perform

their functions effectively.

Latham [10] was probably the first to investigate the mechanism of peristalsis in

relation to mechanical pumping. Since then, several investigators have contributed to

the study of peristaltic action in both mechanical and physiological situations, such

as Burns et al. [3], Hanin [8], Barton et al. [1], Fung et al. [7], Shapiro et al. [16], Yih

et al. [19], Chow [4], Jaffrin et al. [9], and Mittra [13].

In particular, Burns and Parkes used perturbation techniques to study the peristaltic

motion through a channel and a tube. Barton and Raylor studied the peristaltic motion

in a circular tube by using long and short wave length approximations. The fluid

mechanics of the ureter has been studied by Lykoudis et al. [11] and Boyarsky et al.

[2]. The interaction of Poiseuille flow with the peristaltic motion has been studied by

Mittra et al. [14].

Several theoretical and experimental attempts have been made to understand peri-

staltic action in different situations. A summary of most of the experimental and

theoretical investigations reported with details of the geometry, fluid, Reynolds num-

ber, wave length parameter, wave amplitude parameter, and wave shape have been

given by Srivastava et al. [17]. Srivastava et al. [18] studied the effects of Poiseuille

flow on peristaltic transport of a particular suspension. Saxena et al. [15] studied the

particular suspension flow induced by sinusoidal peristaltic waves. In another type of

studies on peristaltic transport, El Misery et al. [5] studied the peristaltic motion of

an incompressible generalized Newtonian fluid in a planar channel. Mekheimer et al.

[12] studied the peristaltic motion of a particle fluid suspension in a planar channel.

El Shehawey et al. [6] studied the couple-stress in peristaltic transport of fluids. In the

case of k= 0, our result is in agreement with Yih et al. [19].
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2. Formulation of the problem. We consider a two-dimensional circular cylindrical

tube of radius R, with axisymmetric, moderate-amplitude traveling waves imposed on

its wall.

The fluid is assumed to be Newtonian, viscous, homogeneous, and incompress-

ible, occupying a semi-infinite region of the space. The equations governing two-

dimensional motion of a viscous incompressible fluid are

∂vr

∂t
+vr

∂vr

∂r
+vz

∂vr

∂z
=− 1

ρ
∂P
∂r
+ν

(
∂2vr

∂r 2
+ ∂2vr

∂z2
+ 1
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∂vr
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− vr

r 2

)
, (2.1a)
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and the equation of continuity is

∂vr

∂r
+ ∂vz

∂z
+ vr

r
= 0, (2.2)

where z is the axial coordinate in the direction of wave propagation, r is the radial

coordinate, ν is the kinematic viscosity, ρ is the density, P is the pressure, t is the time,

and vr and vz are the velocity components in the r - and z-directions, respectively.
Axisymmetric motion is assumed.

The velocity components can be written in terms of Stoke’s stream function Ψ as

vr = 1
r
∂Ψ
∂z

, vz =−1
r
∂Ψ
∂r

. (2.3)

Using (2.3) to eliminate the pressure P between (2.1a) and (2.1b) yields the equation

for the stream function

∂
∂t
(∇̄2Ψ

)+ 1
r
∂Ψ
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[
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(
∂Ψ
∂r

)
− 2
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r 2
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r
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∂r
∇̄2
(
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)
= ν∇̄2∇̄2Ψ , (2.4)

where ∇̄2 is a special operator defined as

∇̄2 ≡ ∂2

∂z2
+ ∂2

∂r 2
− 1
r

∂
∂r

. (2.5)

At the boundaries, the fluid is subjected to the motion of the wall in the form

(see Figure 2.1),

η= acos
2π
λ

(z−ct), (2.6)

where a is the amplitude, η is the radial displacement from the mean position of the

wall, λ is the wavelength, and c is the wave speed. The boundary conditions that must

be satisfied by the fluid on the walls are the no-slip and impermeability conditions.

The velocity components of the fluid particles on the wall are thus

vz = 0, vr = ∂η
∂t

, (2.7)
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Figure 2.1 Geometry of the problem.

and in terms of the stream function Ψ ,

∂Ψ
∂r

= 0,
∂Ψ
∂z

= 2πacr
λ

sin
2π
λ

(z−ct). (2.8)

We introduce the nondimensional variables and parameters as follows:

r∗ = r
R
, z∗ = z

R
, v∗r =

vr

c
, v∗z =

vz

c
,

η∗ = η
R
, Ψ∗ = Ψ

R2c
, t∗ = ct

R
, P∗ = p

ρc2
,

(2.9a)

and we define the amplitude ratio ε, the wave number α, and the Reynolds number

Re as

ε= a
R
, α= 2πR

λ
, Re= cR

ν
. (2.9b)

The nondimensional forms of (2.4), (2.6), and (2.8), after dropping the star are

∂
∂t
(∇̄2Ψ
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r
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− 2
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− 1
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= 1
Re
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η= εcosα(z−t), (2.11)

∂Ψ
∂r

= 0,
∂Ψ
∂z

=αεr sinα(z−t), r = 1+η. (2.12)

3. Method of solution. We expand Ψ and ∂P/∂z in a power series of the small

parameter ε,

Ψ = Ψ0+εΨ1+ε2Ψ2+··· , (3.1)

∂P
∂z

=
(
∂P
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)
0
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)
1
+ε2

(
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)
2
+··· . (3.2)
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Substituting (3.1) into (2.10), collecting terms of equal powers of ε, and equating

the coefficients of like powers on both sides of the equation, we obtain

1
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∂z

[
∇̄2 ∂Ψ0

∂r
− 2
r
∇̄2Ψ0+ 1

r 2
∂Ψ0
∂r

]
− 1
r
∂Ψ0
∂r

∇̄2 ∂Ψ0
∂z

, (3.3)
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(3.5)

We expand the boundary conditions (2.12) in power series of η,

Ψr (1)+ηΨrr (1)+ η2

2
Ψrrr (1)+··· = 0,

Ψz(1)+ηΨrz(1)+ η2

2
Ψzrr (1)+··· =αεsinα(z−t).

(3.6)

Substituting (2.11) and (3.1) into (3.6) and equating coefficients of like powers of ε
on both sides of the equation, we obtain

∂Ψ0
∂r

(1)= 0, (3.7)

∂Ψ1
∂r

(1)+ ∂2Ψ0
∂r 2

(1)cosα(z−t)= 0, (3.8)

∂Ψ2
∂r

(1)+ ∂2Ψ1
∂r 2

(1)cosα(z−t)+ 1
2
∂3Ψ0
∂r 3

(1)cos2α(z−t)= 0, (3.9)

∂Ψ0
∂z

(1)= 0, (3.10)

∂Ψ1
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2
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∂r 2∂z
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Equations (3.3), (3.7), and (3.10), together with a condition of uniform pressure

gradient (∂P/∂z)0 = constant, are satisfied which yields the classical Poiseuille flow

for a fluid,

Ψ0r = k
(
2r −2r 3), (3.13)
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where

k= Re
8

(
∂P
∂z

)
0

(3.14)

is the Poiseuille flow parameter for a fluid. Equation (3.4) with their corresponding

boundary conditions (3.8) and (3.11) shows that a solution can be chosen in the form

Ψ1 =φ1(r)eiα(z−t)+φ∗
1 (r)e−iα(z−t), (3.15)

where the asterisk denotes a complex conjugate.

Substituting (3.15) into (3.4), (3.8), and (3.11), we obtain the Sommerfeld-Orr equa-

tion with the corresponding boundary conditions as follows:[
d2

dr 2
− 1
r

d
dr

−α2+iαRe[1+2k(1−r 2)]]( d2

dr 2
− 1
r

d
dr

−α2
)
φ1 = 0, (3.16)

φ′
1(1)= 2k, φ1(1)=−1

2
, (3.17)

where the prime denote the differentiation with respect to r .
Equation (3.5), with its corresponding boundary conditions (3.9) and (3.12), shows

that a solution can be chosen in the form

Ψ2 =φ20(r)+φ22(r)e2iα(z−t)+φ∗
22(r)e−2iα(z−t). (3.18)

Substituting (3.18) into (3.5), (3.9), and (3.12), we obtain the two equations forφ20 and

φ22 with the corresponding boundary conditions as follows:
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r

[
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φ1φ∗

1
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1
′′′ + 3
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φ1φ∗

1
′
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r
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3
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∗
1 +φ′
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∗
1
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1
′φ′′

1

]
,

(3.19)

˜̃∇2 ˜̃∇2
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[
1+2k(1−r 2)] ˜̃∇2
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r

[
φ1φ′′′

1 −φ′
1φ
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3
r
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r
(
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1

)2+ 3
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φ1φ′
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2
r
α2(φ1

)2]
(3.20)

with

¯̄∇2 = d2

dr 2
− 1
r

d
dr

, ˜̃∇2 = d2

dr 2
− 1
r

d
dr

−4α2, (3.21)

φ′
20(1)+

1
2

[
φ′′

1 (1)+φ∗
1
′′(1)

]= 3k, (3.22)

φ′
22(1)+

1
2
φ′′

1 (1)=
3
2
k, φ22(1)+ 1

4
φ′

1(1)= 0. (3.23)

Thus, we obtain a set of differential equations together with the corresponding

boundary conditions which is sufficient to determine the solution of the problem up

to the second order in ε.
Now, our main purpose is to find out the solutions of differential equations for φ1,

although (3.16) for φ1 is the fourth-order ordinary differential equation with variable
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coefficients. However, we can restrict our investigation to the case in which an initially

stagnant fluid is subject to imposed pressure gradient. Thus, in this case (∂P/∂z)0 =
constant, which means that the constant k does not vanish and we would be able to

obtain a simple analytical solution of this case.

4. Analysis. We consider the case in which the pressure gradient (∂P/∂z)0 = con-

stant. In this case, there will be flow if the wall motion stops. Hence, k= constant, and

(3.16) becomes

(
d2

dr 2
− 1
r

d
dr

−γ2
)(

d2

dr 2
− 1
r

d
dr

−α2
)
φ1 = 0, (4.1)

for which γ2 =α2−iαRe(1+2k(1−r 2)) and the boundary conditions (3.17) become

φ′
1(1)= 2k, φ1(1)=−1

2
. (4.2)

Transformation of (4.1) by the Hankel transform H(s), where

H(s)=
∫∞
−∞

rf(r)Jn(sr)dr , (4.3)

the boundary conditions (4.2) and the condition that the velocity must remain finite

at r = 0, besides using the inversion formula of the Hankel transform, lead to the

solution

φ1(r)= c1rI0(βr)+c3rI1(αr), (4.4)

where β2 =α2−iαRe(1+2k),

c1 = −αI0(α)−4kI1(α)
2
(
αI0(α)I1(β)−βI0(β)I1(α)

) , c3 = βI0(β)+4kI1(β)
2
(
αI0(α)I1(β)−βI0(β)I1(α)

) , (4.5)

where I0 and I1 are the modified Bessel functions of the first kind.

By substituting (4.4) and its conjugate into (3.19) and (3.22), we obtain

¯̄∇2 ¯̄∇2
φ20 =−α2 Re2

(
1+2k(1−r 2))

×[2c1c∗1 [rβ∗I1(βr)I0(β∗r)+rβI0(βr)I1(β∗r)−2I1(βr)I1(β∗r)]
+c1c∗3

[
rβI0(βr)I1(αr)+rαI1(βr)I0(αr)−2I1(βr)I1(αr)

]
+c∗1 c3

[
rβ∗I1(αr)I0

(
β∗R

)+rαI0(αr)I1(β∗r)−2I1(β∗r)I1(αr)]],
(4.6)

φ′
20(1)=−

1
2

[
c1β2I1(β)+

(
c3+c∗3

)
α2I1(α)+c∗1 β∗2I1

(
β∗
)

+c1βI0(β)+c∗1 β∗I0(β∗)+
(
c3+c∗3

)
αI0(α)

]+3k=D.
(4.7)

The right-hand side of (4.6) is a complicated function of r . We evaluate the right-

hand side numerically and represent the result approximately by a polynomial of the

following form:

¯̄∇2 ¯̄∇2
φ20 =−α2 Re2(1+2k)

S∑
i=1

Bir 2i+2kα2 Re2
S∑
i=1

Bir 2i+2, (4.8)
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for different values of α and Re, different Bi must be used. Solving (4.8), we obtain

φ′
20 = L1r +L2r 3−α2 Re2(1+2k)

S∑
i=1

Bir 2i+3

2i(2i+2)2 +2kα
2 Re2

S∑
i=1

Bir 2i+5

(2i+2)(2i+4)2 , (4.9)

where L1 and L2 are constants.
Defining the following functions:

G(r)=
S∑
i=1

Bir 2i+3

2i(2i+2)2 , H(r)=
S∑
i=1

Bir 2i+5

(2i+2)(2i+4)2 , (4.10)

we can write the boundary condition (4.7) in the form

φ′
20(1)= L1+L2−α2 Re2(1+2k)G(1)+2kα2 Re2H(1). (4.11)

By substituting (4.10) and (4.11) into (4.9), we get

φ′
20(r)=

[
α2 Re2(1+2k)G(1)+D−2kα2 Re2H(1)

]
r +L2

(
r 3−r)

−α2 Re2(1+2k)G(r)+2kα2 Re2H(r).
(4.12)

If each term of (3.1), (3.2), (3.15), (3.18), and (4.4) is time-averaged over one period,

we obtain the mean pressure gradient

(
∂p
∂z

)
= ε2

r Re

[
−φ′′′

20+
1
r
φ′′

20−
1
r 2

φ′
20

]

+ iαε2

r 2

[
φ1φ∗

1
′′ −φ∗

1φ
′′
1 −

1
r
(
φ1φ∗

1
′ −φ∗

1φ
′
1

)]+ 8k
Re
+O(ε3).

(4.13)

By substituting (4.12) into (4.13) yields

(
∂p
∂z

)
=
[
−α2 Re

[
−G

′′(r)
r

+ 1
r 2

G′(r)− 1
r 3

G(r)
]
+2kα2 Re2

[
−H

′′(r)
r

+H
′(r)
r 2

−H(r)
r 3

]

−α2 Re(1+2k)[−2c1c∗1 I1(βr)I1(β∗r)−c1c∗3 I1(βr)I1(αr)−c∗1 c3I1(αr)I1(β∗r)]
]

+8k
Re
− 4L2

Re
= Z+ 4

Re

[
2k−L2

]
.

(4.14)

The time-averaged pressure gradient is not constant across the tube, but has a per-

turbationwhich varies with the radius. This perturbation function, which is designated

by Z , consists of the terms in the brackets in (4.14).

The solution for the mean axial velocity (averaged over time) is

v̄z =−2k
(
1−r 2)− 1

r
ε2φ′

20

= ε2
[
−α2 Re2(1+2k)

[
G(1)− G(r)

r

]
−D

+2kα2 Re2
[
H(1)−H(r)

r

]
−
(
2k
ε2
−L2

)(
1−r 2)

]
.

(4.15)
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The mean-axial velocity may be written in the form

v̄z = ε2
[
−α2 Re2(1+2k)

[
G(1)− G(r)

r

]
−D

+2kα2 Re2
[
H(1)−H(r)

r

]
− Re

4

(
∂P
∂z

)(
1−r 2)].

(4.16)

From (4.15) a “critical reflux condition” can be defined as the condition v̄z = 0 at

r = 0, that is, (at the centre of the tube) using (4.14), this condition is

(
∂P
∂z

)
cr
= 4
Re

(
2k−L2

)
, (4.17)

where

L2 =α2 Re2(1+2k)G(1)−2kα2 Re2H(1)+D+ 2k
ε2

. (4.18)

The mean flow rate can be easily found by integrating (4.15) over the cross-section

which yields

q̄ =−πε2
[
k
ε2
+α2 Re2(1+2k)G(1)−2kα2 Re2H(1)− L2

2
+D

]

+2πε2α2 Re2
[
(1+2k)

∫ 1

0
G(r)dr −2k

∫ 1

0
H(r)dr

]
.

(4.19)

5. Numerical results and discussion. In order to study the behavior of the solu-

tion, numerical calculations for several values of α, k, and Re were carried out. Equa-

tion (4.15) shows that the mean axial velocity is dominated by the D term and the

parabolic term (
L2− 2k

ε2

)(
1−r 2). (5.1)

The constant D initially arose from the nonslip conditions of the axial velocity on

the wall and is related to the mean velocity at the boundary of the tube (at r = 1) by

v̄z = ε2D. The parabolic term is due to the time-averaged pressure gradient set up by

the peristaltic motion. In addition to the two terms mentioned above, the velocity has

a perturbation term which is a function of r , that is,(
G(1)− G(r)

r

)
. (5.2)

The variation of D with α for various values of Re and k is depicted in Figures 5.1

and 5.2. The numerical results show that D increases with increasing k.
The effects of k on the mean-velocity distribution and reversal flow are displayed

in Figures 5.3, 5.4, 5.5, and 5.6. The results reveal that the mean velocity distribution

increases proportionally with the Poiseuille parameter k. We notice that as k increases
the velocity increases forward for ∂P/∂z < 0, while for ∂P/∂z > 0 the velocity increases

backward (increasing the reflux flow).

For ∂P/∂z < (∂P/∂z)cr, there is no reflux and if ∂P/∂z > (∂P/∂z)cr there will be

reflux and a backward flow in the neighbourhood of the centre line occurs. We call

a flow reflux whenever there is a region in the tube where the mean axial-velocity is

opposite to the direction of the peristaltic waves.
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Figure 5.1 Variation of D with wave number α and Poiseuille parameter k
at Re= 1.0.

k= 0

k=−1.0

k=−2.0

k=−3.0

0

−10

−20

−30

−40

−50
0 0.2 0.4 0.6 0.8 1

D

α
Figure 5.2 Variation of D with wave number α and Poiseuille parameter k
at Re= 1.0.
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Figure 5.3 The effect of Poiseuille parameter k on the mean-velocity distri-
bution and reversal flow at Re= 5.0 and ε= 0.15.
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Figure 5.4 The effect of Poiseuille parameter k on the mean-velocity distri-
bution and reversal flow at Re= 5.0 and ε= 0.15.
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Figure 5.5 The effect of Poiseuille parameter k on the mean-velocity distri-
bution and reversal flow at Re= 5.0, ε= 0.15, and (∂P/∂z)=−3.0.
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(a) k=−0.8.
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Figure 5.6 The effect of Poiseuille parameter k on the mean-velocity distri-
bution and reversal flow at Re= 5.0, ε= 0.15, and (∂P/∂z)= 10.0.
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