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Abstract. We introduce the concept of a ⊗-closed set and a ⊗-homomorphism in lattice
implication algebras, and we discuss some of their properties. Next, we introduce the fuzzy
implicative filter and obtain equivalent conditions. Finally, we discuss the operation ⊗,
fuzzy filters, and fuzzy implicative filters.
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1. Introduction. In order to research the logical system whose propositional value

is given in a lattice from the semantic viewpoint, Xu [3] proposed the concept of lat-

tice implication algebras, and discussed some of their properties in [3, 4]. Xu and Qin

[5] introduced the notion of filters in a lattice implication algebra, and investigated

their properties. In [8], Xu and Qin defined the fuzzy filter in a lattice implication al-

gebra, and they discussed some of their properties. Recently, Xu et al. [9] defined a

congruence relation on lattice implication algebras induced by fuzzy filters and they

proved the fuzzy homomorphism fundamental theorem, and Liu and Xu [1] intro-

duced the notion of the new binary operation ⊗ on lattice implication algebras and

they investigated their properties.

2. Preliminaries. We recall a few definitions and properties.

Definition 2.1 (see [4]). By a lattice implication algebra we mean a bounded lattice

(L,∨,∧,0,1) with order-reversing involution “′” and a binary operation “→” satisfying

the following axioms:

(I1) x→ (y → z)=y → (x→ z),
(I2) x→ x = 1,

(I3) x→y =y ′ → x′,
(I4) x→y =y → x = 1⇒ x =y,
(I5) (x→y)→y = (y → x)→ x,
(L1) (x∨y)→ z = (x→ z)∧(y → z),
(L2) (x∧y)→ z = (x→ z)∨(y → z),

for all x,y,z ∈ L. If (L,∨,∧,0,1) satisfies the conditions (I1), (I2), (I3), (I4), and (I5), is

called a quasi lattice implication algebra.

We can define a partial ordering ≤ on a lattice implication algebra L by x ≤y if and

only if x→y = 1.

In a lattice implication algebra L, the following hold: for all x,y,z ∈ L,

(1) 0→ x = 1, 1→ x = x, and x→ 1= 1,

(2) x ≤y implies z→ x ≤ z→y and x→ z ≥y → z,
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(3) (x→y)→ ((y → z)→ (x→ z))= 1,

(4) x→ ((x→y)→y)= 1,

(5) ((x→y)→y)→y = x→y .

Definition 2.2 (see [7]). Let (L,∨,∧,′,→) be a lattice implication algebra. A subset

F of L is called a filter of L if it satisfies for all x,y ∈ L
(F1) 1∈ F ,

(F2) x ∈ F and x→y ∈ F imply y ∈ F .

A subset F of L is called an implicative filter of L, if it satisfies (F1) and

(F3) x→ (y → z)∈ F and x→y ∈ F imply x→ z ∈ F
for all x,y,z ∈ L.

The following propositions are clear.

Proposition 2.3. In a lattice implication algebra, every implicative filter is a filter.

Proposition 2.4. Every filter F of a lattice implication algebra L has the following

property:

x ≤y, x ∈ F imply y ∈ F. (2.1)

Definition 2.5 (see [6]). Let (L,∨,∧,′,→) be a lattice implication algebra and S⊆L.

If S satisfies the following condition: S is called a subalgebra of L if

(i) 0∈ S,

(ii) for all x,y ∈ S, x→y ∈ S.

Definition 2.6 (see [3]). Let (L,∨,∧,′,→,⊗,0,1), and (L∗,∨,∧,′,→,⊗,0,1) be lat-

tice implication algebras and f : L→ L∗ be a mapping. Then f is called the implication

homomorphism if for all x,y ∈ L,

f(x �→y)= f(x) �→ f(y), (2.2)

and f is called the lattice implication homomorphism if for all x,y ∈ L,

f(x∨y)= f(x)∨f(y), f (x∧y)= f(x)∧f(y), f (x′)= f(x)′. (2.3)

Lemma 2.7 (see [3]). Let (L,∨,∧,′,→,0,1) and (L∗,∨,∧,′,→,0,1) be lattice implica-

tion algebras. If f : L→ L∗ is a function. Then f is a lattice implication homomorphism

if and only if f is an implication homomorphism and f(a′)= f(a)′ for all a∈ L.

Definition 2.8 (see [1]). Let (L,∨,∧,′,→,0,1) be a quasi-lattice implication algebra

and given elements a,b of L, we define

A(a,b) := {x ∈ L | a≤ b �→ x}. (2.4)

If for all x,y ∈ L, A(x,y) has a least element, written x⊗y , then the quasi-lattice

implication algebra is said to be with property (P).

Lemma 2.9 (see [1]). Any lattice implication algebra is with property (P), in fact a⊗b
= (a→ b′)′.
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Lemma 2.10 (see [1]). Let (L,∨,∧,′,→,0,1) be a lattice implication algebra. Then the

following hold: for all a,b,c ∈ L,

(6) a⊗b ≤ a∧b ≤ a,

(7) a≤ b if and only if a⊗b′ = 0,

(8) a⊗b = b⊗a,

(9) (a→ b)⊗a≤ b,

(10) (a⊗b)→ c = b→ (a→ c).

We now review some fuzzy logic concepts. Let X be a set. A function µ : X → [0,1]
is called a fuzzy subset on X.

In the following, it will be convenient to write simply L for (L,∨,∧,′,→,⊗,0,1), and

L∗ for (L∗,∨,∧,′,→,⊗,0,1).

3. ⊗-closed sets and ⊗-homomorphisms. In this section, we introduce the concept

of a ⊗-closed set and a ⊗-homomorphism in lattice implication algebras, and we dis-

cuss their properties. If L is a lattice implication algebra, then by Lemma 2.9, we know

that a⊗b ∈ L for all a,b ∈ L. Now we define the ⊗-closed sets as follows.

Definition 3.1. Let L be a lattice implication algebra and A a nonempty subset of

L. Then A is said to be ⊗-closed of L if a⊗b ∈A whenever a,b ∈A.

Theorem 3.2. Let F be a filter of a lattice implication algebra L. Then F is a ⊗-closed

set in L.

Proof. Let F be a filter of L and a,b ∈ F . Then by Proposition 2.4, we have b →
(a⊗b)∈ F , and so we get a⊗b ∈ F . Therefore F is ⊗-closed in L.

Theorem 3.3. In a lattice implication algebra, every subalgebra is ⊗-closed.

Proof. Let S be a subalgebra of a lattice implication algebra L and a,b ∈ S. Then,

since x′ = x→ 0∈ S for all x ∈ S, we have

a⊗b = (a �→ b′)′ ∈ S, (3.1)

and so S is ⊗-closed in L.

Remark 3.4. The converse of Theorems 3.2 and 3.3 are not true, and so we know

that ⊗-closed sets are the generalization of subalgebras and filters in a lattice impli-

cation algebra.

Example 3.5. Let L := {0,a,b,c,1}. Define the partially ordered relation on L as

0 < a < b < c < 1, and define x∧y :=min{x,y}, x∨y :=max{x,y} for all x,y ∈ L,

and “′” and “→” as follows:

x x′

0 1

a c
b b
c a
1 0

→ 0 a b c 1

0 1 1 1 1 1

a c 1 1 1 1

b b c 1 1 1

c a b c 1 1

1 0 a b c 1
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Then (L,∨,∧,′,→) is a lattice implication algebra and we can find the following

⊗-table:

⊗ 0 a b c 1

0 0 0 0 0 0

a 0 0 0 0 a
b 0 0 0 a b
c 0 0 a b c
1 0 a b c 1

Now we consider the ⊗-closed set A := {0,a,b}, which is neither a filter nor a sub-

algebra of L since 0∈A and b→ a= c ∉A.

Definition 3.6. Let L and L∗ be lattice implication algebras and let f : L→ L∗ be

a function. Then F is called a ⊗-homomorphism if for all a,b ∈ L,

f(a⊗b)= f(a)⊗f(b). (3.2)

Theorem 3.7. Let f : L→ L∗ be a ⊗-homomorphism of lattice implication algebras.

If f−1(0) := {a∈ L | f(a)= 0}≠∅, then f−1(0) is ⊗-closed in L.

Proof. Let a,b ∈ f−1(0). Then we have f(a⊗b)= f(a)⊗f(b)= 0⊗0= 0, and so

a⊗b ∈ f−1, that is, f−1(0) is a ⊗-closed set in L.

We discuss the connection between lattice implication homomorphisms and ⊗-

homomorphisms.

Theorem 3.8. Let f : L→ L∗ be a function of lattice implication algebras. If f is a

lattice implication homomorphism, then f is a ⊗-homomorphism.

Proof. For any a,b ∈ L, we have

f(a⊗b)= f ((a �→ b′)′)= f(a �→ b′)′ = (f(a) �→ f(b)′)′ = f(a)⊗f(b), (3.3)

and hence f is a ⊗-homomorphism.

We consider the converse of Theorem 3.8, so we have the following theorem.

Theorem 3.9. Let f : L → L∗ be a function of lattice implication algebras. If f is

a ⊗-homomorphism and f(a′) = f(a)′ for all a ∈ L, then f is a lattice implication

homomorphism.

Proof. For any a,b ∈ L, we have

f(a �→ b)= f ((a⊗b′)′)= f(a) �→ f(b). (3.4)

Thus by Lemma 2.7, we obtain that f is a lattice implication homomorphism.

By Theorems 3.8 and 3.9, we have the following corollary.
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Corollary 3.10. Let f : L→ L∗ be a function of lattice implication algebras. Then

f is a lattice implication homomorphism if and only if f is a ⊗-homomorphism and

f(a′)= f(a)′ for all a∈ L.

Theorem 3.11. Let L and L∗ be lattice implication algebras, and f and g be func-

tions from L into L∗. If f(a⊗b)= g(a⊗b) for all a, b ∈ L, then f = g.

Proof. For any x∈L, we have f(x)=f(x⊗1)=g(x⊗1)=g(x), and so f =g.

Theorem 3.12. Let f : L→ L∗ be a surjective⊗-homomorphism of lattice implication

algebras. If A is ⊗-closed in L, then f(A) is ⊗-closed in L∗.

Proof. For any a,b ∈ f(A), there exist x,y in A such that f(x)= a and f(y)= b.

Thus we have a⊗b = f(x)⊗f(y)= f(x⊗y). Since A is ⊗-closed in L, we get a⊗b ∈
f(A), and hence f(A) is ⊗-closed in L∗.

Theorem 3.13. Let f : L→ L∗ be a⊗-homomorphism of lattice implication algebras.

If M∗ is ⊗-closed in L∗, then f−1(M∗) is ⊗-closed in L.

Proof. Suppose that M∗ is ⊗-closed in L∗ and let a,b ∈ f−1(M∗). Then we have

f(a)∈M∗ and f(b)∈M∗. SinceM∗ is⊗-closed in L∗, we get f(a⊗b)=f(a)⊗f(b)∈M∗,

and so a⊗b ∈ f−1(M∗), that is, f−1(M∗) is ⊗-closed in L.

4. The operation ⊗ and the fuzzy (implicative) filters. In this section, we intro-

duce the fuzzy implicative filter and obtain equivalent conditions of implicative filters.

Moreover, we discuss the operation ⊗, fuzzy filters and fuzzy implicative filters.

Definition 4.1 (see [8]). A fuzzy subset µ of a lattice implication algebra L is called

a fuzzy filter if it satisfies for any x,y ∈ L,

(FF1) µ(1)≥ µ(x),
(FF2) µ(y)≥min{µ(x→y),µ(x)}.

Proposition 4.2 (see [8]). Let µ be a fuzzy filter of a lattice implication algebra L
and x,y ∈ L. Then x ≤y implies µ(x)≤ µ(y).

Theorem 4.3. If µ is a fuzzy filter of a lattice implication algebra L, then for any

x,y ∈ L,

(FF3) µ(x⊗y)≥min{µ(x),µ(y)}.

Proof. Let µ be a fuzzy filter of L. Then for all x,y ∈ L, we have

µ(x⊗y)≥min
{
µ
(
y �→ (x⊗y)),µ(y)}≥min

{
µ(x),µ(y)

}
. (4.1)

Let µ be a fuzzy filter of a lattice implication algebra L and x,y ∈ L. Then, us-

ing Proposition 4.2 and (FF3), we have µ(1)≥ µ(x) and

µ(y)≥ µ(x∧y)= µ(x⊗(x �→y))≥min
{
µ(x),µ(x �→y)}. (4.2)

Thus by Theorem 4.3, we have the following theorem.
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Theorem 4.4. Let L be a lattice implication algebra. A fuzzy set µ in L is a fuzzy

filter if and only if µ is an order preserving set and (FF3) holds.

We provide an equivalent condition for a fuzzy set to be a fuzzy filter.

Theorem 4.5. Let L be a lattice implication algebra. A fuzzy set µ in L is a fuzzy

filter if and only if it satisfies for all x,y,z ∈ L,

(FF4) x ≥y⊗z implies µ(x)≥min{µ(y),µ(z)}.

Proof. Suppose that µ is a fuzzy filter of L and let x,y,z ∈ L be such that x ≥
y⊗z. Then by Theorem 4.3, we have

µ(x)≥min
{
µ
(
(y⊗z) �→ x),µ(y⊗z)}

=min
{
µ(1),µ(y⊗z)}

≥min
{
µ(y),µ(z)

}
,

(4.3)

and so (FF4) holds.

Conversely, suppose that µ satisfies (FF4). Since 1 ≥ x⊗x for all x ∈ L, it follows

from (FF4) that

µ(1)≥min
{
µ(x),µ(x)

}= µ(x) ∀x ∈ L. (4.4)

Note that (y → x) ⊗ y ≤ x for all x,y ∈ L. Hence, by (FF4), we have µ(x) ≥
min{µ(y → x),µ(y)}, which proves (FF2). Therefore µ is a fuzzy filter of L.

Now, we give an equivalent condition of implicative filters as follows.

Lemma 4.6 (see [2]). Let F be an implicative filter of L. Then for any x,y ∈ L,

(x �→y) �→ x ∈ F implies x ∈ F. (4.5)

Theorem 4.7. A nonempty subset F of L is an implicative filter if and only if it

satisfies (F1) and

(F4) z→ ((x→y)→ x)∈ F and z ∈ F imply x ∈ F for all x,y,z ∈ L.

Proof. Suppose that F satisfies (F1) and (F4). Let x,z ∈ L be such that z→ x ∈ F
and z ∈ F . In (F4), we take y = x, then

z �→ ((x �→ x) �→ x)= z �→ (1 �→ x)= z �→ x ∈ F. (4.6)

Thus by (F4), we have x ∈ F . This says that F is a filter of L. Let x,y,z ∈ L be such

that z → (y → x) ∈ F and z → y ∈ F . Since z → (y → x) = y → (z → x) ≤ (z →
y) → (z → (z → x)), we have z → (z → x) ∈ F . As ((z → x) → x) → (z → x) = z →
(((z → x) → x) → x) = z → (z → x) ∈ F , it follows that 1 → (((z → x) → x) →
(z → x)) ∈ F . Combining (F1) and (F4) we obtain z → x ∈ F . This means that F is

an implicative filter of L.
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Conversely, suppose that F is an implicative filter of L. Let x,y,z ∈ L be such that

z→ ((x→y)→ x)∈ F and z ∈ F . Then by Proposition 2.4, we have (x→y)→ x ∈ F .

By Lemma 4.6, we get x ∈ F .

We state the fuzzification of implicative filters.

Definition 4.8. A fuzzy subset µ of a lattice implication algebra L is called a fuzzy

implicative filter if it satisfies (FF1) and

(FF5) µ(x)≥min{µ(z→ ((x→y)→ x)),µ(z)} for all x,y,z ∈ L.

Theorem 4.9. In a lattice implication algebra, every fuzzy implicative filter is a

fuzzy filter.

Proof. In (FF5), we take y = x, then we have

µ(x)≥min
{
µ(z �→ ((x �→ x) �→ x)),µ(z)}

=min
{
µ
(
z �→ (1 �→ x)),µ(z)}

=min
{
µ(z �→ x),µ(z)}.

(4.7)

This means that F is a filter of L.

We state an equivalent condition for a fuzzy set to be a fuzzy implicative filter.

Theorem 4.10. Let µ be a fuzzy filter of a lattice implication algebra L. Then the

following are equivalent:

(i) µ is a fuzzy implicative filter.

(ii) µ(x)≥ µ((x→y)→ x) for all x,y ∈ L.

(iii) µ(x)= µ((x→y)→ x) for all x,y ∈ L.

Proof. (i)⇒(ii). Let µ be a fuzzy implicative filter of L. Then by (FF5), we have

µ(x)≥min
{
µ
(
1 �→ ((x �→y) �→ x)),µ(1)}= µ((x �→y) �→ x) (4.8)

for all x,y ∈ L. Hence the condition (ii) holds.

(ii)⇒(iii). Observe that x ≤ (x→y)→ x for all x,y ∈ L. Then, by Proposition 2.4, we

have µ(x) ≤ µ((x → y)→ x). It follows from (ii) that µ(x) = µ((x → y)→ x). Hence

the condition (ii) holds.

(iii)⇒(i). Suppose that the condition (iii) holds. Since µ is a fuzzy filter, by (FF2)

we have

µ
(
(x �→y) �→ x)≥min

{
µ
(
z �→ ((x �→y) �→ x)),µ(z)}. (4.9)

Combining (iii) we obtain

µ(x)≥min
{
µ
(
z �→ ((x �→y) �→ x)),µ(z)}, (4.10)

thus µ satisfies (FF5). Therefore µ is a fuzzy implicative filter of L.

Theorem 4.11. Let L be a lattice implication algebra. A fuzzy set µ in L is a fuzzy

implicative filter if and only if it satisfies

(FF6) z⊗u≤ (x→y)→ x in L implies µ(x)≥min{µ(z),µ(u)} for all x,y,z,u∈ L,
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Proof. Suppose that µ is a fuzzy implicative filter of L and let x,y,z,u ∈ L be

such that z⊗u≤ (x→y)→ x. Since µ is a fuzzy filter of L by Theorem 4.9, it follows

from Theorems 4.5 and 4.10 that

µ(x)= µ((x �→y) �→ x)≥min
{
µ(z),µ(u)

}
. (4.11)

Conversely, suppose that µ satisfies (FF6). Obviously, µ satisfies (FF1). Since (z →
((x→y)→ x))⊗z ≤ (x→y)→ x, (FF6) implies that

µ(x)≥min
{
µ
(
z �→ ((x �→y) �→ x)),µ(z)}, (4.12)

which proves (FF5). Therefore µ is a fuzzy implicative filter of L.
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